Lecture 1

The Static Equilibrium in the Atmosphere

1.1The Results of Hydrostatic Balance

Newton's law requires that the upward force acting on thin a layer of air from the decrease of pressure with height is generally closely balanced by the downward force due gravity (as in the figure). The hydrostatic equation is then:

$$
\frac{\partial p}{\partial z}=-g \rho
$$

Typically, deviations from the hydrostatic balance occur locally, e.g. in updrafts and downdrafts or when the air hits a small obstacle. In contrast to the hydrostatic balance, then an air particle undergoes
 acceleration:

$$
\frac{d w}{d t}=-\frac{1}{\rho} \frac{d p}{d z}-g
$$

We shall discuss two typical models that approximate the atmosphere.

A. The Homogeneous Atmosphere

In this atmosphere, the density is considered constant anywhere. $\rho=\rho_{o}=$ constant (where ρ_{o} is the air density at the surface?)

From the hydrostatic equation $\frac{d p}{d z}=-g \rho_{o}$

$$
\begin{align*}
& \int_{p_{o}}^{p} d p=-g \rho_{o} \int_{0}^{z} d z \\
& p-p_{o}=-g \rho_{o} z \\
p= & p_{o}-g \rho_{o} z \tag{1.1}
\end{align*}
$$

Where p_{o} is pressure at $z=0$
The homogeneous atmosphere has a finite height H , when $\mathrm{p}=0$ (at the top of the atmosphere), $\mathrm{z}=\mathrm{H}$

$$
\begin{gathered}
0=p_{o}-\rho_{o} g H \\
\therefore H=\frac{p_{o}}{\rho_{o} g}
\end{gathered}
$$

And from the hydrostatic equation and the equation of state ($p_{o}=\rho_{o} R T_{o}$) we get:

$$
H=\frac{\rho_{o} R T_{o}}{\rho_{o} g}
$$

At $T_{o}=283^{\circ} K, R=287, g=9.8 \mathrm{~ms}^{-2} \Rightarrow H \approx 8000 \mathrm{~m}$
(Homework: solve for $\mathrm{T}_{\mathrm{o}}=293,300,310,320,330^{\circ} \mathrm{K}$)
We may define a temperature in the homogeneous atmosphere from gas equation:

$$
\begin{align*}
& \quad p=\rho_{o} R T \\
& T=\frac{p}{\rho_{o} R} \tag{1.2}
\end{align*}
$$

Put eqn. (11.1) in eqn. (11.2)

$$
\begin{aligned}
& T=\frac{p_{o}-\rho_{o} g z}{\rho_{o} R} \Rightarrow T=\frac{p_{o}}{\rho_{o} R}-\frac{\rho_{o} g z}{\rho_{o} R} \\
& T=T_{o}-\frac{g}{R} z
\end{aligned}
$$

This equation shows that T decreases linearly with height in a homogeneous atmosphere.

Question: From the atmospheric model (homogeneous atmosphere) show that the lapse rate $\gamma=\frac{d T}{d Z}=-\frac{g}{R}=-3.4^{\circ} \mathrm{K} / 100 \mathrm{~m}$

B. The Isothermal Atmosphere

In this model we have $T=T_{o}=$ const. (where T_{o} is the temperature at the surface)
From the hydrostatic Equation we get:

$$
d p=-\rho g d z
$$

Recall that $\rho=\frac{p}{R T_{o}}$

$$
\begin{gather*}
d p=\frac{p}{R T_{o}} g d z \\
\int_{p_{o}}^{p} \frac{d p}{p}=-\frac{g}{R T_{o}} \int_{0}^{z} d z \tag{2-4}
\end{gather*}
$$

$$
\ln \frac{p}{p_{o}}=-\frac{g}{R T_{o}} z
$$

Taking exponential to both sides

$$
\frac{p}{p_{o}}=e^{-\frac{g}{R T_{o}} z}
$$

This equation shows that the isothermal atmosphere is of infinite extent because $p \rightarrow 0$ when $z \rightarrow \infty$

$$
p=p_{o} e^{-\frac{g}{R T_{o}} Z}
$$

The scale height for an isothermal atmosphere is often defined as the height at which the pressure has decreased to e^{-1} of the surface pressure.

$$
\begin{gathered}
z=H_{S} \\
p=p_{o} e^{-\frac{g}{R T_{o}} H_{s}} \\
p=p_{o} e^{-1} \\
p_{o} e^{-\frac{g}{R T_{o}} H_{s}}=p_{o} e^{-1} \\
-\frac{g}{R T_{o}} H_{s}=-1 \\
\therefore H_{S}=\frac{R T_{o}}{g}=8000 m
\end{gathered}
$$

Or, that the scale height is equal to the height of the homogeneous atmosphere having the same surface temperature as the isothermal atmosphere.

The density in the isothermal atmosphere can be calculated from gas equation $p_{o}=\rho_{o} R T_{o}, p=\rho R T_{o}:$

$$
\begin{aligned}
p & =p_{o} e^{-\frac{g}{R T_{o}} z} \\
\rho R T_{o} & =\rho_{o} R T_{o} e^{-\frac{g}{R T_{o}} z} \\
\therefore \rho & =\rho_{o} e^{-\frac{g}{R T_{o}} z}
\end{aligned}
$$

Problem 1: Show that a homogeneous atmosphere (density independent of height) has a finite height that depends only on the temperature at the lower boundary. Compute the height of a homogeneous atmosphere with surface temperature $\mathrm{T}_{0}=$ 273 K and surface pressure 1000 hPa . (Use the ideal gas law and hydrostatic balance.)

Problem 2: Show that in an atmosphere with uniform lapse rate $\gamma\left(\right.$ where $\gamma \equiv-\frac{d T}{d z}$) the geopotential height at pressure level p_{1} is given by

$$
Z=\frac{T_{0}}{\gamma}\left[1-\left(\frac{p_{0}}{p_{1}}\right)^{-R \gamma / g}\right]
$$

where T_{0} and p_{0} are the sea level temperature and pressure, respectively.
(Hint: Use the hydrostatic equation and the ideal gas law.)

