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Lecture 6 

Wind Veering and Backing, and Geostrophic Temperature Advection 

6.1 Introduction 

The geostrophic equations:  

 𝑢𝑔 = −
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     (6.1) 

can be written for isobaric surface (pressure surface with isohypses) by using the 

hydrostatic equation (
𝜕𝑝

𝜕𝑧
= −𝜌𝑔) as follows: 
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From the formulas (6.2), it appears that the magnitude of the geostrophic wind 

depends on the tilt of the pressure surface (
𝜕𝑧

𝜕𝑦
 𝑎𝑛𝑑 

𝜕𝑧

𝜕𝑥
). For a given distance 

(𝜕𝑦 𝑜𝑟 𝜕𝑥) of the isohypses the magnitude of the geostrophic wind can be determined 

with the aid of equation (6.2). In Fig. (6.1), it is obvious that ( 
𝜕𝑧

𝜕𝑥
< 0) (height z of the 

pressure surface decreases in the positive x-direction) and consequently for the v-

component of the geostrophic wind we have (𝑣𝑔 < 0). The larger the tilt of the 

pressure surface the smaller the distance (𝜕𝑥) between the isohypses and hence the 

larger the geostrophic wind speed. A similar conclusion applies to the u-component 

of the geostrophic wind. It appears that the magnitude (and the direction) of the 

geostrophic wind may change if pressure surfaces are NOT parallel to one another.  

  

    Fig. 6.1 The magnitude of the 

geostrophic wind is determined by the 

tilt of the pressure surfaces  

 

 

6.2 The Relation with Temperature 

According to the equation of state (i.e. the gas law) the temperature determines the air 

density (ρ) for a given value of the pressure (p): 
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𝑝 = 𝜌 𝑅 𝑇    ℎ𝑒𝑛𝑐𝑒    𝜌 =
𝑝

𝑅 𝑇
         (6.3) 

 In an area with high temperatures, the density at a given pressure is lower than in 

an area with low temperatures (where the density is higher). Because of the high 

density, the decrease of pressure with height in the cold area is larger than the 

decrease of pressure in the warm area.  

 In Fig. (6.2) (left) this is clearly visible. We have assumed that the pressure at the 

surface (z = 0) is the same everywhere (p0). In the cold area, less vertical distance 

is needed to have the same decrease in pressure (dp).  

Fig. 6.2. The effect of a 

horizontal temperature 

difference (left) and a horizontal 

temperature gradient (right) on 

the height and tilt of a pressure 

surface (assuming equal surface 

pressure (p0). 

 

 If temperature changes in the horizontal, then the pressure surface aloft is no 

longer horizontal but will have a tilt (Fig. 6.2 right). A horizontal temperature 

gradient influences the tilt of all pressure surfaces.  

 From Fig. (6.3), it appears that the tilt of the pressure surfaces increases higher up 

in the atmosphere. This will have consequences on the magnitude of the 

geostrophic wind: in the case sketched in Fig. (6.3) it will increase with height. 

From Figures (6.1 and 6.3), the following conclusion can be drawn: 

A horizontal temperature gradient causes a change of the geostrophic wind with 

height (or with pressure).  

 

Fig. (6.3.) the effect of a horizontal temperature 

gradient on the tilt of subsequent pressure 

surfaces  

 

The difference between the geostrophic wind at the two pressure surfaces is called the 

thermal wind. An expression for the magnitude of the thermal wind is determined by 

differentiating the expression of the geostrophic wind with relation to pressure (p):   
𝜕

𝜕𝑝
𝑢𝑔 =

𝜕

𝜕𝑝
(−

𝑔

𝑓

𝜕𝑧

𝜕𝑦
) = −

𝑔

𝑓

𝜕

𝜕𝑝
(

𝜕𝑧

𝜕𝑦
) = −

𝑔

𝑓

𝜕

𝜕𝑦
(

𝜕𝑧

𝜕𝑝
)       (6.4) 



Atmospheric Dynamics 2 / 3rd Year/ Dept. Atm. Sci.    Lecture (6)       Dr.  Thaer Obaid Roomi    

