

Foundation of Mathematics 2
 Chapter 3 Rational Numbers and Groups

Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

Mustansiriyah University-College of Science-Department of Mathematics 2018-2019

1. Construction of Rational Numbers

Consider the set

$$
V=\{(r, s) \in \mathbb{Z} \times \mathbb{Z} \mid r, s \in Z, s \neq 0\}
$$

of pairs of integers. Let us define an equivalence relation on V by putting

$$
(r, s) L^{*}(t, u) \Leftrightarrow r u=s t \text {. }
$$

This is an equivalence relation. (Exercise).
Let

$$
[r, s]=\left\{(x, y) \in V \mid(x, y) L^{*}(r, s)\right\}
$$

denote the equivalence class of (r, s) and write $[r, s]=\frac{r}{s}$. Such an equivalence class $[r, s]$ is called a rational number.

Example 3.1.1.

(i) $(2,12) L^{*}(1,6)$ since $2 \cdot 6=12 \cdot 1$,
(ii) $(2,12) \ell^{*}(1,7)$ since $2 \cdot 7 \neq 12 \cdot 1$.
(iii) $[0,1]=\{(x, y) \in V \mid 0 y=x 1\}=\{(x, y) \in V \mid 0=x\}=\{(0, y) \in V \mid y \in \mathbb{Z}\}$ $=\{(0, \pm 1),(0, \pm 2), \ldots\}=[0, y]$.
(iv) $(x, 0) \notin V \quad \forall x \in \mathbb{Z}$

Definition 3.1.2. (Rational Numbers)

The set of all equivalence classes $[r, s]$ (rational number) with $(r, s) \in V$ is called the set of rational numbers and denoted by \mathbb{Q}. The element $[0,1]$ will denoted by 0 and [1,1] by 1 .

3.1. 3. Addition and Multiplication on \mathbb{Q}

Addition: $\oplus: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$;

$$
[r, s] \oplus[t, u]=[r u+t s, s u], s, u \neq 0
$$

Multiplication: $\odot: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$;

