

مراجعة كيمياء الحديد مختبر الكيمياء اللاعضوية مرحلة ثالثة (التعليم الالكتروني)

صباحي أم ايناس زهير الهاشمي مم يسرى جليل

Chemistry of Iron

Ferrous Fe (II) and Ferric Fe(III) form many complexes whose octahedral structure in which the coordination number is six;

as in aqueous solutions of ferrous salts (FeSO₄.6H₂O)the complex ion $[Fe(H_2O)_6]^{2+}$ is formed which is very light greenish blue.

Where as, the complex ion $[Fe(H_2O)_6]^{+3}$ is formed in aqueous solutions of ferric salts (FeCl₃.6H₂O).

Preparing a solution of (Fe²⁺):

Iron solution can be prepared by dissolving ammoniac salt of Iron(II) sulfate $(NH_4)_2SO_4$.FeSO₄.6H₂O or simple iron sulfate (FeSO₄.6H₂O) in acidic water with <u>H₂SO₄</u>

to form bluish light green solution due to the formation of [Fe(H₂O)₆]²⁺, which can be abbreviated into (Fe²⁺)to carry out detection.

 $(NH_4)_2SO_4.FeSO_4.6H_2O + H_2O \rightarrow [Fe(H_2O)_6]^{2+}$ Greenish gray solid clear bluish light green

FeSO₄.6H₂O + H₂O Light blue solid $\rightarrow [Fe(H_2O)_6]^{2+}$ clear bluish light green pH of Aqueous ferrous solution (Fe²⁺):
Put (10) drops of [Fe(H₂O)₂]²⁺ in a test tube and measure pH by using Litmus paper (the reaction starts before adding H₂SO₄, why?). you will notice that acidic solution is weak due to weak <u>ionization</u>.

Detection of iron (II) (Fe²⁺)

1) Put (10) drops of $[Fe(H_2O)_6]^{2+}$ solution in a test tube, add Potassium Permanganate solution (KMnO₄) drop wise, observe the change, and write down your notices.

تفاعل كبريتات الحديد الامونياكي مع برمنغنات البوتاسبوم 2) Put (10) drops of $[Fe(H_2O)_6]^{2+}$ solution in a test tube, add (2) drops of potassium ferric cyanide solution $(K_3[Fe^{III}(CN)_6])$, you will notice a dark blue precipitate , and write down your notices.

3) Put (10) drops of $[Fe(H_2O)_6]^{2+}$ solution in a test tube, add (2) drops of Potassium ferro cyanide solution $(K_4[Fe^{II}(CN)_6])$, you will notice a <u>white</u> precipitate, and write down your notices (the precipitate will change to blue when exposed to air due to oxidation).

4) Put (10) drops of $[Fe(H_2O)_6]^{2+}$ solution in a test tube, add (2) drops of ammonium or Potassium thiocyanate ((NH₄SCN or KSCN), observe the change, and write down your notices.

5) Put (10) drops of $[Fe(H_2O)_6]^{2+}$ solution in test tube, add (5) drops of thio acetamide solution (CH_3CSNH_2), observe the change, add (3) drops of concentrated ammonia $NH_3(aq)$, you will notice a <u>black</u> precipitate, and write down your notices.

6) Put (10) drops of $[Fe(H_2O)_6]^{2+}$ solution in a test tube, add (2) drops of sodium hydroxide solution (NaOH), you will notice a blackish green precipitate, write down your notices.

7)Put (10) drops of $[Fe(H_2O)_6]^{2+}$ solution in a test tube, add (2) drops of concentrated ammonia NH₃(aq), you will notice a blackish green precipitate, write down your notices.

8) Put (10) drops of [Fe(H₂O)₆]²⁺ solution in a test tube, add (2) drops of sodium carbonates (Na₂CO₃), you will notice a green precipitate, write down your notices.

Preparing Solution of (Fe³⁺):

This solution can be prepared by dissolving ferric chloride salt (FeCl₃.6H₂O) in water to form a yellow-orange solution due to formation of the complex ion $[Fe(H_2O)_6]^{3+}$, which can be abbreviated as (Fe^{3+}) to carry out detections.

FeCl₃.6H₂O + H₂O \rightarrow Brown solid

pH of Aqueous ferric solution (Fe³⁺):

Put (10) drops of $[Fe(H_2O)_6]^{3+}$ solution in a test tube, measure solution pH by using Litmus paper, you will observe that the solution is very acidic due to the previously mentioned ionization.

ممكن تفسير الحامضية على ضوء هذا المخطط

Note: Each oxygen has another lone pair which is left out to avoid even more dutter! That makes the hydrogen atoms even more positive than they normally are when they are attached to oxygen.

