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Real and Rational Numbers 

1. Order Sets 

(1.1) Definition: Let 𝑅 be a relation on a set 𝑋, we say that  

• 𝑅 is a reflexive on 𝑋, if 𝑥𝑅𝑥  ∀ 𝑥 ∈ 𝑋. 

• 𝑅 is a symmetric on 𝑋, if 𝑥𝑅𝑦, then 𝑦𝑅𝑥. 

• 𝑅 is a transitive on 𝑋, if 𝑥𝑅𝑦, and 𝑦𝑅𝑧, then 𝑥𝑅𝑧. 

• 𝑅 is  an anti-symmetric on 𝑋, if 𝑥𝑅𝑦, and 𝑦𝑅𝑥, then 𝑥 = 𝑦. 

(1.2) Note: We say that 𝑅 is a preorder relation on 𝑋, if 𝑅 is a reflexive and 

transitive, and 𝑅 is a partial order relation on 𝑋, if 𝑅 is a reflexive, transitive 

and anti-symmetric. 

(1.3) Note: Let 𝑋 ≠ ∅, then 𝑅 is a partial order set, we say that (𝑋, 𝑅) is a partially 

order set. 

(1.4) Example: The order pairs (ℕ, ≤), (ℤ, ≤), (ℚ, ≤), (ℛ, ≤), (ℂ, ≤) where (≤=

𝑅) are a partially order sets. 

(1.5) Definition: Let  𝑋 be a partial order set, and  𝑥, 𝑦 ∈ 𝑋 we say 𝑥, 𝑦 are 

comparable, if 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥. 

(1.6) Definition: Let 𝐴 ⊆ 𝑋, then 𝐴 is a totally ordered or chain in 𝑋, if every two 

elements in 𝑋 are comparable. 

(1.7) Example: The order pairs (ℛ, ≤), (ℚ, ≤)are a totally ordered, but  (ℂ, ≤) does 

not. 

(1.8) Definition: Let 𝑋 be a partial order set and 𝑎, 𝑏 ∈ 𝑋, we say that 𝑎 is a first 

element or a smallest element in 𝑋, if 𝑎 ≤ 𝑥 ∀𝑥 ∈ 𝑋. We say that 𝑏 is a last 

element or greatest element in 𝑋, if 𝑥 ≤ 𝑏 ∀𝑥 ∈ 𝑋. 

(1.9) Definition: Let 𝑋 be a partial order set, then 𝑋 is called a well ordered, if every 

non empty subset of 𝑋 contains a first element. 

(1.10) Definition: Let 𝑋 be a partial order set and 𝑎, 𝑏 ∈ 𝑋, then 𝑎 is called a minimal 

element in 𝑋, if 𝑥 ∈ 𝑋,  𝑥 ≤ 𝑎, then 𝑎 = 𝑥. We say that 𝑏 is a maximal element 

in 𝑋, if 𝑥 ∈ 𝑋,  𝑏 ≤ 𝑥, then 𝑏 = 𝑥. 

(1.11) Examples: 

1. Let 𝐴 = {−3, −2, −1,0,1,4,7}, then max 𝐴 = 7 and min 𝐴 = −3. 

2. Min ℕ = 1 and max ℕ does not exist. 

3. Min ℤ and max ℤ does not exist. 

4. Let 𝐴 = {1

𝑛
: 𝑛 ∈ ℤ}, then max 𝐴 = 1 and min 𝐴 does not exist. 

5. Let 𝐴 = {−1

𝑛
: 𝑛 ∈ ℤ}, then min 𝐴 = −1 and max 𝐴 does not exist. 

6. Let 𝐴 = {∓1

𝑛
: 𝑛 ∈ ℤ}, then max 𝐴 = 1 and min 𝐴 = −1. 
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(1.12) Definition: Let 𝑋 be a partial order set and 𝐴 ⊆ 𝑋, we say that 𝑎 ∈ 𝑋 be lower 

bound of 𝐴, if 𝑎 ≤ 𝑥 ∀𝑥 ∈ 𝐴. We say that 𝑎 called a greatest lower bound of 𝐴, 

if its:  

1. A lower bound of 𝐴; 

2. 𝑎′ < 𝑎 for all lower bound 𝑎′ of 𝐴. 

