and

$$f_{\sigma}(x_1, x_2, \dots, x_n) = (-1)^{k'} f(x_1, x_2, \dots, x_n) = -f(x_1, x_2, \dots, x_n).$$

It follows that

$$f(x_1, x_2, ..., x_n) = f_{\sigma}(x_1, x_2, ..., x_n) = -f(x_1, x_2, ..., x_n)$$

 $\Rightarrow f(x_1, x_2, ..., x_n) \equiv 0.$

a contradiction. Hence

$$f_{\sigma}(x_1, x_2, ..., x_n) = (-1)^k f(x_1, x_2, ..., x_n) = (-1)^{\sigma} f(x_1, x_2, ..., x_n)$$

giving that

$$f_{\sigma\bar{\sigma}}(x_1, x_2, ..., x_n) = (-1)^{\sigma\bar{\sigma}} f(x_1, x_2, ..., x_n).$$

Furthermore,

$$f_{\sigma\tilde{\sigma}}(x_1, x_2, ..., x_n) = (f_{\sigma})_{\tilde{\sigma}}(x_1, x_2, ..., x_n)$$

 $= (-1)^{\sigma} f_{\tilde{\sigma}}(x_1, x_2, ..., x_n)$
 $= (-1)^{\sigma} (-1)^{\tilde{\sigma}} f(x_1, x_2, ..., x_n).$

Hence

$$(-1)^{\sigma\tilde{\sigma}} f(x_1, x_2, ..., x_n) = f_{\sigma\tilde{\sigma}} (x_1, x_2, ..., x_n) = (-1)^{\sigma} (-1)^{\tilde{\sigma}} f(x_1, x_2, ..., x_n)$$

$$\Rightarrow (-1)^{\sigma\tilde{\sigma}} = (-1)^{\sigma} (-1)^{\tilde{\sigma}}.$$

Corollary 5.26. For any positive integer $n \ge 2$, the subset A_n of the group S_n of permutations of degree n which consists of the even such permutations is a subgroup of S_n of order

 $o(A_n) = \frac{o(S_n)}{2} = \frac{n!}{2}.$

Proof Pick a positive integer $n \ge 2$. The identity permutation of order n can be expressed as a product of zero transpositions. Hence it is even and thus belongs to A_n .

By Proposition 3.4, we now only need to show that A_n satisfies the closure axiom. Indeed, suppose that σ , $\tilde{\sigma} \in A_n$. Suppose that σ and $\tilde{\sigma}$ are expressed as products of k and k' transpositions respectively. Then k and k' are even.

It follows that $\sigma\tilde{\sigma}$ can expressed as a product of k+k' transpositions. Clearly, k+k' is even. Hence $\sigma\tilde{\sigma}$ is even.

So A_n satisfies the closure axiom.

It remains to show that there are $\frac{n!}{2}$ even permutations and $\frac{n!}{2}$ odd permutations in S_n . To do this, we find a bijection from the subgroup A_n of even permutations to the set of odd permutations of degree n.