$(x, y) \in A \times(B-C) \Leftrightarrow x \in A \wedge y \in(B-C) \quad$ Def. of \times
$\Leftrightarrow x \in A \wedge(y \in B \wedge y \notin C)$
$\Leftrightarrow(x \in A \wedge x \in A) \wedge(y \in B \wedge y \notin C) \quad$ Idempotent Law of \wedge
$\Leftrightarrow(x \in A \wedge y \in B) \wedge(x \in A \wedge y \notin C) \quad$ Commut. and Assoc. Laws of \wedge
$\Leftrightarrow(x, y) \in(A \times B) \wedge(x, y) \notin(A \times C) \quad$ Def. of \times
$\Leftrightarrow(x, y) \in(A \times B)-(A \times C) \quad$ Def. of -

3.2 Relations

Definition 3.2.1. Any subset " R " of $A \times B$ is called a relation between \boldsymbol{A} and \boldsymbol{B} and denoted by $R(A, B)$. Any subset of $A \times A$ is called a relation on \boldsymbol{A}.

In other words, if A is a set, any set of ordered pairs with components in A is a relation on A. Since a relation R on A is a subset of $A \times A$, it is an element of the power set of $A \times A$; that is, $R \subseteq P(A \times A)$.

If R is a relation on A and $(x, y) \in R$, then we write $\boldsymbol{x} \boldsymbol{R} \boldsymbol{y}$, read as " x is in R-relation to y ", or simply, x is in relation to y, if R is understood.

Example 3.2.2.

(i) Let $A=\{2,4,6,8\}$, and define the relation R on A by $(x, y) \in R$ iff x divides y. Then, $R=\{(2,2),(2,4),(2,6),(2,8),(4,4),(4,8),(6,6),(8,8)\}$.
(ii) Let $A=\{0,3,5,8\}$, and define $R \subseteq A \times A$ by $x R y$ iff x and y have the same remainder when divided 3 .
$R=\{(0,0),(0,3),(3,0),(3,3),(5,5),(5,8),(8,5),(8,8)\}$.
Observe, that $x R x$ for $x \in N$ and, whenever $x R y$ then also $y R x$.
(iii) Let $A=\mathbb{R}$, and define the relation R on \mathbb{R} by $x R y$ iff $y=x^{2}$. Then R consists of all points on the parabola $y=x^{2}$.
(iv) Let $A=\mathbb{R}$, and define R on \mathbb{R} by $x R y$ iff $x \cdot y=1$. Then R consists of all pairs $\quad\left(x, \frac{1}{x}\right)$, where x is non-zero real number.
(v) Let $A=\{1,2,3\}$, and define R on A by $x R y$ iff $x+y=7$. Since the sum of two elements of A is at most 6 , we see that $x R y$ for no two elements of A; hence, $R=\emptyset$.

For small sets we can use a pictorial representation of a relation R on A : Sketch two copies of A and, if $x R y$ then draw an arrow from the x in the left sketch to the y in the right sketch.
(vi) Let $A=\{a, b, c, d, e\}$, and consider the relation

$$
R=\{(a, a),(a, c),(c, d),(d, b),(d, c)\} .
$$

An arrow representation of R is given in Fig.

(vii) Let A be any set. Then the relation $R=\{(x, x): x \in A\}=I_{A}$ on A is called the identity relation on A. Thus, in an identity relation, every element is related to itself only.

Definition 3.2.3. Let R be a relation on A. Then
(i) $\operatorname{Dom}(R)=\{x \in A$: There exists some $y \in A$ such that $(x, y) \in R\}$ is called the domain of \boldsymbol{R}.
(ii) $\operatorname{Ran}(R)=\{y \in A$: There exists some $x \in A$ such that $(x, y) \in R\}$ is called the range of \boldsymbol{R}.

Observe that $\operatorname{Dom}(R)$ and $\operatorname{Ran}(R)$ are both subsets of A.

Example 3.2.4.

(i) Let A and R be as in Example 3.2.2.(vi). Then
$\operatorname{Dom}(R)=\{a, c, d\}, \operatorname{Ran}(R)=\{a, b, c, d\}$.
(ii) Let $A=\mathbb{R}$, and define R by $x R y$ iff $y=x^{2}$. Then
$\operatorname{Dom}(R)=\mathbb{R}, \operatorname{Ran}(R)=\{y \in \mathbb{R}: y \geq 0\}$.
(iii) Let $A=\{1,2,3,4,5,6\}$, and define R by $x R y$ iff $x \nsupseteq y$ and x divides y;
$R=\{(1,2),(1,3), \ldots,(1,6),(2,4),(2,6),(3,6)\}$, and $\operatorname{Dom}(R)=\{1,2,3\}$, $\operatorname{Ran}(R)=\{2,3,4,5,6\}$.
(iv) Let $A=\mathbb{R}$, and R be defined as $(x, y) \in R$ iff $x^{2}+y^{2}=1$. Then
$(x, y) \in R$ iff (x, y) is on the unit circle with centre at the origin. So,

$$
\operatorname{Dom}(R)=\operatorname{Ran}(R)=\{z \in \mathbb{R}:-1 \leq z \leq 1\}
$$

Definition 3.2.5. (Reflexive, Symmetric, antisymmetric and Transitive Relations)
Let R be a relation on a nonempty set A.
(i) $\quad R$ is reflexive if $(x, x) \in R$ for all $x \in A$.
(ii) $\quad R$ is antisymmetric if for all $x, y \in A,(x, y) \in R$ and $(y, x) \in R$ implies $x=y$.
(iii) $\quad R$ is transitive if for all $x, y, z \in A,(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$.
(iv) $\quad R$ is symmetric if whenever $(x, y) \in R$ then $(y, x) \in R$.

Definition 3.2.6.

(i) R is an equivalence relation on A, if R is reflexive, symmetric, and transitive. The set

$$
[x]=\{y \in A: x R y\}
$$

is called equivalence class. The set of all different equivalence classes A / R is called the quotient set.
(ii) R is a partial order on A (an order on A, or an ordering of A), if R is reflexive, antisymmetric, and transitive. We usually write \leq for R; that is,

$$
x \leq y \text { iff } x R y \text {. }
$$

(iii) If R is a partial order on A, then the element $a \in A$ is called least element of \boldsymbol{A} with respect to \boldsymbol{R} if and only if $a R x$ for all $x \in A$.
(iv) If R is a partial order on A, then the element $a \in A$ is called greatest element of \boldsymbol{A} with respect to \boldsymbol{R} if and only if $x R a$ for all $x \in A$.
(v) If R is a partial order on A, then the element $a \in A$ is called minimal element of \boldsymbol{A} with respect to \boldsymbol{R} if and only if $x R a$ then $a=x$ for all $x \in A$.
(vi) If R is a partial order on A, then the element $a \in A$ is called maximal element of \boldsymbol{A} with respect to \boldsymbol{R} if and only if $a R x$ then $a=x$ for all $x \in A$.

Example 3.2.7.

(i) The relation on the set of integers \mathbb{Z} defined by

$$
(x, y) \in R \text { if } x-y=2 k, \quad \text { for some } k \in \mathbb{Z}
$$

is an equivalence relation, and partitions the set integers into two equivalence classes, i.e., the even and odd integers.
If $y=0$, then $[x]=\mathbb{Z}_{e}$. If $y=1$, then $[x]=\mathbb{Z}_{o} \cdot \mathbb{Z}=\mathbb{Z}_{e} \cup \mathbb{Z}_{o}, \mathbb{Z} / R=\left\{\mathbb{Z}_{e}, \mathbb{Z}_{o}\right\}$.
(ii) The inclusion relation \subseteq is a partial order on power set $P(X)$ of a set X.
(iii) Let $A=\{3,6,7\}$, and

$$
\begin{gathered}
R_{1}=\{(x, y) \in A \times A: x \leq y\}, R_{2}=\{(x, y) \in A \times A: x \geq y\} \\
R_{3}=\{(x, y) \in A \times A: y \text { divisble by } x\}
\end{gathered}
$$

are relations defined on A.

$$
\begin{aligned}
& R_{1}=\{(3,3),(3,6),(3,7),(6,6),(6,7),(7,7)\}, \\
& R_{2}=\{(3,3),(6,3),(6,6),(7,3),(7,6),(7,7)\} . \\
& R_{3}=\{(3,3),(3,6),(6,6),(7,7)\} .
\end{aligned}
$$