(1.13) Note: We denote of element which a greatest lower bound of 𝐴 by inf 𝐴. 

(1.14) Definition: Let 𝑋 be a partial order set and 𝐴 ⊆ 𝑋, we say that 𝑏 ∈ 𝑋 be upper 

bound of 𝐴, if 𝑥 ≤ 𝑏 ∀𝑥 ∈ 𝐴. We say that 𝑏 called a smallest upper bound of 

𝐴, if its:  

3. An upper bound of 𝐴; 

4. 𝑏 < 𝑏′ for all upper bound 𝑏′ of 𝐴. 

(1.15) Note: We denote of element which a smallest upper bound of 𝐴 by sup 𝐴. 

(1.16) Examples: 

1. Let 𝐴 = {𝑥 ∈ ℛ: 𝑥 ≤ 2}, then sup 𝐴 = 2 and inf 𝐴 does not exist. 

2. Let 𝐴 = {𝑥 ∈ ℛ: −4 ≤ 𝑥 ≤ 5}, then sup 𝐴 = 5 and inf 𝐴 = −4. 

(1.17) Definition: Let 𝑋 be a partial order set and 𝐴 ⊆ 𝑋, we say that 𝐴 is a bounded 

below, if there exist a lower bound and 𝐴 is a bounded above, if there exists an 

upper bound. We say that 𝐴 bounded, if 𝐴 bounded from a lower and an upper. 

(1.18)  Definition: Let 𝑋 be a partial order set. We say that 𝑋 complete or complete 

ordered, if for all non empty subset and bounded from above 𝐴 in 𝑋, then sup 

𝐴 exists. 

2. Real Numbers 

(2.1) Axioms of Field 

1. Axioms of abelian.  

• 𝑥 + 𝑦 = 𝑦 + 𝑥 ∀𝑥, 𝑦 ∈ ℛ. 

• 𝑥. 𝑦   = 𝑦. 𝑥     ∀𝑥, 𝑦 ∈ ℛ. 

2. Axioms of associative.  

• 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 ∀𝑥, 𝑦, 𝑧 ∈ ℛ. 

• 𝑥. (𝑦. 𝑧)         = (𝑥. 𝑦). 𝑧        ∀𝑥, 𝑦, 𝑧 ∈ ℛ. 

3. Axiom of distribution. 

𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧  ∀𝑥, 𝑦, 𝑧 ∈ ℛ        

4. Axioms of identity element.  

• There is 0 ∈ ℛ such that 𝑥 + 0 = 0 + 𝑥 = 𝑥. 

• There is 1 ∈ ℛ such that 𝑥. 1 = 1. 𝑥 = 𝑥. 
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5. Axioms of inverse element. 

• For all 𝑥 ∈ ℛ there is −𝑥 ∈ ℛ such that 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0. 

• For all 𝑥 ∈ ℛ, 𝑥 ≠ 0 there is 𝑦 ∈ ℛ such that 𝑥. 𝑦 = 𝑦. 𝑥 = 1. 

(2.2) Theorem: Let 𝑥, 𝑦, 𝑧 ∈ ℛ, then  

1. −(𝑥 − 𝑦) = 𝑦 − 𝑥. 

2. 𝑥 − 𝑦 = 𝑥 + (−𝑦). 

3. 𝑥 + 𝑧 = 𝑦 + 𝑧 iff 𝑥 = 𝑦. 

4. If 𝑧 ≠ 0, then 𝑥𝑧 = 𝑦𝑧 iff 𝑥 = 𝑦. 

5. 𝑥𝑦 = 0 iff 𝑥 = 0 or 𝑦 = 0. 

6. (−𝑥)𝑦 = 𝑥(−𝑦) = −𝑥𝑦. 

7. −(−𝑥) = 𝑥. 

8. If 𝑥 ≠ 0, then (−𝑥)−1 = −𝑥−1 and  (𝑥−1)−1 = 𝑥. 

(2.3) Axioms of order. 

