Recall that

$$[a] = \{b \in A \mid a \rho b\}.$$

If ρ is an equivalence relation then [a] is the equivalence-class, or the ρ -class, of a.

We denote by ω the UNIVERSAL relation on A: $\omega = A \times A$. So $x \omega y$ for all $x, y \in A$, and [x] = A for all $x \in A$.

We denote by ι be the EQUALITY relation on A:

$$\iota = \{(a, a) \mid a \in A\}.$$

Thus $x \iota y \Leftrightarrow x = y$ and so $[x] = \{x\}$ for all $x \in A$.

3.2. Algebra of Relations

If ρ, λ are relations on A, then so is $\rho \cap \lambda$. For all $a, b \in A$ we have

$$a (\rho \cap \lambda) b \Leftrightarrow (a, b) \in \rho \cap \lambda$$

 $\Leftrightarrow (a, b) \in \rho \text{ and } (a, b) \in \lambda$
 $\Leftrightarrow a \rho b \text{ and } a \lambda b.$

We note that $\rho \subseteq \lambda$ means $a \rho b \Rightarrow a \lambda b$.

Note that $\iota \subseteq \rho \Leftrightarrow \rho$ is reflexive and so $\iota \subseteq \rho$ for any equivalence relation ρ .

We see that ι is the smallest equivalence relation on A and ω is the largest equivalence relation on A.

Lemma 3.2. If ρ, λ are equivalence relations on A then so is $\rho \cap \lambda$.

Proof. We have $\iota \subseteq \rho$ and $\iota \subseteq \lambda$, then $\iota \subseteq \rho \subseteq \lambda$, so $\rho \cap \lambda$ is reflexive. Suppose $(a, b) \in \rho \cap \lambda$. Then $(a, b) \in \rho$ and $(a, b) \in \lambda$. So as ρ , λ are symmetric, we have $(b, a) \in \rho$ and $(b, a) \in \lambda$ and hence $(b, a) \in \rho \cap \lambda$. Therefore $\rho \cap \lambda$ is symmetric. By a similar argument we have $\rho \cap \lambda$ is transitive. Therefore $\rho \cap \lambda$ is an equivalence relation.

Denoting by $[a]_{\rho}$ the ρ -class of a and $[a]_{\lambda}$ the λ -class of a we have that,

$$\begin{split} [a]_{\rho \cap \lambda} &= \{ b \in A \mid b \; \rho \cap \lambda \; a \}, \\ &= \{ b \in A \mid b \; \rho \; a \; \text{and} \; b \; \lambda \; a \}, \\ &= \{ b \in A \mid b \; \rho \; a \} \cap \{ b \in A \mid b \; \lambda \; a \}, \\ &= [a]_{\rho} \cap [a]_{\lambda}. \end{split}$$

We note that $\rho \cup \lambda$ need not be an equivalence relation. On \mathbb{Z} we have