R_{1}, R_{2} and R_{3} are partial orders on A.
(1)The least element of A with respect to R_{1} is
(2)The least element of A with respect to R_{2} is
(3)The greatest element of A with respect to R_{1} is
\qquad
(4) The greatest element of A with respect to R_{2} is
(5) A has no least and greatest element with respect to R_{3} since, ------------ .
(6)The maximal element of A with respect to R_{3} is
(7)The minimal element of A with respect to R_{3} is
(iv) Let $X=\{1,2,4,7\}, K=\{\{1,2\},\{4,7\},\{1,2,4\}, X\}$ and

$$
\begin{aligned}
& R_{1}=\{(A, B) \in K \times K: A \subseteq B\}, \\
& R_{2}=\{(A, B) \in K \times K: A \supseteq B\},
\end{aligned}
$$

are relations defined on K.

$$
\begin{aligned}
R_{1}= & (\{1,2\},\{1,2\}), \\
& (\{4,7\},\{4,7\}), \\
& (\{1,2\},\{1,2,4\}), \quad(\{1,2\}, X), \\
& (\{1,2,4\},\{1,2,4\}), \\
& (\{1, X), X),
\end{aligned}
$$

$$
\begin{aligned}
R_{2}= & (\{1,2\},\{1,2\}), \\
& (\{4,7\},\{4,7\}), \\
& (\{1,2,4\},\{1,2\}),(\{1,2,4\},\{1,2,4\}), \quad(X,\{1,2,4\}),(X, X) \\
& (X,\{1,2\}), \quad(X,\{4,7\}), \quad
\end{aligned}
$$

R_{1} and R_{2} are partial orders on K.
(1) K has no least element with respect to R_{1} since,
(2)The greatest element of K with respect to R_{1} is
(3)The least element of K with respect to to R_{2} is
(4) K has no greatest element with respect to R_{2} since,
(5)The minimal elements of K with respect to R_{1} are
(6)The maximal element of K with respect to R_{1} is
(7)The minimal element of K with respect to R_{2} is
(8)The maximal element of K with respect to R_{2} is

Remark 3.2.8.
(i) Every greatest (least) element is maximal (minimal). The converse is not true.
(ii) The greatest (least) element if exist, it is unique.
(iii) every finite partially ordered set has maximal (minimal) element.

Properties of equivalence classes
(iv) For all $a \in X, a \in[a]$.
(v) $a R b \Leftrightarrow[a]=[b]$.
(vi) $[a]=[b] \Leftrightarrow(a, b) \in R \Leftrightarrow a R b$.
(vii) $[a] \cap[b] \neq \varnothing \Leftrightarrow[a]=[b]$.
(viii) $[a] \cap[b]=\emptyset \Leftrightarrow[a] \neq[b]$.
(ix) For all $a \in X,[a] \in X / R$ but $[a] \subseteq X$.

Definition 3.2.9. R is a totally order on A if R is a partial order, and $x R y$ or $y R x$ for all $x, y \in A$; that is, if any two elements of A are comparable with respect to R. Then we call the pair (A, \leq) a totally order set or a chain.

Example 3.2.10.

(i) Let $A=\{2,3,4,5,6\}$, and define R by the usual \leq relation on \mathbb{N}, i.e. $a R b$ iff $a \leq b$. Then R is a totally order on A.
(ii) Let us define another relation on \mathbb{N}

$$
a / b \text { iff } a \text { divides } b .
$$

To show that / is a partial order we have to show the three defining properties of a partial order relation:
Reflexive: Since every natural number is a divisor of itself, we have a / a for all $a \in A$.
Antisymmetric: If a divides b then we have either $a=b$ or $a<b$ in the usual ordering of \mathbb{N}; similarly, if b divides a, then $b=a$ or $b<a$. Since $a<b$ and $b<a$ is not possible, a / b and b / a implies $a=b$.

Transitive: If a divides b and b divides c then a also divides c. Thus, / is a partial order on N.

The relation "/" is not totally order since $(3,4) \notin /$.
(iii) Let $A=\{x, y\}$ and define \leq on the power set $P(A)=\{\varnothing,\{x\},\{y\}, A\}$ by

$$
s \leq t \text { iff } s \text { is a subset of } t \text {. }
$$

This gives us the following relation:
$\emptyset \leq \emptyset, \varnothing \leq\{x\}, \varnothing \leq\{y\}, \varnothing \leq\{x, y\}=A,\{x\} \leq\{x\},\{x\} \leq\{x, y\},\{y\} \leq$ $\{y\},\{y\} \leq\{x, y\},\{x, y\} \leq\{x, y\}$.

