However, since $0 < 1 < 2 < \dots$ we have

$$B(0,0) \supset B(1,1) \supset B(2,2) \supset ...$$

so there exists infinite descending chains. Hence B does not have M_L or M_R .

EXAMPLE 7.9. Let $\mathcal{M}^0 = \mathcal{M}^0(G; I; \Lambda; P)$ be a Rees Matrix Semigroup over a group G. Then \mathcal{M}^0 has M_L, M_R, M^L and M^R .

Proof. We show that the length of the strict chains is at most 2. Suppose $\alpha \mathcal{M}^0 \subseteq \beta \mathcal{M}^0$. We could have $\alpha = 0$. If $\alpha \neq 0$ then $\alpha \mathcal{M}^0 \neq \{0\}$ so $\beta \neq 0$ and we have $\alpha = (i, g, \lambda)$, $\beta = (j, h, \mu)$ and $\alpha = \beta \gamma$ for some $\gamma = (\ell, k, \nu)$. Then

$$(i, g, \lambda) = (j, h, \mu)(\ell, k, \nu) = (j, h\rho_{\mu\ell}k, \nu).$$

This gives us that i = j and so $\alpha \mathcal{R} \beta$ and $\alpha \mathcal{M}^0 = \beta \mathcal{M}^0$.

Summarising, $0\mathcal{M}^0 \subset \alpha \mathcal{M}^0$ for all non-zero α . But if $\alpha \neq 0$ and $\alpha \mathcal{M}^0 \subseteq \beta \mathcal{M}^0$, then $\alpha \mathcal{M}^0 = \beta \mathcal{M}^0$. Hence \mathcal{M}^0 has M_R and M^R ; dually \mathcal{M}^0 has M_L and M^L .

Definition 7.10. A 0-simple semigroup is completely 0-simple if it has M_R and M_L .

By above, any Rees Matrix Semigroup over a group is completely 0-simple. Our aim is to show that every completely 0-simple semigroup is isomorphic to a Rees Matrix Semigroup over a group.

Theorem 7.11 (The $D = \mathcal{J}$ Theorem). Suppose

$$\begin{cases} \forall a \in S, \exists n \in \mathbb{N} \text{ with } a^n \mathcal{L} a^{n+1}, \\ \forall a \in S, \exists m \in \mathbb{N} \text{ with } a^m \mathcal{R} a^{m+1}. \end{cases}$$

Then $\mathcal{D} = \mathcal{J}$.

Example 7.12.

- (1) If S is a band, $a = a^2$ for all $a \in S$ and so (\star) holds.
- (2) Let S be a semigroup having M_L and let $a \in S$. Then

$$S^1a \supseteq S^1a^2 \supseteq S^1a^3 \supseteq \dots$$

Since S has M_L , we have that this sequence stabilizes, so there exists $n \in \mathbb{N}$ such that $S^1a^n = S^1a^{n+1}$ which means that $a^n \mathcal{L} a^{n+1}$. Similarly, if S has M_R , then for every $a \in S$ there exists $m \in \mathbb{N}$ such that $a^m \mathcal{R} a^{m+1}$.

Proof. of $D = \mathcal{J}$ Theorem

We know $\mathcal{D} \subseteq \mathcal{J}$. Let $a, b \in S$ with $a \mathcal{J} b$. Then there exists $x, y, u, v \in S^1$ with

$$b = xay, \ a = ubv.$$

Then

$$b = xay = x(ubv)y = (xu)b(vy) = (xu)^2b(vy)^2 = \dots = (xu)^nb(vy)^n$$