There is a non-empty subset of  ℛ  which denoted by ℛ+ and its satisfy: 

1. If 𝑥, 𝑦 ∈ ℛ+ then 𝑥 + 𝑦 ∈ ℛ+ and 𝑥𝑦 ∈ ℛ+. 

2. If 𝑥 ∈ ℛ then one of following is true −𝑥 ∈ ℛ+, 𝑥 = 0, 𝑥 ∈ ℛ+ . 

(2.4) Definition: 

1. If 𝑥, 𝑦 ∈ ℛ then 𝑥 < 𝑦 if 𝑦 − 𝑥 ∈ ℛ+. 

2. 𝑥 ≤ 𝑦 means 𝑥 < 𝑦 or 𝑥 = 𝑦. 

3. 𝑥 ≤ 𝑦 < 𝑧 means 𝑦 < 𝑧 and 𝑥 ≤ 𝑦. 

(2.5) Theorem: 

1. For all 𝑥, 𝑦 ∈ ℛ then either 𝑥 < 𝑦 or 𝑥 > 𝑦 or 𝑥 = 𝑦. 

2. If 𝑥 < 𝑦 and 𝑦 < 𝑧 then 𝑥 < 𝑧. 

3. 𝑥 + 𝑧 < 𝑦 + 𝑧 iff 𝑥 < 𝑦. 

4. If 𝑥 < 𝑦 and 𝑧 < 𝑤 then 𝑥 + 𝑧 < 𝑦 + 𝑤. 

5. If 𝑧 > 0 then 𝑥𝑧 < 𝑦𝑧 iff 𝑥 < 𝑦. 

6. If 𝑧 < 0 then 𝑥𝑧 < 𝑦𝑧 iff 𝑥 > 𝑦. 

7. If 0 < 𝑥 < 𝑦 and 0 < 𝑧 < 𝑤 then 𝑥𝑧 < 𝑦𝑤. 

(2.6) The Completeness Axiom. 

Let ∅ ≠ 𝐴 ⊆ ℛ then 
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1. If 𝐴 is an upper bounded, then sup 𝐴 exists. 

2. If 𝐴 is a lower bounded, then inf 𝐴 exists. 

(2.7) Theorem: Let ∅ ≠ 𝐴 ⊆ ℛ and 𝑎, 𝑏 ∈ ℛ then 

1. Inf 𝐴 = 𝑎 iff  

a. 𝑎 ≤ 𝑥 ∀𝑥 ∈ 𝐴. 

b. ∀𝜀 > 0   ∃ 𝑦 ∈ 𝐴 ∋    𝑦 < 𝑎 + 𝜀. 

2. Sup 𝐴 = 𝑏 iff  

a. 𝑥 ≤ 𝑏 ∀𝑥 ∈ 𝐴. 

b. ∀𝜀 > 0   ∃ 𝑦 ∈ 𝐴 ∋    𝑦 > 𝑏 − 𝜀. 

Proof: Let inf 𝐴 = 𝑎 ⟹ 𝑎 is a lower bound of 𝐴 ⟹ 𝑎 ≤ 𝑥 ∀𝑥 ∈ 𝐴 ⟹ (𝑎) satisfies. 

Let 𝜀 > 0 ⟹ 𝑎 + 𝜀 > 𝑎, since 𝑎 is greatest lower bound of 𝐴 ⟹ 𝑎 + 𝜀 not lower 

bound of 𝐴 ⟹ ∃𝑧 ∈ 𝐴 ∋ 𝑧 < 𝑎 + 𝜀 ⟹ (𝑏) satisfies. 