The relation " \leq " is not totally order since $(\{x\},\{y\}) \notin \leq$.

Exercise 3.2.11.

Let $A=\{1,2, \ldots, 10\}$ and define the relation R on A by $x R y$ iff x is a multiple of y. Show that R is a partial order on A.
(Hint: $R=\{(n y, y):$ for some $n \in \mathbb{Z}$ and $y \in A\})$

Definition 3.2.12. (Inverse of a Relation)

Suppose $R \subseteq A \times B$ is a relation between A and B then the inverse relation $R^{-1} \subseteq B \times A$ is defined as the relation between B and A and is given by $b R^{-1} a$ if and only if $a R b$.
That is, $R^{-1}=\{(b, a) \in B \times A:(a, b) \in R\}$.
Example 3.2.13. Let R be the relation between \mathbb{Z} and \mathbb{Z}^{+}defined by $m R n$ if and only if $m^{2}=n$.
Then

$$
R=\left\{(m, n) \in \mathbb{Z} \times \mathbb{Z}^{+}: m^{2}=n\right\}=\left\{\left(m, m^{2}\right) \in \mathbb{Z} \times \mathbb{Z}^{+}\right\}
$$

and

$$
R^{-1}=\left\{(n, m) \in \mathbb{Z}^{+} \times \mathbb{Z}: m^{2}=n\right\}=\left\{\left(m^{2}, m\right) \in \mathbb{Z}^{+} \times \mathbb{Z}\right\} .
$$

For example, $-3 R 9,-4 R 16,16 R^{-1} 4,9 R^{-1} 3$, etc.
Remark 3.2.14. If R is partial order relation on $A \neq \varnothing$, then
(i) R^{-1} is also partial order relation on A.
(ii) $\left(R^{-1}\right)^{-1}=R$.
(iii) $\operatorname{Dom}\left(R^{-1}\right)=\operatorname{Ran}(R)$ and $\operatorname{Ran}\left(R^{-1}\right)=\operatorname{Dom}(R)$.

Proof. (i)

(1) Reflexive. Let $x \in A$.
$\Rightarrow(x, x) \in R$ (Reflexivity of $A) \Rightarrow(x, x) \in R^{-1} \quad$ Def of R^{-1}
(2) Anti-symmetric. Let $(x, y) \in R^{-1}$ and $(y, x) \in R^{-1}$. To prove $x=y$.
$\Rightarrow(y, x) \in R \wedge(x, y) \in R$
Def of R^{-1}
$\Rightarrow y=x$
Since R is antisymmetric
(3) Transitive. Let $(x, y) \in R^{-1}$ and $(y, z) \in R^{-1}$. To prove $(x, z) \in R^{-1}$.

$$
\begin{array}{ll}
\Rightarrow(y, x) \in R \wedge(z, y) \in R & \text { Def of } R^{-1} \\
\Rightarrow(z, y) \in R \wedge(y, x) \in R & \text { Commut. Law of } \wedge \\
\Rightarrow(z, x) \in R & \text { Since } R \text { is transitive } \\
\Rightarrow(x, z) \in R^{-1} & \text { Def of } R^{-1}
\end{array}
$$

Definition 3.2.15. (Partitions)

Let A be a set and let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of A such
(i) $A_{i} \neq \emptyset$ for all i,
(ii) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$,
(iii) $A=\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$. Then the sets A_{i} partition the set A and these sets are called the classes of the partition.

Remark 3.2.16. An equivalence relation on X leads to a partition of X, and vice versa for every partition of X there is a corresponding equivalence relation.

Proof:

(a) Let R be an equivalence relation on X.

1- $\forall a \in X, a \in[a] \quad$ Def. of equ. Class
$2-\exists[b] \in X / R$ such that $[b]=[a]$
Since X / R contains all diff. classes
3- $X=\cup_{a \in X}\{a\} \subseteq \cup_{a \in X}[a] \subseteq \bigcup_{a \in[b]}[b] \subseteq X \Rightarrow X=\bigcup_{[b] \in X / R}[b]$.
4- $[b] \cap[a]=\emptyset$, for all $[b],[a] \in X / R$
Def. of X / R
5- R is partition of X
Inf.(3),(4)
(b) Let (i) $A_{i} \neq \emptyset$ for all $i, A_{i} \subseteq X$
(ii) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$,
(iii) $X=\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$.

