$$\mathcal{H} = \mathcal{L} \cap \mathcal{R} \subseteq \mathcal{L} \subseteq \mathcal{D},$$

 $\mathcal{H} = \mathcal{L} \cap \mathcal{R} \subseteq \mathcal{R} \subseteq \mathcal{D}.$

As \mathcal{J} is an equivalence relation and $\mathcal{L} \cup \mathcal{R} \subseteq \mathcal{J}$ we must have $\mathcal{D} \subseteq \mathcal{J}$. This has Hasse Diagram

NOTATION: D_a is the \mathcal{D} class of $a \in S$ and J_a is the \mathcal{J} -class of $a \in S$.

Note. $H_a \subseteq L_a \subseteq D_a \subseteq J_a$ and also $H_a \subseteq R_a \subseteq D_a \subseteq J_a$.

Egg-Box Pictures

Let D be a \mathcal{D} -class. Then for any $a \in D$ we have $R_a \subseteq D = D_a$, and $L_a \subseteq D$. We denote the \mathcal{R} -classes as rows and the \mathcal{L} -classes as columns. The cells (if non-empty) will be \mathcal{H} -classes - we show they are all non-empty!

Let $u, v \in D$ then $u \mathcal{D} v$. This implies that there exists $h \in S$ with $u \mathcal{R} h \mathcal{L} v$, so $R_u \cap L_v \neq \emptyset$, that is, **no cell is empty**. Moreover

$$R_u \cap L_v = R_h \cap L_h = H_h$$
.

As \mathcal{D} is an equivalence, S is the union of such "egg-boxes": the rows represent the \mathcal{R} -classes, and the columns represent the \mathcal{L} -classes.

u	h	
	v	

6.2. Structure of D-classes

Let S be a semigroup, $s \in S^1$. We define $\rho_s : S \to S$ by $a\rho_s = as$ for all $a \in S$

Lemma 6.6 (Green's Lemma). Let $a, b \in S$ be such that $a \mathcal{R} b$ and let $s, s' \in S$ be such that

$$as = b$$
 and $bs' = a$.