Real and Rational Numbers

1. Order Sets

- (1.1) **<u>Definition</u>**: Let R be a relation on a set X, we say that
 - R is a reflexive on X, if $xRx \forall x \in X$.
 - R is a symmetric on X, if xRy, then yRx.
 - R is a transitive on X, if xRy, and yRz, then xRz.
 - R is an anti-symmetric on X, if xRy, and yRx, then x = y.
- (1.2) <u>Note</u>: We say that R is a preorder relation on X, if R is a reflexive and transitive, and R is a partial order relation on X, if R is a reflexive, transitive and anti-symmetric.
- (1.3) Note: Let $X \neq \emptyset$, then R is a partial order set, we say that (X, R) is a partially order set.
- (1.4) **Example**: The order pairs (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) , (\mathbb{R}, \leq) , (\mathbb{C}, \leq) where $(\leq = R)$ are a partially order sets.
- (1.5) **<u>Definition</u>**: Let X be a partial order set, and $x, y \in X$ we say x, y are comparable, if $x \le y$ or $y \le x$.
- (1.6) **<u>Definition</u>**: Let $A \subseteq X$, then A is a totally ordered or chain in X, if every two elements in X are comparable.
- (1.7) **Example**: The order pairs (\mathcal{R}, \leq) , (\mathbb{Q}, \leq) are a totally ordered, but (\mathbb{C}, \leq) does not.
- (1.8) **<u>Definition</u>**: Let X be a partial order set and $a, b \in X$, we say that a is a first element or a smallest element in X, if $a \le x \ \forall x \in X$. We say that b is a last element or greatest element in X, if $x \le b \ \forall x \in X$.
- (1.9) **<u>Definition</u>**: Let *X* be a partial order set, then *X* is called a well ordered, if every non empty subset of *X* contains a first element.
- (1.10) **<u>Definition</u>**: Let X be a partial order set and $a, b \in X$, then a is called a minimal element in X, if $x \in X$, $x \le a$, then a = x. We say that b is a maximal element in X, if $x \in X$, $b \le x$, then b = x.

(1.11) **Examples**:

- 1. Let $A = \{-3, -2, -1, 0, 1, 4, 7\}$, then max A = 7 and min A = -3.
- 2. Min $\mathbb{N} = 1$ and max \mathbb{N} does not exist.
- 3. Min \mathbb{Z} and max \mathbb{Z} does not exist.
- 4. Let $A = \{\frac{1}{n} : n \in \mathbb{Z}\}$, then max A = 1 and min A does not exist.
- 5. Let $A = \{-\frac{1}{n} : n \in \mathbb{Z}\}$, then min A = -1 and max A does not exist.
- 6. Let $A = \{ \overline{+}_{n}^{1} : n \in \mathbb{Z} \}$, then max A = 1 and min A = -1.

- (1.12) **<u>Definition</u>**: Let X be a partial order set and $A \subseteq X$, we say that $a \in X$ be lower bound of A, if $a \le x \ \forall x \in A$. We say that a called a greatest lower bound of A, if its:
 - 1. A lower bound of A;
 - 2. a' < a for all lower bound a' of A.
- (1.13) **Note**: We denote of element which a greatest lower bound of A by inf A.
- (1.14) **<u>Definition</u>**: Let X be a partial order set and $A \subseteq X$, we say that $b \in X$ be upper bound of A, if $x \le b \ \forall x \in A$. We say that b called a smallest upper bound of A, if its:
 - 3. An upper bound of *A*;
 - 4. b < b' for all upper bound b' of A.
- (1.15) **Note**: We denote of element which a smallest upper bound of A by sup A.
- (1.16) **Examples**:
 - 1. Let $A = \{x \in \mathcal{R}: x \le 2\}$, then sup A = 2 and inf A does not exist.
 - 2. Let $A = \{x \in \mathbb{R}: -4 \le x \le 5\}$, then sup A = 5 and inf A = -4.
- (1.17) **<u>Definition</u>**: Let X be a partial order set and $A \subseteq X$, we say that A is a bounded below, if there exist a lower bound and A is a bounded above, if there exists an upper bound. We say that A bounded, if A bounded from a lower and an upper.
- (1.18) **<u>Definition</u>**: Let *X* be a partial order set. We say that *X* complete or complete ordered, if for all non empty subset and bounded from above *A* in *X*, then sup *A* exists.
 - 2. Real Numbers
- (2.1) Axioms of Field
 - 1. Axioms of abelian.
 - $x + y = y + x \ \forall x, y \in \mathcal{R}$.
 - $x.y = y.x \quad \forall x, y \in \mathcal{R}$.
 - 2. Axioms of associative.
 - $x + (y + z) = (x + y) + z \forall x, y, z \in \mathcal{R}$.
 - $x.(y.z) = (x.y).z \quad \forall x,y,z \in \mathcal{R}.$
 - 3. Axiom of distribution.