$$
[r, s] \odot[t, u]=[r t, s u] s, u \neq 0
$$

Remark 3.1.4. The relation $i: \mathbb{Z} \rightarrow \mathbb{Q}$, defined by $i(n)=[n, 1]$ is $1-1$ function, and
$i(n+m)=i(n) \oplus i(m)$,
$i(n \cdot m)=i(n) \odot i(m)$.
Theorem 3.1.5.
(i) $n \oplus m=m \oplus n, \forall n, m \in \mathbb{Q}$.
(ii) $(n \oplus m) \oplus c=n \oplus(m \oplus c), \forall n, m, c \in \mathbb{Q}$.
(Commutative property of \oplus)
(iii) $n \odot m=m \odot n, \forall n, m \in \mathbb{Q}$.
(Associative property of \oplus)
(iv) $(n \odot m) \odot c=n \odot(m \odot c), \forall n, m, c \in \mathbb{Q}$. (Associative property of \odot)
(v) $(n \oplus m) \odot c=(n \odot c) \oplus(m \odot c)$
(Distributive law of \odot on \oplus)
(vi) If $c=\left[c_{1}, c_{2}\right] \in \mathbb{Q}$ and $c \neq[0,1]$, then $c_{1} c_{2} \neq 0$.
(vii) (Cancellation Law for \oplus).
$m \oplus c=n \oplus c$, for some $c \in \mathbb{Q} \Leftrightarrow m=n$.
(viii) (Cancellation Law for \odot).
$m \odot c=n \odot c$, for some $c(\neq 0) \in \mathbb{Q} \Leftrightarrow m=n$.
(ix) $[0,1]$ is the unique element such that $[0,1] \oplus m=m \oplus[0,1]=m, \forall m \in \mathbb{Q}$.
(x) $[1,1]$ is the unique element such that $[1,1] \odot m=m \odot[1,1]=m, \forall m \in \mathbb{Q}$. Proof.
(vii) Let $m=\left[m_{1}, m_{2}\right], n=\left[n_{1}, n_{2}\right], c=\left[c_{1}, c_{2}\right] \in \mathbb{Q}, m_{i}, n_{i}, c_{i} \in \mathbb{Z}, i=1,2$.
$m \oplus c=n \oplus c$
$\leftrightarrow\left[m_{1}, m_{2}\right] \oplus\left[c_{1}, c_{2}\right]=\left[n_{1}, n_{2}\right] \oplus\left[c_{1}, c_{2}\right]$
$\leftrightarrow\left[m_{1} c_{2}+c_{1} m_{2}, m_{2} c_{2}\right]=\left[n_{1} c_{2}+c_{1} n_{2}, n_{2} c_{2}\right]$
$\leftrightarrow\left(m_{1} c_{2}+c_{1} m_{2}, m_{2} c_{2}\right) L^{*}\left(n_{1} c_{2}+c_{1} n_{2}, n_{2} c_{2}\right)$
Def. of \oplus for \mathbb{Q}
$\leftrightarrow\left(m_{1} c_{2}+c_{1} m_{2}\right) n_{2} c_{2}=\left(n_{1} c_{2}+c_{1} n_{2}\right) m_{2} c_{2}$
Def. of equiv. class
$\leftrightarrow\left(\left(m_{1} n_{2}\right) c_{2}+\left(n_{2} m_{2}\right) c_{1}\right) c_{2}=\left(\left(n_{1} m_{2}\right) c_{2}+\left(n_{2} m_{2}\right) c_{1}\right) c_{2}$
$\leftrightarrow\left(m_{1} n_{2}\right) c_{2}+\left(n_{2} m_{2}\right) c_{1}=\left(n_{1} m_{2}\right) c_{2}+\left(n_{2} m_{2}\right) c_{1}$ Def. of L^{*}
Properties of + and \cdot in \mathbb{Z}
$\leftrightarrow\left(m_{1} n_{2}\right) c_{2}=\left(n_{1} m_{2}\right) c_{2}$
Cancel. law for \cdot in \mathbb{Z}
$\leftrightarrow\left(m_{1} n_{2}\right)=\left(n_{1} m_{2}\right)$
$\leftrightarrow\left(m_{1}, m_{2}\right) L^{*}\left(n_{1}, n_{2}\right)$
$\leftrightarrow\left[m_{1}, m_{2}\right]=\left[n_{1}, n_{2}\right]$

Cancel. law for+ in \mathbb{Z}
Cancel. law for \cdot in \mathbb{Z}
Def. of L^{*}
Def. of equiv. class
(viii) Let $m=\left[m_{1}, m_{2}\right], n=\left[n_{1}, n_{2}\right], c=\left[c_{1}, c_{2}\right] \in \mathbb{Q}, m_{i}, n_{i}, c_{i} \in \mathbb{Z}$ and $c \neq[0,1]) i=1,2$.
$m \odot c=n \odot c$
$\leftrightarrow\left[m_{1}, m_{2}\right] \odot\left[c_{1}, c_{2}\right]=\left[n_{1}, n_{2}\right] \odot\left[c_{1}, c_{2}\right]$
$\leftrightarrow\left[m_{1} c_{1}, m_{2} c_{2}\right]=\left[n_{1} c_{1}, n_{2} c_{2}\right]$
Def. of \odot for \mathbb{Q}
$\leftrightarrow\left(m_{1} c_{1}, m_{2} c_{2}\right) L^{*}\left(n_{1} c_{1}, n_{2} c_{2}\right)$
$\leftrightarrow\left(m_{1} c_{1}\right)\left(n_{2} c_{2}\right)=\left(n_{1} c_{1}\right)\left(m_{2} c_{2}\right)$
$\leftrightarrow\left(m_{1} n_{2}\right)\left(c_{1} c_{2}\right)=\left(m_{2} n_{1}\right)\left(c_{1} c_{2}\right)$
$\leftrightarrow\left(m_{1} n_{2}\right)=\left(m_{2} n_{1}\right)$
$\leftrightarrow\left(m_{1}, m_{2}\right) L^{*}\left(n_{1}, n_{2}\right)$
$\leftrightarrow\left[m_{1}, m_{2}\right]=\left[n_{1}, n_{2}\right]$

Def. of equiv. class
Def. of L^{*}
Asso. and comm. of + and \cdot in \mathbb{Z}
$c_{1} c_{2} \neq 0$ and Cancel. law for \cdot in \mathbb{Z}
Def. of L^{*}
Def. of equiv. class
(i),(ii),(iii),(iv)(v),(vi),(ix),(x) Exercise.