Now let (a), (b) are satisfy 

(a) ⟹ 𝑎 is a lower bound of 𝐴, let 𝑐 ∈ ℛ ∋ 𝑎 < 𝑐. We must prove that 𝑐 not lower of 

𝐴. Put 𝜀 = 𝑐 − 𝑎 ⟹ 𝜀 > 0 ⟹ ∃𝑦 ∈ 𝐴 ∋ 𝑦 < 𝑎 + 𝜀 ⟹ 𝑦 < 𝑎 + (𝑐 − 𝑎) = 𝑐 ⟹ inf 

𝐴 = 𝑎 

(2) Assume that sup 𝐴 = 𝑏 ⟹ 𝑏 an upper bound of 𝐴 ⟹ 𝑥 ≤ 𝑏 ∀𝑥 ∈ 𝐴 ⟹ (1)  

Now to prove (2) let 𝜀 > 0 ⟹ −𝜀 < 0 ⟹ 𝑏 − 𝜀 < 𝑏, since 𝑏 is a smallest upper 

bound of 𝐴 ⟹ 𝑏 − 𝜀 does not upper bound of 𝐴 ⟹ ∃𝑧 ∈ 𝐴 ∋ 𝑏 − 𝜀 < 𝑦. 

(1) means 𝑏 is an upper bound of 𝐴, let 𝑑 ∈ ℛ ∋ 𝑑 < 𝑏. Put 𝜀 = 𝑏 − 𝑑 ⟹ 𝜀 > 0 ⟹

∃𝑦 ∈ 𝐴 by (2) ∋ 𝑦 > 𝑏 − 𝜀 ⟹ 𝑦 > 𝑏 − (𝑏 − 𝑑) = 𝑑 ⟹ sup 𝐴 = 𝑏     ∎ 

(2.8) Theorem:(Archimedes property)  

If 𝑥, 𝑦 ∈ ℛ and 𝑥 > 0 then ∃𝑛 ∈ ℤ+ ∋ 𝑛𝑥 > 𝑦. 

Proof: Let ∃𝑎, 𝑏 ∈ ℛ ∋ 𝑎 > 0 and 𝑛𝑎 ≤ 𝑏 ∀ 𝑛 ∈ ℕ. Put 𝐴 = {𝑛𝑎: 𝑛 ∈ ℕ}, 1. 𝑎 = 𝑎 ∈

𝐴 ⟹ ∅ ≠ 𝐴 ⊆ ℛ, 𝑛𝑎 ≤ 𝑏 ∀ 𝑛 ∈ ℕ ⟹ 𝑏 is an upper bound of 𝐴 ⟹ 𝐴 bounded from 

above. Since ℛ satisfies the completeness ⟹ ∃𝑦 ∈ ℛ ∋ 𝑦 = sup  𝐴. 𝑎 > 0 ⟹ −𝑎 <

0 ⟹ 𝑦 − 𝑎 < 𝑦 since 𝑦 is a smallest upper bound of 𝐴 ⟹ 𝑦 − 𝑎 does not upper 

bound of 𝐴 ⟹ ∃𝑚 ∈ ℕ ∋ 𝑦 − 𝑎 ≤ 𝑚𝑎 ⟹ 𝑦 ≤ 𝑚𝑎 + 𝑎 ⟹ 𝑦 ≤ (𝑚 + 1)𝑎, since 

𝑚 + 1 ∈ ℕ ⟹ (𝑚 + 1)𝑎 ∈ 𝐴 ⟹ 𝑦 does not upper bound of 𝐴 ⟹ contradiction  ∎ 
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(2.9) Corollary: 

1. ∀𝑥 ∈ ℛ+∃  𝑛 ∈ ℤ+ ∋ 1

𝑛
< 𝑥. 

2. ∀𝑥 ∈ ℛ ∃  𝑛 ∈ ℤ+  ∋ 𝑛 > 𝑥 . 

3. ∀𝑥 ∈ ℛ ∃  𝑚, 𝑛 ∈ ℤ ∋ 𝑚 < 𝑥 < 𝑛. 

4. ∀𝑥 ∈ ℛ ∃ a unique integer  𝑛 ∈ ℤ ∋ 𝑛 ≤ 𝑥 < 𝑛 + 1. 

Proof: (1) Put 𝑏 = 1 and 𝑎 = 𝜀 ⟹ ∃𝑛 ∈ ℤ+  ∋ 𝑛𝑎 > 𝑏 ⟹ 𝑛𝜀 > 1 ⟹ 1

𝑛
< 𝜀. 