$$x(y+z) = xy + xz \ \forall x, y, z \in \mathcal{R}$$

- 4. Axioms of identity element.
 - There is $0 \in \mathcal{R}$ such that x + 0 = 0 + x = x.
 - There is $1 \in \mathcal{R}$ such that $x \cdot 1 = 1 \cdot x = x$.

5. Axioms of inverse element.

- For all $x \in \mathcal{R}$ there is $-x \in \mathcal{R}$ such that x + (-x) = (-x) + x = 0.
- For all $x \in \mathcal{R}$, $x \neq 0$ there is $y \in \mathcal{R}$ such that $x \cdot y = y \cdot x = 1$.

(2.2) **Theorem:** Let $x, y, z \in \mathcal{R}$, then

- 1. -(x y) = y x.
- 2. x y = x + (-y).
- 3. x + z = y + z iff x = y.
- 4. If $z \neq 0$, then xz = yz iff x = y.
- 5. xy = 0 iff x = 0 or y = 0.
- 6. (-x)y = x(-y) = -xy.
- 7. -(-x) = x.
- 8. If $x \neq 0$, then $(-x)^{-1} = -x^{-1}$ and $(x^{-1})^{-1} = x$.

(2.3) Axioms of order.

There is a non-empty subset of \mathcal{R} which denoted by \mathcal{R}_+ and its satisfy:

- 1. If $x, y \in \mathcal{R}_+$ then $x + y \in \mathcal{R}_+$ and $xy \in \mathcal{R}_+$.
- 2. If $x \in \mathcal{R}$ then one of following is true $-x \in \mathcal{R}_+$, x = 0, $x \in \mathcal{R}_+$.

(2.4) **<u>Definition</u>**:

- 1. If $x, y \in \mathcal{R}$ then x < y if $y x \in \mathcal{R}_+$.
- 2. $x \le y$ means x < y or x = y.
- 3. $x \le y < z$ means y < z and $x \le y$.

(2.5) **Theorem:**

- 1. For all $x, y \in \mathcal{R}$ then either x < y or x > y or x = y.
- 2. If x < y and y < z then x < z.
- 3. x + z < y + z iff x < y.
- 4. If x < y and z < w then x + z < y + w.
- 5. If z > 0 then xz < yz iff x < y.
- 6. If z < 0 then xz < yz iff x > y.
- 7. If 0 < x < y and 0 < z < w then xz < yw.

(2.6) The Completeness Axiom.

Let $\emptyset \neq A \subseteq \mathcal{R}$ then

- 1. If *A* is an upper bounded, then sup *A* exists.
- 2. If *A* is a lower bounded, then inf *A* exists.
- (2.7) **Theorem:** Let $\emptyset \neq A \subseteq \mathcal{R}$ and $a, b \in \mathcal{R}$ then
 - 1. Inf A = a iff
 - a. $a \le x \ \forall x \in A$.
 - b. $\forall \varepsilon > 0 \ \exists \ y \in A \ \ni \ y < \alpha + \varepsilon$.
 - 2. Sup A = b iff
 - a. $x \le b \ \forall x \in A$.
 - b. $\forall \varepsilon > 0 \ \exists \ y \in A \ \ni \ y > b \varepsilon$.

<u>Proof:</u> Let inf $A = a \Rightarrow a$ is a lower bound of $A \Rightarrow a \leq x \ \forall x \in A \Rightarrow (a)$ satisfies.

Let $\varepsilon > 0 \Rightarrow a + \varepsilon > a$, since a is greatest lower bound of $A \Rightarrow a + \varepsilon$ not lower bound of $A \Rightarrow \exists z \in A \ni z < a + \varepsilon \Rightarrow (b)$ satisfies.

