(b) Calculate t for the B calculated in part (a), from the monthly compounded interest formula, Equation (1).
(c) Determine the number of years and months that correspond to t.

The problem is solved by writing the following program in a script file:

```
\% Solution of Sample Problem 1-4
P=5000; \(r=0.085\); ta=17; \(n=12\);
\(\mathrm{B}=\mathrm{P} *(1+r)^{\wedge} \mathrm{ta} \quad\) Step (a): Calculate B from Eq. (2).
\(t=\log (B / P) /(n * \log (1+r / n))\)
years=fix(t)
months=ceil ( (t-years) *12) Determine the number of months.
    Step (c): Determine the number of years.
```

When the script file is executed, the following (the values of the variables B, t, years, and months) is displayed in the Command Window:

```
>> format short g
B =
        20011
t =
    16.374
years =
    1 6
months =
    5
```

The values of the variables B, t, years, and months are displayed (since a semicolon was not typed at the end of any of the commands that calculate the values).

1.10 Problems

The following problems can be solved by writing commands in the Command Window, or by writing a program in a script file and then executing the file.

1. Calculate:
(a) $\frac{22+5.1^{2}}{50-6.3^{2}}$
(b) $\frac{44}{7}+\frac{8^{2}}{5}-\frac{99}{3.9^{2}}$
2. Calculate:
(a) $\frac{\sqrt{41^{2}-5.2^{2}}}{e^{5}-100.53}$
(b) $\sqrt[3]{132}+\frac{\ln (500)}{8}$
3. Calculate:
(a) $\frac{14.8^{3}-6.3^{2}}{(\sqrt{13}+5)^{2}}$
(b) $45\left(\frac{288}{9.3}-4.6^{2}\right)-1065 e^{-1.5}$
4. Calculate:
(a) $\frac{24.5+64 / 3.5^{2}+8.3 \cdot 12.5^{3}}{\sqrt{76.4}-28 / 15}$
(b) $\left(5.9^{2}-2.4^{2}\right) / 3+\left(\frac{\log _{10} 12890}{e^{0.3}}\right)^{2}$
5. Calculate:
(a) $\cos \left(\frac{7 \pi}{9}\right)+\tan \left(\frac{7}{15} \pi\right) \sin \left(15^{\circ}\right)$
(b) $\sin ^{2} 80^{\circ}-\frac{\left(\cos 14^{\circ} \sin 80^{\circ}\right)^{2}}{\sqrt[3]{0.18}}$
6. Define the variable x as $x=6.7$, then evaluate:
(a) $0.01 x^{5}-1.4 x^{3}+80 x+16.7$
(b) $\sqrt{x^{3}+e^{x}-51 / x}$
7. Define the variable t as $t=3.2$, then evaluate:
(a) $56 t-9.81 \frac{t^{2}}{2}$
(b) $14 e^{-0.1 t} \sin (2 \pi t)$
8. Define the variables x and y as $x=5.1$ and $y=4.2$, then evaluate:
(a) $\frac{3}{4} x y-\frac{7 x}{y^{2}}+\sqrt{x y}$
(b) $(x y)^{2}-\frac{x+y}{\left.(x-y)\right|^{2}}+\sqrt{\frac{x+y}{2 x-y}}$
9. Define the variables a, b, c, and d as:
$a=12, b=5.6, c=\frac{3 a}{b^{2}}$, and $d=\frac{(a-b)^{c}}{c}$, then evaluate:
(a) $\frac{a}{b}+\frac{d-c}{d+c}-(d-b)^{2}$
(b) $e^{\frac{d-c}{a-2 b}}+\ln \left(\left\lvert\, c-d+\frac{b}{a}\right.\right)$
10. A sphere has a radius of 24 cm . A rectangular prism has sides of $a, a / 2$, and $a / 4$.
(a) Determine a of a prism that has the same volume as the sphere.

(b) Determine a of a prism that has the same surface area as the sphere.
11. The arc length of a segment of a parabola $A B C$ of an ellipse with semi-minor axes a and b is given approximately by:

$$
L_{A B C}=\frac{1}{2} \sqrt{b^{2}+16 a^{2}}+\frac{b^{2}}{8 a} \ln \left(\frac{4 a+\sqrt{b^{2}+16 a^{2}}}{b}\right) .
$$

(a) Determine $L_{A B C}$ if $a=11 \mathrm{in}$. and $b=9 \mathrm{in}$.

12. Two trigonometric identities are given by:
(a) $\sin 5 x=5 \sin x-20 \sin ^{3} x+16 \sin ^{5} x$
(b) $\sin ^{2} x \cos ^{2} x=\frac{1-\cos 4 x}{8}$

For each part, verify that the identity is correct by calculating the values of the left and right sides of the equation, substituting $x=\frac{\pi}{12}$.
13. Two trigonometric identities are given by:
(a) $\tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}$
(b) $\cos 4 x=8\left(\cos ^{4} x-\cos ^{2} x\right)+1$

For each part, verify that the identity is correct by calculating the values of the left and right sides of the equation, substituting $x=24^{\circ}$.
14. Define two variables: alpha $=\pi / 6$, and beta $=3 \pi / 8$. Using these variables, show that the following trigonometric identity is correct by calculating the values of the left and right sides of the equation.

$$
\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)
$$

15. Given: $\int x \sin a x d x=\frac{\sin a x}{a^{2}}-\frac{x \cos a x}{a}$. Use MATLAB to calculate the following definite integral: $\int_{\frac{\pi}{3}}^{\frac{3 \pi}{2}} x \sin (0.6 x) d x$.
16. In the triangle shown $a=5.3$ in., $\gamma=42^{\circ}$, and $b=6$ in. Define a, γ, and b as variables, and then:
(a) Calculate the length b by using the Law of Cosines.
(Law of Cosines: $c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$)

(b) Calculate the angles β and γ (in degrees) using the Law of Cosines.
(c) Check that the sum of the angles is 180°.
17. In the triangle shown $a=5 \mathrm{in} ., b=7 \mathrm{in}$., and $\gamma=25^{\circ}$. Define a, b, and γ as variables, and then:
(a) Calculate the length of c by substituting the variables in the Law of Cosines.
(Law of Cosines: $c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$)
(b) Calculate the angles α and β (in degrees) using the Law of Sines.
(c) Verify the Law of Tangents by substituting the results from part (b) into the right and left sides of the equation.
Law of Tangents: $\frac{a-b}{a+b}=\frac{\tan \left[\frac{1}{2}(\alpha-\beta)\right]}{\left[\frac{1}{2}(\alpha+\beta)\right]}$
18. In the ice cream cone shown, $L=4 \mathrm{in}$. and $\theta=35^{\circ}$. The cone is filled with ice cream such that the portion above the cone is a hemisphere. Determine the volume of the ice cream.
19. For the triangle shown, $a=48 \mathrm{~mm}, b=34 \mathrm{~mm}$, and $\gamma=83^{\circ}$. Define a, b, and γ as variables, and then:
(a) Calculate c by substituting the variables in the Law of Cosines.
(Law of Cosines: $c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$)
(b) Calculate the radius r of the circle circumscribing the triangle using the formula:

$$
r=\frac{a b c}{4 \sqrt{s(s-a)(s-b)(s-c)}}
$$

where $s=(a+b+c) / 2$.

20. The parametric equations of a line in space are:
$x=x_{0}+a t, y=y_{0}+b t$, and $z=z_{0}+c t$. The distance d from a point $A\left(x_{A}, y_{A}, z_{A}\right)$ to the line can be calculated by:

$$
d=d_{A 0} \sin \left[\operatorname{acos}\left(\frac{\left(x_{A}-x_{0}\right) a+\left(y_{A}-y_{0}\right) b+\left(z_{A}-z_{0}\right) c}{d_{A 0} \sqrt{a^{2}+b^{2}+c^{2}}}\right)\right]
$$

where

$$
d_{A 0}=\sqrt{\left(x_{A}-x_{0}\right)^{2}+\left(y_{A}-y_{0}\right)^{2}+\left(z_{A}-z_{0}\right)^{2}} .
$$

Determine the distance of the point $A(2,-3,1)$
from the line $x=-4+0.6 t, y=-2+0.5 t$, and $z=-3+0.7 t$. First define the variables $x_{0}, y_{0}, z_{0}, a, b$, and c, then use the variable (and the coordinates of point A) to calculate the variable $d_{A 0}$, and finally calculate d.
21. The circumference of an ellipse can be approximated by:

$$
C=\pi[3(a+b)-\sqrt{(3 a+b)(a+3 b)}]
$$

Calculate the circumference of an ellipse with $a=16 \mathrm{in}$. and $b=11 \mathrm{in}$.

22. 315 people have to be transported using buses that have 37 seats. By typing one line (command) in the Command Window, calculate how many seats will remain empty if enough buses will be ordered to transport all the people. (Hint: use MATLAB built-in function ceil.)
23. 739 apples are to be packed and shipped such that 54 are placed in a box. By typing one line (command) in the Command Window, calculate how many apples will remain unpacked if only full boxes can be shipped. (Hint: use MATLAB built-in function fix.)
24. Assign the number $316,501.673$ to a variable, and then calculate the following by typing one command:
(a) Round the number to the nearest hundredth.
(b) Round the number to the nearest thousand.

25 . The voltage difference $V_{a b}$ between points a and b in the Wheatstone bridge circuit is:

$$
V_{a b}=V\left(\frac{R_{1} R_{3}-R_{2} R_{4}}{\left(R_{1}+R_{2}\right)\left(R_{3}+R_{4}\right)}\right)
$$

Calculate the voltage difference when $V=14$ volts, $\quad R_{1}=120.6$ ohms, $\quad R_{2}=119.3 \mathrm{ohms}$,
 $R_{3}=121.2 \mathrm{ohms}$, and $R_{4}=118.8 \mathrm{ohms}$.
26. The resonant frequency $f(\mathrm{inHz})$ for the circuit shown is given by:

$$
f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\left(\frac{R}{L}\right)^{2}}
$$

Calculate the resonant frequency when $L=0.15$ henrys, $R=14 \mathrm{ohms}$, and $C=2.6 \times 10^{-6}$ farads.