(2) Put 𝑏 = 𝑥 and 𝑎 = 1 ⟹ ∃𝑛 ∈ ℤ+  ∋ 𝑛𝑎 > 𝑏 ⟹ 𝑛 > 𝑥. 

(3) since 𝑥 ∈ ℛ ⟹ by (2) ∃𝑛 ∈ ℤ+  ∋ 𝑛 > 𝑥, now we must prove that ∃𝑚 ∈ ℤ+  ∋

𝑚 < 𝑥. Put 𝐴 = {𝑘 ∈  ℤ: 𝑘 > −𝑥} ⟹ 𝐴 ⊆ ℛ and 𝐴 is a lower bound (since ℛ 

satisfies completeness) ⟹ ∃𝑦 ∈ ℛ ∋ inf 𝐴 = 𝑦 ⟹ 𝑦 > −𝑥 ⟹ −𝑦 < 𝑥, put 𝑚 =

−𝑦 ⟹ 𝑚 < 𝑥. 

(4) Put 𝐴 = {𝑚 ∈  ℤ: 𝑚 ≤ 𝑥} ⟹ ∅ ≠ 𝐴 ⊆ ℛ and 𝐴 has an upper bound, (since ℛ 

satisfies completeness) ⟹ ∃𝑛 ∈ ℛ ∋ sup 𝐴 = 𝑛 ⟹ 𝑛 ≤ 𝑥. To prove𝑥 < 𝑛 + 1, 

suppose that 𝑛 + 1 ≤ 𝑥 ⟹ 𝑛 + 1 ∈ 𝐴, but this is contradiction since, sup 𝐴 = 𝑛 ∎ 

3. Field of Rational Numbers 

(3.1) Theorem: Every ordered field contains a field similar a field of rational 

number. 

Proof: Let (𝐹, +, . ) be ordered field. 𝑛. 1 = 1 + 1 + ⋯ + 1 (𝑛-times), to prove if 

𝑛. 1 = 0 ⟹ 𝑛 = 0, let 𝑘. 1 = 0 (𝑘 ∈ ℤ+), since 𝑘. 1 = 1 + 1 + ⋯ + 1(𝑘-times)  

⟹ 𝑘 > 1 ⟹ 𝑘 − 1 > 0 ⟹ (𝑘 − 1). 1 > 0 ⟹ 𝑛. 1 ∈ 𝐹 ∀ 𝑛 ∈ ℤ+ and 𝑛. 1 = 0 iff 

𝑛 = 0, also 𝑚. 1 = 𝑛. 1 iff 𝑚 = 𝑛. Since (𝐹, +, . ) is a field ⟹ −(𝑛. 1) ∈ 𝐹 ⟹

−𝑛. 1 = (−1) + (−1) + ⋯ + (−1) (𝑛-times) ⟹ ℤ ⊂ 𝐹, since (𝐹, +, . ) is a field ⟹

∀𝑛 ∈ ℤ, 𝑛 ≠ 0 ⟹
1

𝑛
∈ 𝐹 ⟹ ℚ ⊂ 𝐹 .                                                           ∎ 

(3.2) Theorem: the equation 𝑥2 = 2 has no root in ℚ. 

Proof: Let 𝑦 ∈ ℚ ∋ 𝑦2 = 2, since 𝑦 ∈ ℚ ⟹ 𝑦 =
𝑎

𝑏
 ∋ 𝑎, 𝑏 ∈ ℤ, 𝑏 ≠ 0 and 

𝑔. 𝑐. 𝑑(𝑎, 𝑏) = 1. 𝑦2 = 2 ⟹
𝑎2

𝑏2
= 2 ⟹ 𝑎2 = 2𝑏2 … (1) 2𝑏2is even number ⟹ 𝑎2 is 

even number ⟹ 𝑎 is even number⟹ 𝑎 = 2𝑐 ⟹ 𝑎2 = 4𝑐2, by (1) ⟹ 2𝑏2 = 4𝑐2 ⟹

𝑏2 is even number⟹ 𝑏 is even number ⟹ 𝑔. 𝑐. 𝑑(𝑎, 𝑏) = 2, but this is 

contradiction ⟹ 𝑦 ∉ ℚ                                                                                       ∎                     
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(3.3) Theorem: the equation 𝑥2 = 2 has an  unique positive real  root. 