(3 - 4) 

 

For the factor, (
𝜕𝑧

𝜕𝑝
) we use the assumption of hydrostatic equilibrium: 

𝜕𝑧

𝜕𝑝
= −

1

𝜌𝑔
= −

1

𝑔

𝑅 𝑇

𝑝
 

Here we have used the gas law. Substituting this in Equation (6.4) and multiplying by 

(p) leads to: 

𝑝
𝜕𝑢𝑔

𝜕𝑝
=

𝜕𝑢𝑔

𝜕 ln 𝑝
=

𝑅

𝑓

𝜕𝑇

𝜕𝑦
               (6.5) 

We integrate this expression from p0 to p1, with p0>p1: 

∫ 𝜕𝑢𝑔

𝑝1

𝑝0

=
𝑅

𝑓
∫

𝜕𝑇
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𝑝1
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This leads to an expression for the components of the thermal wind (uT, vT): 

 𝑢𝑇 = 𝑢𝑔(𝑝1) − 𝑢𝑔(𝑝0) = −
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)         (6.6)       𝑎𝑛𝑑, 

 𝑣𝑇 = 𝑣𝑔(𝑝1) − 𝑣𝑔(𝑝0) =  
𝑅

𝑓
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 ln (

𝑝0

𝑝1
)              (6.7) 

In the above integration, we have used an average value �̅� for the temperature in the 

layer 𝑝0 − 𝑝1 in order to simplify the integration. From these expressions, it is 

obvious that the thermal wind depends on the horizontal temperature gradient. The 

following rule also follows from these equations: The thermal wind blows parallel to 

the isotherms with the cold air on the left hand side. The closer the isotherms the 

stronger the thermal wind. 

6.2 Advection of Warm and Cold Air 

From Equations (6.6) and (6.7) it appears that the direction of the thermal wind is 

parallel to the isotherms. This leads to the following two possible situations.  

In Fig. (6.4), the wind is backing going from p0 (low level) to p1<p0 (higher level), 

in this case from west to southwest. The thermal wind is the wind vector on the high 

level minus the wind vector on the low level. The thermal wind blows parallel to the 

isotherms with the cold air on the left hand side. The geostrophic wind on both levels 

is blowing from the cold area: this is a case of cold air advection. In Fig. (6.5), the 

wind is veering from west northwest. The thermal wind again has cold air on its left 

hand side, and in this case, it appears that the wind on both pressure levels is blowing 

from the warm area: this is a case of warm air advection. 
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Fig. (6.4) Wind backing with height         Fig. (6.5) Wind veering with height 

is an indication of cold air advection         is an indication of warm air advection 

 

The value of the temperature advection is determined by the value of the thermal 

wind (i.e. by the distance of the isotherms, i.e. by the horizontal temperature gradient) 

and by the component of the geostrophic wind which is at right angles to the 

isotherms. 

6.3 Hodograph and Stability 

Advection of air from a different average temperature, in a number of layers in the 

vertical, influences the stability of the atmosphere. It is relatively easy to gain an 

overview of the advection in different layers by performing what is called a 

hodograph analysis. This involves the construction of a radial diagram with the 

station in the center. From this center, the wind speed at several or all pressure levels 

is plotted as a vector (Fig. 6.6). The vector is plotted in the direction of the wind. This 

means that a westerly wind is plotted as an arrow to the east (Fig. 6.6). Going to the 

next higher pressure level, the next arrow is plotted etc. The end points of all vectors, 

are connected by straight lines (or arrows). These straight lines are the vectors of the 

thermal wind. The end result is called a hodograph. 

 

Fig. 6.6. Example of a hodograph 

 

The next step is to consider the veering or 

backing of the wind, starting from the lowest 

level to ever higher pressure levels. In this way, the warm or cold air advection in 

each layer can be determined. By comparing the areas of the triangles in relation to 

warm or cold air advection, it is possible to determine the changes in atmospheric 

stability. As an example in Fig. (6.6) between 70 and 50 kPa there is more cold air 

advection than between 90 and 70 kPa. This means that in this case, the vertical 

temperature gradient must increase and instability is increasing. 


