

Figure 1. The rectangular band.

Then * is associative (check this) so $S \cup \{1\}$ is a monoid with identity 1. Multiplication in $S \cup \{1\}$ extends that in S.

The monoid S^1 is defined by

$$S^1 = \begin{cases} S & \text{if } S \text{ is a monoid,} \\ S \cup \{1\} & \text{if } S \text{ is not a monoid.} \end{cases}$$

Definition 1.8. S^1 is "S with a 1 adjoined if necessary".

EXAMPLE 1.9. Let T be the rectangular band on $\{a\} \times \{b,c\}$. Then $T^1 = \{1,(a,b),(a,c)\}$, which has multiplication table

$$\begin{array}{c|ccccc} & 1 & (a,b) & (a,c) \\ \hline 1 & 1 & (a,b) & (a,c) \\ (a,b) & (a,b) & (a,b) & (a,c) \\ (a,c) & (a,c) & (a,b) & (a,c) \\ \end{array}$$

The Bicyclic Semigroup/Monoid B

If $A \subseteq \mathbb{Z}$, such that $|A| < \infty$, then max A is the greatest element in A. i.e.

$$\max\{a,b\} = \begin{cases} a & \text{if } a \geqslant b, \\ b & \text{if } b \geqslant a. \end{cases}$$

We note some further things about max: