- iii) a = tb for some $t \in S^1$,
- iv) a = b or a = tb for some $t \in S$.

Note. If $S^1a = Sa$ and $S^1b = Sb$, then the Lemma can be adjusted accordingly.

Proof. It is clear that (ii), (iii) and (iv) are equivalent.

- (i) \Rightarrow (ii): If $S^1a \subseteq S^1b$ then $a = 1a \in S^1a \subseteq S^1b \Rightarrow a \in S^1b$.
- (ii) \Rightarrow (i): If $a \in S^1b$, then as S^1a is the smallest left ideal containing a, and as S^1b is a left ideal we have $S^1a \subseteq S^1b$.

Lemma 4.12 (Principal Right Ideal Lemma). The following statements are equivalent:

- i) aS¹ ⊆ bS¹,
- ii) $a \in bS^1$,
- iii) a = bt for some $t \in S^1$,
- iv) a = b or a = bt for some $t \in S$.

Note. If $aS = aS^1$ and $bS = bS^1$ then $aS \subseteq bS \Leftrightarrow a \in bS \Leftrightarrow a = bt$ for some $t \in S$.

The following relation is crucial in semigroup theory.

Definition 4.13. The relation \mathcal{L} on a semigroup S is defined by the rule

$$a \mathcal{L} b \Leftrightarrow S^1 a = S^1 b$$

for any $a, b \in S$.

NOTE.

- L is an equivalence.
- (2) If a L b and c ∈ S then S¹a = S¹b, so S¹ac = S¹bc and hence ac L bc, i.e. L is right compatible. We call a right (left) compatible equivalence relation a right (left) congruence. Thus L is a right congruence.

Corollary 4.14. We have that

$$a \mathcal{L} b \Leftrightarrow \exists s, t \in S^1 \text{ with } a = sb \text{ and } b = ta.$$

Proof.

$$a \mathcal{L} b \Leftrightarrow S^1 a = S^1 b$$

 $\Leftrightarrow S^1 a \subseteq S^1 b \text{ and } S^1 b \subseteq S^1 a$
 $\Leftrightarrow \exists s, t \in S^1 \text{ with } a = sb, b = ta$

by the Principal Left Ideal Lemma.

We note that this statement about \mathcal{L} can be used as a definition of \mathcal{L} .

Remark.

(1) $a \mathcal{L} b \Leftrightarrow a = b$ or there exist $s, t \in S$ with a = sb, b = ta.