Detection of iron (III) (Fe³⁺)

1)Put (10) drops of $[Fe(H_2O)_6]^{3+}$ solution in a test tube, add Potassium Permanganate solution (KMnO₄) drop wise, observe the change, and write down your notices.

test 2) Put (10) drops of $[Fe(H_2O)_6]^{3+}$ solution in a tube, add (5) drops of thioacetamide solution (CH_3CSNH_2) , observe the change, add (3) drops of diluted hydrochloric acid HCl, you will notice a down your white yellowish precipitate , write notices.

3) Put (10) drops of $[Fe(H_2O)_6]^{3+}$ solution in a test tube, add (2) drops of potassium feeric cyanide solution $(K_3[Fe^{III}(CN)_6])$, you will notice a brown precipitate , write down your notices.

4) Put (10) drops of $[Fe(H_2O)_6]^{3+}$ solution in a test tube, add (2) drops of Potassium ferrocyanide solution $(K_4[Fe^{II}(CN)_6])$, you will notice a blue precipitate, write down your notices.

5) Put (10) drops of $[Fe(H_2O)_6]^{3+}$ solution in a test tube, add (2) drops of ammonium (or Potassium) thiocyanate ((NH₄SCN), you will observe a dark red solution, write down your notices.

6) Put (10) drops of $[Fe(H_2O)_6]^{3+}$ solution in a test tube, add (2) drops of sodium hydroxide solution (NaOH), you will notice a

dark brown precipitate , write down your notices.

7) Put (10) drops of $[Fe(H_2O)_6]^{3+}$ solution in a test tube, add (2) drops of the concentrated ammonia $NH_3(aq)$, you will notice a dark brown preciptate, write down your notices.

8) Put (10) drops of $[Fe(H_2O)_6]^{3+}$ solution in a test tube, add (2) drops of sodium carbonates (Na₂CO₃), observe the change, and write down your notices.

Fe ³⁺ iron	(III)	ي ال
Add	[Fe(H ₂ O) ₆] ³⁺ (aq) violet solution	F
NaOH (aq) (little) NaOH (aq) (excess) NH ₃ (aq) (little) NH ₃ (aq) (excess)	Deprotonation reactions– OH and NH ₃ acting as Lewis bases Fe(H ₂ O) ₃ (OH) ₃ (s) Brown gelatinous precipitate	Ad Na Na
CO32- (aq)	Deprotonation reactions – CO ₃ ²⁻ acting as base Fe(H ₂ O) ₃ (OH) ₃ (s) Brown gelatinous precipitate and colourless bubbles of CO ₂ (g)	NF CO
<u> </u>	يوجد شيء خطأ حاول تجد	

ملاحظات مهمة تبقى م		
e ²⁺ iron		
dd	[Fe(H ₂ O) ₆] ²⁺ (aq) green solution	
aOH (aq) (little) aOH (aq) (excess) H_3 (aq) (little) H_3 (aq) (excess)	Deprotonation reactions – OH and NH_3 acting as Lewis bases $Fe(H_2O)_4(OH)_2$ (s) Green gelatinous precipitate (turns brown in air)	
) ₃ ²- (aq)	FeCO ₃ (s) precipitation green precipitate	

Reaction of iron (iii) ions with sodium hydroxide

Reaction of iron (ii) ions with sodium hydroxide

A similar reaction occurs with ammonia.

A similar reaction occurs with ammonia.

Preparation of Sodium ethylenediaminetetraacetatoferrate (III) trihydrate Na [Fe (EDTA)].3H₂O:

Dissolve (0.4 g) of sodium hydroxide in a beaker consists of (10 mL) of water then add (3.8g) of $Na_2H_2EDTA.2H_2O$ solution to the beaker. Heat the mixture gently until the solid dissolves.

Dissolve (2.5 g) of iron(III) chloride hexa hydrate in (5 mL) of water in other beaker.

Pour the iron(III) chloride solution into the beaker(step 1), stirr the mixture.

Warm the mixture until the boiling , evaporate gently some of the water until a yellow powder precipitates appears , this may take about five minutes.

Let the mixture cool, collect and filter the precipitate , wash it well with ice-cold water and ethanol , Dry the resulted crystals, weight and calculate the ratio

معادلات في التفاعل.. لكن ما هي معادلة التفاعل ألعامة؟

$$[Fe(H_2O)_6]^{3+}(aq) + EDTA^{4-}(aq) \rightarrow [Fe(EDTA)]^{-}(aq) + 6H_2O(I)$$

Questions :

- 1) What is the benefit of using NaOH?
- 2) Which of these ligands is a chelate (OH^{-} , CN^{-} , and $H_2NCH_2CH_2NH$)?
- 3) Does this experiment depend on oxidation and reduction principle?
- 4) Write down this complex preparation equations