Definition 3.1.6.

(i) An element $[n, m] \in \mathbb{Q}$ is said to be positive element if $n m>0$. The set of all positive elements of \mathbb{Q} will denoted by \mathbb{Q}^{+}.
(ii) An element $[n, m] \in \mathbb{Q}$ is said to be negative element if $n m<0$. The set of all positive elements of \mathbb{Q} will denoted by \mathbb{Q}^{-}.

Remark 3.1.7. Let $[r, s]$ be any rational number. If $s<-1$ or $s=-1$ we can rewrite this number as $[-r,-s]$; that is, $[r, s]=[-r,-s]$.

Definition 3.1.8. Let $[r, s],[t, u] \in \mathbb{Q}$. We say that $[r, s]$ less than $[t, u]$ and denoted by
$[r, s]<[t, u] \Leftrightarrow r u<s t$, where $s, u>1$ or $s, u=1$.

Example 3.1.9.
$[2,5],[7,-4] \in \mathbb{Q}$.
$[2,5] \in \mathbb{Q}^{+}$, since $2=[2,0], 5=[5,0]$ in \mathbb{Z} and $2 \cdot 5=[2 \cdot 5+0 \cdot 0,2 \cdot 0+5 \cdot 0]$

$$
=[10,0]=+10>0 .
$$

$[-4,7] \in \mathbb{Q}^{-}$, since $7=[7,0],-4=[0,4]$ in \mathbb{Z} and

$$
\begin{aligned}
7 \cdot(-4) & =[7 \cdot 0+0 \cdot 4,7 \cdot 4+0 \cdot 0] \\
& =[0,32]=-32<0 .
\end{aligned}
$$

$[-4,7]<[2,5]$, since $-4 \cdot 5<2 \cdot 7$.
$[7,-4]<[2,5]$, since $[7,-4]=[-7,-(-4)]=[-7,4]$, and $-7 \cdot 5<2 \cdot 4$.

2. Binary Operation

Definition 3.2.1. Let A be a non empty set. The relation $*: A \times A \rightarrow A$ is called a (closure) binary operation if $\quad *(a, b)=a * b \in A, \forall a, b \in A$; that is, $*$ is function.

Definition 3.2.2. Let A be a non empty set and $*$, be binary operations on A. The pair $(A, *)$ is called mathematical system with one operation, and the triple $(A, *$,$) is called mathematical system with two operations.$

Definition 3.2.3. Let $*$ and \cdot be binary operations on a set A.
(i) $*$ is called commutative if $a * b=b * a, \forall a, b \in A$.
(ii) $*$ is called associative if $(a * b) * c=a *(b * c), \forall a, b, c \in A$.
(iii) • is called left distributive over * if

$$
(a * b) \cdot c=(a \cdot c) *(b \cdot c), \forall a, b, c \in A \text {. }
$$

(iv) • is called right distributive over $*$ if

$$
a \cdot(b * c)=(a \cdot b) *(a \cdot c), \forall a, b, c \in A \text {. }
$$

Definition 3.2.4. Let * be a binary operation on a set A.
(i) An element $\boldsymbol{e} \in A$ is called an identity with respect to $*$ if

$$
a * e=e * a=a, \forall a \in A \text {. }
$$

(ii) If A has an identity element \boldsymbol{e} with respect to $*$ and $a \in A$, then an element b of A is said to be an inverse of \boldsymbol{a} with respect to $*$ if

$$
a * b=b * a=e \text {. }
$$

Example 3.2.5. Let X be a non empty set.
(i) $(P(X), U)$ formed a mathematical system with identity \emptyset.
(ii) $(P(X), \cap)$ formed a mathematical system with identity X.
(iii) $(\mathbb{N},+)$ formed a mathematical system with identity 0 .
(iv) $(\mathbb{Z},+)$ formed a mathematical system with identity 0 and $-a$ an inverse for every $a(\neq 0) \in \mathbb{Z}$.
(iv) $(\mathbb{Z} \backslash\{0\}, \cdot)$ formed a mathematical system with identity 1 .