(3.4) Corollary: The field of rational numbers is a proper subset of a field of real 

numbers  (ℚ ⊂  ℛ). 

Proof: Since 𝑥2 = 2 has a root √2   ⟹ √2  ∈ ℛ, 𝑥2 = 2 has no root in ℚ ⟹

√2  ∉ ℚ.                                                                                                               ∎ 

(3.5) Theorem: The field of rational numbers is an incomplete. 

Proof: Let 𝐴 = {𝑥 ∈ ℚ: 𝑥2 < 2} ⟹ 𝐴 ≠ ∅, let 𝑦 ∈ ℚ with sup 𝐴 = 𝑦 ⟹ 𝑦2 = 2 or 

𝑦2 < 2 or 𝑦2 > 2. 

(1) 𝑦2 ≠ 2, 

(2)  If 𝑦2 < 2, put 𝑧 =
4+3𝑦

3+2𝑦
⟹ 𝑧 ∈ ℚ, 𝑧2 − 2 = (

4+3𝑦

3+2𝑦
)

2
− 2 =

𝑦2−2

(3+2𝑦)2
< 0, 

(𝑦2 < 2) ⟹ 𝑧2 < 2 ⟹ 𝑧 ∈ 𝐴 ⟹ 𝑧 − 𝑦 =
4+3𝑦

3+2𝑦
− 𝑦 =

2(2−𝑦2)

3+2𝑦
> 0 ⟹ 𝑧 > 𝑦, 

this is contradiction, since 𝑦 is an upper bound of 𝐴. 

(3) If 𝑦2 > 2 ⟹ 𝑧2 > 2 ⟹ 𝑧 is an upper bound of 𝐴, this is contradiction, since 𝑦 

is a smallest upper bound of 𝐴.                                                                   ∎ 

(3.6) Theorem(Density of Rational Numbers) 

If 𝑎, 𝑏 ∈ ℛ ∋ 𝑎 < 𝑏 ∃ 𝑟 ∈ ℚ ∋ 𝑎 < 𝑟 < 𝑏. 

Proof: (1) 𝑏 − 𝑎 > 1, put 𝐴 = {𝑛 ∈ ℕ: 𝑛 > 𝑎}, since 𝑎 ∈ ℛ ⟹ by Archimedes 

theorem  ⟹ ∃𝑚 ∈ ℕ ∋ 𝑚 > 𝑎 ⟹ 𝑚 ∈ 𝐴 ⟹ 𝐴 ≠ ∅. Since ℕ is a well ordered and 

∅ ≠ 𝐴 ⊂ ℕ ⟹ 𝐴 contains a smallest number 𝑘, since 𝑘 ∈ 𝐴 ⟹ 𝑘 > 𝑎, since  𝑘 is a 

smallest number in 𝐴 ⟹ 𝑘 − 1 ∉ 𝐴 ⟹ 𝑘 − 1 ≤ 𝑎 ⟹ 𝑘 ≤ 𝑎 + 1, since 𝑏 − 𝑎 >

1 ⟹ 𝑏 > 𝑎 + 1 ⟹ 𝑘 < 𝑏 ⟹ 𝑎 < 𝑘 < 𝑏 ⟹ 𝑘 ∈ ℚ. 

(2) If 𝑎 < 0 < 𝑏 ⟹ 0 ∈ ℚ. 

(3) If 𝑎 < 𝑏 < 0 ⟹ 0 < −𝑏 < −𝑎, by (1) ∃ 𝑟 ∈ ℚ ∋ −𝑏 < 𝑟 < −𝑎 ⟹ 𝑎 < −𝑟 <

𝑏 ⟹ −𝑟 ∈ ℚ.                                                                                                     ∎  

 

 


