Chapter 8

Normal Subgroups and Quotient Groups

Definition 8.1. A subgroup N of a group G is said to be a normal subgroup of G if

$$h \in N \implies g^{-1}hg \in N \forall g \in G.$$

Lemma 8.2. Let G be an Abelian group, and N be a subgroup of G. Then N is normal.

Proof Pick $h \in N$. Since G is Abelian,

$$g^{-1}hg = g^{-1}gh = 1_Gh = h \in N.$$

Examples 8.3. (1) Consider the group $GL(2, \mathbb{R})$ of invertible 2×2 matrices over the real numbers. Consider the subgroup N of $GL(2, \mathbb{R})$ which consists of those 2×2 real matrices whose determinants are 1. Pick $A \in N$ and $B \in GL(2, \mathbb{R})$. Using the properties of determinants gives that

$$\det (B^{-1}AB) = \det (B^{-1}) \det (A) \det (B)$$

$$= \frac{1}{\det (B)} \det (A) \det (B)$$

$$= \det (A)$$

$$= 1.$$

Hence $B^{-1}AB \in N$. It follows that N is a normal subgroup of $GL(2, \mathbb{R})$.

For any n ∈ N, the subgroup

$$n\mathbb{Z} = \{nm \in \mathbb{Z} : m \in \mathbb{Z}\} = \{..., -3n, -2n, -n, 0, n, 2n, 3n, ...\}$$

of the group \mathbb{Z} of integers under addition is normal, since \mathbb{Z} is an Abelian group under addition.