Theorem 3.2.6. Let $*$ be a binary operation on a set A.
(i) If A has an identity element with respect to $*$, then this identity is unique.
(ii) Suppose A has an identity element \boldsymbol{e} with respect to $*$ and $*$ is associative. Then the inverse of any element in A if exist it is unique.

Proof.

(i) Suppose \boldsymbol{e} and $\hat{\boldsymbol{e}}$ are both identity elements of A with respect to $*$.
(1) $a * \boldsymbol{e}=\boldsymbol{e} * a=a, \forall a \in A \quad$ (Def. of identity)
(2) $a * \widehat{\boldsymbol{e}}=\widehat{\boldsymbol{e}} * a=a, \forall a \in A \quad$ (Def. of identity)
(3) $\hat{\boldsymbol{e}} * e=e * \hat{\boldsymbol{e}}=\hat{\boldsymbol{e}}$
(Since (1) is hold for $a=\widehat{\boldsymbol{e}}$)
(4) $e * \hat{\boldsymbol{e}}=\hat{\boldsymbol{e}} * e=\boldsymbol{e}$
(Since (2) is hold for $a=\boldsymbol{e}$)
(5) $\boldsymbol{e}=\hat{\boldsymbol{e}}$
(Inf. (3) and (4))
(ii) Let $a \in A$ has two inverse elements say b and c with respect to $*$. To prove $b=c$.
(1) $a * b=b * a=e \quad$ (Def. of inverse $(b$ inverse element of $a)$)
(2) $a * c=c \quad * a=e \quad$ (Def. of inverse $(c$ inverse element of $a)$)
(3) $b=b * e$
(Def. of identity)

$$
\begin{array}{ll}
=b *(a * c) & (\text { From (2) Rep }(e: a * c)) \\
=(b * a) * c & (\text { Since } * \text { is associative })
\end{array}
$$

$=e * c$
(From (i) $\operatorname{Rep}(b * a: e))$ and
$=c$
(Def. of identity).

Therefore; $b=c$.
Definition 3.2.7. A mathematical system with one operation, $(G, *)$ is said to be
(i) semi group if $(a * b) * c=a *(b * c), \forall a, b, c \in G$. (Associative law)
(ii) group if
(1) (Associative law) $(a * b) * c=a *(b * c), \forall a, b, c \in G$.
(2) (Identity with respect to $*$) There exist an element e such that $a * e=e *$ $a=a, \forall a \in A$.
(3) (Inverse with respect to *) For all $a \in G$, there exist an element $b \in G$ such that $a * b=b * a=e$.
(4) If the operation $*$ is commutative on G then the group is called commutative group; that is, $a * b=b * a, \forall a, b \in G$.

Example 3.2.8. (i) Let G be a non empty set. $(P(G), U)$ and $(P(G), \cap)$ are not group since it has no inverse elements, but they are semi groups.
(ii) $(\mathbb{N},+),(\mathbb{N}, \cdot)$ and (\mathbb{Z}, \cdot), are not groups since they have no inverse elements, but they are semi groups.
(iii) $(\mathbb{Z},+),(\mathbb{Q} \backslash\{0\}, \cdot)$, are commutative groups.

Symmetric Group 3.2.9.

Let $X=\{1,2,3\}$, and $S_{3}=$ Set of All permutations of 3 elements of the set X.

------	-----	----
3	2	1

There are 6 possiblities and all possible permutations of X as follows:

Foundation of Mathematics 2
Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana
Mustansirivah University College of Science Dept. of Math. (2018-2019)

1			2			3			4			5			6		
1	2	3	1		2	2	1	3	2	3	1	3	1	2	3	2	1

Let $\sigma_{i}: X \rightarrow X, i=1,2, \ldots 6$, defined as follows:

