Lecture 5

The Gravitational Force

4.1 The Gravitational Force

Newton's law of the universal gravitation states, "Any two elements of mass in the universe attract each other with a force proportional to their masses and inversely to the square of the distance between them."

Newton's law can be written in a vectorial form as:

$$
\stackrel{\rightharpoonup}{g}=-G \frac{m_{1} m_{2}}{r^{3}} \stackrel{\rightharpoonup}{r}
$$

where \vec{g} is the attraction of m_{1} on m_{2} (force of gravitation)
\vec{r} is the position vector from m_{1} to m_{2}
G is the universal gravitational constant $=6.66 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

If we assume $\mathrm{m}_{2}=1 \mathrm{~kg}$,

$$
\stackrel{\rightharpoonup}{g}=-G \frac{m_{1}}{r^{3}} \stackrel{\rightharpoonup}{r}
$$

If $\mathrm{m}_{1}=\mathrm{M} \quad$ "total mass of Earth is equal to $5.988 \times 10^{24} \mathrm{~kg} "$
The acceleration due to the gravitational force at the surface of Earth ($\mathrm{r}=\mathrm{a}=6378 \mathrm{~km}$):

$$
\vec{g}_{*}=-G \frac{M}{a^{2}} \stackrel{\rightharpoonup}{r}
$$

At some altitude Z above the surface of the earth, the acceleration due to the gravitational force is:

$$
\stackrel{\rightharpoonup}{g}_{*}=-G \frac{M}{(a+z)^{2}} \stackrel{\rightharpoonup}{r}
$$

\vec{r} is the position vector from the center of Earth to the parcel in the atmosphere.
\vec{g}_{*} is directed toward the center of Earth.

