Long-Term Effects of Radiation

Dr. Khalid M. Salih

- Appear years after original exposure:
 - either from previous acute (high-dose) exposures
 - ✓ or chronic low level exposure over a period of years.
- There are 3 categories of effects resulting from exposure to low doses:
 - **A. Genetic effect** suffered by offspring of the individual exposed.
 - **B. Somatic effect** suffered by individual exposed.
 - C. Embryological (teratogenic) effect suffered by developing embryo Radiation Repair exposed during pregnancy period.

A. Genetic Effects

- Damage DNA in germ cells lead to gene mutations passed to offspring of individual exposed.
- Genetic effects are difficult to be measured because:
- Fertilized egg may result nonviable organism which is aborted.
- Majority of mutations are recessive.
- Genetic effects can be grouped as:
 - **1.** Dominant gene disorders
 - 2. X-Linked Single-Gene Disorders
 - 3. Chromosome disorders
 - 4. Multifactorial disorders

1. Dominant gene disorders

Achondroplastic dwarfism is an example of a dominant gene disorder that could be caused by ionizing radiation.

2. X-Linked Single-Gene Disorders

- Bad gene present on X-chromosome will produce effect in males because males only have one X-chromosome.
- *Muscular dystrophy* is an example of an X-linked effect

3. Chromosome disorders

- Abnormal number of chromosomes (*aneuploidy*) could severely affect the unborn or newborn child.
- Down's syndrome is caused by extra copy of chromosome 21 (trisomy 21) result in:
 reduction in their life expectancy
 - ✓ abnormal body features
 - ✓ infertile.

4. Multifactorial disorders

- Associated with effects of multiple genes + lifestyles + environmental factors.
- Result in congenital malformations such as:
 - a) *Spina bifida* (split spine) caused by incomplete closing of embryonic neural tube, so some vertebrae are not fully formed and remain unfused and open that allows a portion of spinal cord to protrude.
 - **b)** Cleft palate is a fissure in mouth roof resulting from incomplete fusion of the palate during embryonic development.

B. Somatic Effects

• Late somatic effects occur in somatic cells years after brief or chronic exposure to radiation such as carcinogenic and cataractogenic effects:

1. Carcinogenic Effect:

- Radiation can cause up to 10% of invasive cancers in most parts of the body, in all animals, and at any age.
- It is stochastic effect (10–15 years for solid tumors) (2–10 years for leukemia)
- Evidences that confirmed the carcinogenic effect of radiation in human:
 - a) Painters (bone cancer) (ingestion radium paint).
 - b) Radiologists & Dentists (skin cancer) (x-ray)
 - c) Miners (lung cancer) (inhalation radon)
 - d) Survivors of atomic bombing (leukemia, thyroid & breast cancers)
 - e) Irradiation during pregnancy (leukemia in children)
 - f) Radiotherapy (thyroid, brain, skin, breast & leukemia)

B. Somatic Effects

2. Cataractogenic Effect:

- A cataract is a cloudy (opaque) area that forms in the lens which allows less light to pass into the eye leading to blurred vision (images are not clear) leading to blindness.
- It is deterministic effect with threshold dose 200 rad (2 Gy) up to 700 rad (7Gy)
- The average latent period for cataract formation is approximately 15 years and appears to be inversely related to the dose received.

Normal eye

C. Embryological (Teratogenic) effects

- **Teratogen** (monster) is any agent that alters fetal morphology or functions if fetus is exposed during critical stage of development, such as:
- Physical (radiation),
- Chemical (drugs)
- Biological (rubella viruses which cause German measles).
- It is a special case of somatic effect because the somatic cells of the embryo/fetus are exposed to radiation, not the reproductive cells of the parents.
- Developing embryo is very radiosensitive and its response depends on:
 - 1) total dose
 - 2) rate of dose
 - 3) type of radiation
 - 4) stage of development

Fetal Stages

1. Pre-implantation Stage (The 1st 9 days after fertilization):

Radiation damage cause **death** either before birth (*intrauterine death*), or few days after birth (*neonatal death*).

2. Embryonic Stage (2-8 weeks of conception):

Radiation damage cause **morphological abnormalities** which appear directly after birth such as **growth retardation** & **developmental abnormalities**.

3. Fetal Stage (continue until term):

Radiation damage cause **physiological abnormalities** which involve nervous system and sense organs and are not manifest until later in life such as **reduced intelligence** (IQ), **behavioral changes**, and **cancer**.

THANK YOU

Determinants of Radiation Effects

- **1.** Type of radiation
- 2. The radiation dose
- 3. The dose rate of radiation
- 4. Species Sensitivity (LD50/30)

Organism	LD ₅₀ (rad)	Organism	LD ₅₀ (rad)
Dogs, pigs	300	Cattle, rats, horses	630
Goats	350	Rabbits	800
MAN	400	Chickens	1000
Mice, monkeys	450	Insects	5000
Sheep	540	Turtles	15000
Fish	550	Bacteria/viruses	100000

Determinants of Radiation Effects

Increasing radiosensitivity

Embryonic cells Lymphocytes (White blood cells) Erythrocytes (Red blood cells) Sperm **Epithelial cells** Endothelial cells Connective tissue cells Bone cells Nerve cells Brain cells Muscle cells

5. Cell Sensitivity (Bergonie & Tribondeau Law)

Radio-sensitivity of a tissue is *directly* proportional to the *rate of proliferation* of its cells, and *inversely* proportional to the degree of *cell differentiation*.

Determinants of Radiation Effects

6. Part of the body exposed

Extremities (hands or feet) are able to receive a greater amount of radiation with less resulting damage than blood forming tissues found in the bone marrow.

7. Age of individual

As a person ages, cell division slows and body is less sensitive to effects of radiation.

8. Area exposed

The larger the area exposed, the greater the overall damage. Therefore, radiation therapy doses should be delivered to very limited areas (to tumor sites) rather than whole-body irradiation of the same dose.