$\begin{aligned} & \sigma_{1}(1)=1 \\ & \sigma_{1}(2)=2 \\ & \sigma_{1}(3)=3 \end{aligned}$	$\begin{aligned} & \sigma_{2}(1)=2 \\ & \sigma_{2}(2)=1 \\ & \sigma_{2}(3)=3 \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{3}(1)=3 \\ & \sigma_{3}(2)=2 \\ & \sigma_{3}(3)=1 \\ & \hline \end{aligned}$
$\sigma_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)=()$	$\sigma_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)=(12)$	$\sigma_{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)=(13)$
$\begin{aligned} & \sigma_{4}(1)=1 \\ & \sigma_{4}(2)=3 \\ & \sigma_{4}(3)=2 \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{5}(1)=2 \\ & \sigma_{5}(2)=3 \\ & \sigma_{5}(3)=1 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \sigma_{6}(1)=3 \\ \sigma_{6}(2)=1 \\ \sigma_{6}(3)=2 \\ \hline \end{array}$
$\sigma_{4}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)=(23)$	$\sigma_{5}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)=(123)$	$\sigma_{6}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)=(132)$

- Define an arbitrary bijection

$$
\sigma_{4}=(23)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
$$

Note that $R_{240}=R_{120} \circ R_{120}=R_{120}{ }^{2}$.
Draw a vertical line through the top corner $\boldsymbol{i}, i=1,2,3$ and flip about this line.
1- If $i=1$ call this operation $F=F_{1}$.

2- If $i=2$ call this operation F_{2}.

3- If $i=3$ call this operation F_{3}.

Note that $F^{2}=F \circ F=\sigma_{1}$, representing the fact that flipping twice does nothing.

* All permutations of a set X of 3 elements form a group under composition。 of functions, called the symmetric group on 3 elements, denoted by S_{3}. (Composition of two bijections is a bijection).

Right							
	\circ						
$=e$	$\sigma_{2}=(12)$	$\sigma_{3}=(13)$	$\sigma_{4}=(23)$	$\sigma_{5}=(123)$	$\sigma_{6}=(132)$		
	$\sigma_{1}=e$	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}
	σ_{2}	e	σ_{6}	σ_{5}	σ_{4}	σ_{3}	
	σ_{3}	σ_{5}	e	σ_{6}	σ_{2}	σ_{4}	
	σ_{4}	σ_{6}	σ_{5}	e	σ_{3}	σ_{2}	
	σ_{5}	σ_{3}	σ_{4}	σ_{2}	σ_{6}	e	
	σ_{6}	σ_{4}	σ_{2}	σ_{3}	e	σ_{5}	

$\begin{array}{rlrl}\sigma_{3} & =\left(\begin{array}{ll|l}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right) & \sigma_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right) \\ \sigma_{2} \circ \sigma_{3} & \sigma_{2} & =\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right) & \sigma_{5} \circ \sigma_{2}\end{array} \sigma_{5}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 \downarrow & 1\end{array}\right)$

$\mathbb{Z}_{\boldsymbol{n}}$ modulo Group 3.2.10.

Let \mathbb{Z} be the set of integer numbers, and let n be a fixed positive integer. Let \equiv be a relation defined on \mathbb{Z} as follows:

$$
\begin{gathered}
a \equiv b \bmod (n) \Leftrightarrow a-b=k n, \quad \text { for some } k \in \mathbb{Z} \\
a \equiv_{n} b \Leftrightarrow a-b=k n, \quad \text { for some } k \in \mathbb{Z}
\end{gathered}
$$

Equivalently,

$$
a \equiv b \bmod (n) \Leftrightarrow a=b+k n, \text { for some } k \in \mathbb{Z} \text {. }
$$

This relation \equiv is an equivalence relation on \mathbb{Z}. (Exercise).
The equivalence class of each $a \in \mathbb{Z}$ is as follows:

$$
[a]=\{c \in \mathbb{Z} \mid c=a+k n, \text { for some } k \in \mathbb{Z}\}=\bar{a} \text {. }
$$

The set of all equivalence class will denoted by \mathbb{Z}_{n}.

