$$\mathcal{H} = \mathcal{L} \cap \mathcal{R} \subseteq \mathcal{L} \subseteq \mathcal{D},$$ $\mathcal{H} = \mathcal{L} \cap \mathcal{R} \subseteq \mathcal{R} \subseteq \mathcal{D}.$ As \mathcal{J} is an equivalence relation and $\mathcal{L} \cup \mathcal{R} \subseteq \mathcal{J}$ we must have $\mathcal{D} \subseteq \mathcal{J}$. This has Hasse Diagram NOTATION: D_a is the \mathcal{D} class of $a \in S$ and J_a is the \mathcal{J} -class of $a \in S$. Note. $H_a \subseteq L_a \subseteq D_a \subseteq J_a$ and also $H_a \subseteq R_a \subseteq D_a \subseteq J_a$. ## Egg-Box Pictures Let D be a \mathcal{D} -class. Then for any $a \in D$ we have $R_a \subseteq D = D_a$, and $L_a \subseteq D$. We denote the \mathcal{R} -classes as rows and the \mathcal{L} -classes as columns. The cells (if non-empty) will be \mathcal{H} -classes - we show they are all non-empty! Let $u, v \in D$ then $u \mathcal{D} v$. This implies that there exists $h \in S$ with $u \mathcal{R} h \mathcal{L} v$, so $R_u \cap L_v \neq \emptyset$, that is, **no cell is empty**. Moreover $$R_u \cap L_v = R_h \cap L_h = H_h$$. As \mathcal{D} is an equivalence, S is the union of such "egg-boxes": the rows represent the \mathcal{R} -classes, and the columns represent the \mathcal{L} -classes. | u | h | | |---|---|--| | | v | | ## 6.2. Structure of D-classes Let S be a semigroup, $s \in S^1$. We define $\rho_s : S \to S$ by $a\rho_s = as$ for all $a \in S$ **Lemma 6.6** (Green's Lemma). Let $a, b \in S$ be such that $a \mathcal{R} b$ and let $s, s' \in S$ be such that $$as = b$$ and $bs' = a$.