Define R (relation) on X by $a R b \Leftrightarrow \operatorname{if} \exists A_{i}$ such that $a, b \in A_{i}$.
This relation is an equivalence relation on X.

Definition 3.2.17. (The Composition of Two Relations)

The composition of two relations $R_{1}(A, B)$ and $R_{2}(B, C)$ is given by R_{2} o R_{1} where $(a, c) \in R_{2} o R_{1}$ if and only if there exists $b \in B$ such that $(a, b) \in R_{1}$ and $(b, c) \in R_{2}$. That is,
$R_{2} o R_{1}=\left\{(a, c) \in A \times C \mid \exists b \in B\right.$ such that $(a, b) \in R_{1}$ and $\left.(b, c) \in R_{2}\right\}$

Remark 3.2.18. Let $R_{1}(A, B), R_{2}(B, C)$ and $R_{3}(C, D)$ are relations. Then,
(i) $\left(R_{3} \circ R_{2}\right) \circ R_{1}=R_{3} \circ\left(R_{2} \circ R_{1}\right)$.
(ii) $\left(R_{2} \circ R_{1}\right)^{-1}=R_{1}^{-1} \circ R_{2}^{-1}$.
(iii) Let $R^{-1}=\{(b, a) \mid(a, b) \in R\} \subseteq B \times A$. Then

$$
(a, b) \in R o R^{-1} \Leftrightarrow(b, a) \in R o R^{-1} .
$$

Proof. Exercise.

Example 3.2.19.

Let sets $A=\{a, b, c\}, B=\{d, e, f\}, C=\{g, h, i\}$ and relations

$$
R(A, B)=\{(a, d),(a, f),(b, d),(c, e)\}
$$

and

$$
S(B, C)=\{(d, g),(d, i),(e, g),(e, h)\} .
$$

Then we graph these relations and show how to determine the composition pictorially S o R is determined by choosing $x \in A$ and $y \in C$ and checking if there is a route from x to y in the graph. If so, we join x to y in $S o R$.

$$
S \text { o } R=\{(a, g),(a, i),(b, g),(b, i),(c, g),(c, h)\} .
$$

For example, if we consider a and g we see that there is a path from a to d and from d to g and therefore (a, g) is in the composition of S and R.

Definition 3.2.19. Union and Intersection of Relations

(i) The union of two relations $R_{1}(A, B)$ and $R_{2}(A, B)$ is subset of $A \times B$ and defined as

$$
(a, b) \in R_{1} \cup R_{2} \text { if and only if }(a, b) \in R_{1} \text { or }(a, b) \in R_{2} .
$$

(ii) The intersection of two relations $R_{1}(A, B)$ and $R_{2}(A, B)$ is subset of $A \times B$ and defined as

$$
(a, b) \in R_{1} \cap R_{2} \text { if and only if }(a, b) \in R_{1} \text { and }(a, b) \in R_{2} .
$$

Remark 3.2.20.

(i) The relation R_{1} is a subset of $R_{2}\left(R_{1} \subseteq R_{2}\right)$ if whenever $(a, b) \in R_{1}$ then $(a, b) \in R_{2}$.
(ii) The intersection of two equivalence relations R_{2}, R_{1} on a set X is also equivalence relation on X.
(iii) In general, the union of two equivalence relations R_{1}, R_{2} on a set X need not to be an equivalence relation on X.

Proof. Exercise.

Example 3.2.21. Let $X=\{a, b, c\}$. Define two relations on X as follows:

$$
\begin{aligned}
& R_{1}(X, X)=\{(a, a),(b, b),(c, c),(a, b),(b, a)\}, \\
& R_{2}(X, X)=\{(a, a),(b, b),(c, c),(a, c),(c, a)\} .
\end{aligned}
$$

Let $R=R_{1} \cup R_{2}$. Here, R is not an equivalence relation on X since it is not transitive relation, because (b, a) and $(a, c) \in R$ but $(b, c) \notin R$.