1 - If $\boldsymbol{n}=1$.
$[a]=\{c \in \mathbb{Z} \mid c=a+k .1$, for some $k \in \mathbb{Z}\}=\{c \in \mathbb{Z} \mid c=a+k$, for some $k \in \mathbb{Z}\}$.
$[0]=\{c \in \mathbb{Z} \mid c=0+k$, for some $k \in \mathbb{Z}\}=\{c \in \mathbb{Z} \mid c=k$, for some $k \in \mathbb{Z}\}$.

$$
[0]=\{\ldots,-2,-1,0,1,2, \ldots\} .
$$

Therefore, $\mathbb{Z}_{1}=\{[0]\}=\{\overline{0}\}$.
2 - If $n=2$.
$[a]=\{c \in \mathbb{Z} \mid c=a+k .2$, for some $k \in \mathbb{Z}\}=\{c \in \mathbb{Z} \mid c=a+2 k$, for some $k \in \mathbb{Z}\}$.
$[0]=\{c \in \mathbb{Z} \mid c=0+2 k$, for some $k \in \mathbb{Z}\}=\{c \in \mathbb{Z} \mid c=2 k$, for some $k \in \mathbb{Z}\}$.
$[0]=\{\ldots,-4,-2,0,2,4, \ldots\}=\overline{0}$.
$[1]=\{c \in \mathbb{Z} \mid c=1+2 k$, for some $k \in \mathbb{Z}\}$
$[1]=\{\ldots,-3,-1,1,3,5, \ldots\}=\overline{1}$.
Therefore, $\mathbb{Z}_{2}=\{\overline{0}, \overline{1}\}$.
3- If $n=3$.
$[a]=\{c \in \mathbb{Z} \mid c=a+k .3$, for some $k \in \mathbb{Z}\}=\{c \in \mathbb{Z} \mid c=a+3 k$, for some $k \in \mathbb{Z}\}$.
$[0]=\{c \in \mathbb{Z} \mid c=0+3 k$, for some $k \in \mathbb{Z}\}=\{c \in \mathbb{Z} \mid c=3 k$, for some $k \in \mathbb{Z}\}$.
$[0]=\{\ldots,-6,-3,0,3,6, \ldots\}=\overline{0}$.
$[1]=\{c \in \mathbb{Z} \mid c=1+3 k$, for some $k \in \mathbb{Z}\}$
$[1]=\{\ldots,-5,-2,1,4,7, \ldots\}=\overline{1}$.
$[2]=\{c \in \mathbb{Z} \mid c=2+3 k$, for some $k \in \mathbb{Z}\}$
$[2]=\{\ldots,-4,-1,2,5,8, \ldots\}=\overline{2}$.
Thus, $\mathbb{Z}_{3}=\{\overline{0}, \overline{1}, \overline{2}\}$.

Remark 3.2.11. $\mathbb{Z}_{\boldsymbol{n}}=\{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}, \ldots, \overline{\boldsymbol{n}-\mathbf{1}}\}$ for all $n \in \mathbb{Z}^{+}$.
Operation on \mathbb{Z}_{n} 3.2.12.
Addition operation $+_{n}$ on \mathbb{Z}_{n}

$$
[a]+{ }_{n}[b]=[a+b] .
$$

Multiplication operation ${ }_{n}$ on \mathbb{Z}_{n}

$$
[a] \cdot{ }_{n}[b]=[a \cdot b] .
$$

$\left(\mathbb{Z}_{n},+_{n}\right)$ formed a commutative group with identity $\overline{0}$.
$\left(\mathbb{Z}_{n}, \cdot{ }_{n}\right)$ formed a commutative semi group with identity $\overline{1}$.
Example 3.2.13.
If $\boldsymbol{n}=4 . \mathbb{Z}_{4}=\{\overline{0}, \overline{1}, \overline{,}, \overline{3}\}$.

$+_{4}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\overline{3}$	$\overline{0}$	$\overline{1}$
$\overline{3}$	$\overline{3}$	$\overline{0}$	$\overline{1}$	$\overline{2}$

$$
\overline{3}+{ }_{4} \overline{2}=[3+2]=[5] \equiv_{4}[1] \text { since } 5=1+4 \cdot 1 .
$$

\cdot_{4}	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{0}$	$\overline{2}$
$\overline{3}$	$\overline{0}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

$\overline{3} \cdot 4 \overline{2}=[3 \cdot 2]=[6] \equiv_{4}[2]$ since $6=2+4 \cdot 1$.
Exercise 3.2.14. Write the elements of \mathbb{Z}_{5} and then write the tables of addition and multiplication of \mathbb{Z}_{5}.

