Note. The identity of a monoid is unique.

DEFINITION 1.3. A group G is a monoid such that for all $a \in G$ there exists a $b \in G$ with ab = 1 = ba.

Example 1.4. Groups are monoids and monoids are semigroups. Thus we have

Groups
$$\subset$$
 Monoids \subset Semigroups.

The one element trivial group $\{e\}$ with multiplication table

is also called the trivial semigroup or trivial monoid.

Example 1.5. A ring is a semigroup under ×. If the ring has an identity then this semigroup is a monoid.

Example 1.6. (1) (\mathbb{N}, \times) is a monoid.

- (2) (N, +) is a semigroup.
- (3) (N⁰, ×) and (N⁰, +) are monoids.

Example 1.7. Let I, J be non-empty sets and set $T = I \times J$ with the binary operation

$$(i,j)(k,\ell) = (i,\ell).$$

Note

$$((i,j)(k,\ell))(m,n) = (i,\ell)(m,n) = (i,n), (i,j)((k,\ell)(m,n)) = (i,j)(k,n) = (i,n),$$

for all $(i, j), (k, \ell), (m, n) \in T$ and hence multiplication is associative.

Then T is a semigroup called the rectangular band on $I \times J$.

Notice: $(i, j)^2 = (i, j)(i, j) = (i, j)$, i.e. every element is an idempotent.

This shows that not every semigroup is the multiplicative semigroup of a ring, since any ring where every element is an idempotent is commutative. However, a rectangular band does not have to be commutative.

Adjoining an Identity Let S be a semigroup. Find a symbol not in S, call it "1". On $S \cup \{1\}$ we define * by

$$a*b=ab$$
 for all $a,b\in S,$
$$a*1=a=1*a$$
 for all $a\in S,$
$$1*1=1.$$