Now let (a), (b) are satisfy

- (a) \Rightarrow a is a lower bound of A, let $c \in \mathcal{R} \ni a < c$. We must prove that c not lower of A. Put $\varepsilon = c a \Rightarrow \varepsilon > 0 \Rightarrow \exists y \in A \ni y < a + \varepsilon \Rightarrow y < a + (c a) = c \Rightarrow \inf A = a$
- (2) Assume that sup $A = b \Rightarrow b$ an upper bound of $A \Rightarrow x \leq b \ \forall x \in A \Rightarrow (1)$

Now to prove (2) let $\varepsilon > 0 \Longrightarrow -\varepsilon < 0 \Longrightarrow b - \varepsilon < b$, since b is a smallest upper bound of $A \Longrightarrow b - \varepsilon$ does not upper bound of $A \Longrightarrow \exists z \in A \ni b - \varepsilon < y$.

- (1) means b is an upper bound of A, let $d \in \mathcal{R} \ni d < b$. Put $\varepsilon = b d \Longrightarrow \varepsilon > 0 \Longrightarrow \exists y \in A \text{ by } (2) \ni y > b \varepsilon \Longrightarrow y > b (b d) = d \Longrightarrow \sup A = b$
- (2.8) **Theorem:**(Archimedes property)

If $x, y \in \mathcal{R}$ and x > 0 then $\exists n \in \mathbb{Z}^+ \ni nx > y$.

Proof: Let $\exists a, b \in \mathcal{R} \ni a > 0$ and $na \leq b \ \forall \ n \in \mathbb{N}$. Put $A = \{na : n \in \mathbb{N}\}$, $1. a = a \in A \Rightarrow \emptyset \neq A \subseteq \mathcal{R}$, $na \leq b \ \forall \ n \in \mathbb{N} \Rightarrow b$ is an upper bound of $A \Rightarrow A$ bounded from above. Since \mathcal{R} satisfies the completeness $\Rightarrow \exists y \in \mathcal{R} \ni y = \sup A. \ a > 0 \Rightarrow -a < 0 \Rightarrow y - a < y$ since y is a smallest upper bound of $A \Rightarrow y - a$ does not upper bound of $A \Rightarrow \exists m \in \mathbb{N} \ni y - a \leq ma \Rightarrow y \leq ma + a \Rightarrow y \leq (m+1)a$, since $m+1 \in \mathbb{N} \Rightarrow (m+1)a \in A \Rightarrow y$ does not upper bound of $A \Rightarrow \text{contradiction}$

(2.9) **Corollary**:

- 1. $\forall x \in \mathcal{R}_+ \exists n \in \mathbb{Z}_+ \ni \frac{1}{n} < x$.
- 2. $\forall x \in \mathcal{R} \exists n \in \mathbb{Z}_+ \ni n > x$.
- 3. $\forall x \in \mathcal{R} \exists m, n \in \mathbb{Z} \ni m < x < n$.
- 4. $\forall x \in \mathcal{R} \exists$ a unique integer $n \in \mathbb{Z} \ni n \leq x < n + 1$.

<u>Proof:</u> (1) Put b = 1 and $a = \varepsilon \Longrightarrow \exists n \in \mathbb{Z}_+ \ni na > b \Longrightarrow n\varepsilon > 1 \Longrightarrow \frac{1}{n} < \varepsilon$.

- (2) Put b = x and $a = 1 \Longrightarrow \exists n \in \mathbb{Z}_+ \ni na > b \Longrightarrow n > x$.
- (3) since $x \in \mathcal{R} \Longrightarrow$ by (2) $\exists n \in \mathbb{Z}_+ \ni n > x$, now we must prove that $\exists m \in \mathbb{Z}_+ \ni m < x$. Put $A = \{k \in \mathbb{Z}: k > -x\} \Longrightarrow A \subseteq \mathcal{R}$ and A is a lower bound (since \mathcal{R} satisfies completeness) $\Longrightarrow \exists y \in \mathcal{R} \ni \inf A = y \Longrightarrow y > -x \Longrightarrow -y < x$, put $m = -y \Longrightarrow m < x$.
- (4) Put $A = \{m \in \mathbb{Z} : m \le x\} \Longrightarrow \emptyset \ne A \subseteq \mathcal{R} \text{ and } A \text{ has an upper bound, (since } \mathcal{R} \text{ satisfies completeness}) \Longrightarrow \exists n \in \mathcal{R} \ni \sup A = n \Longrightarrow n \le x.$ To prove x < n + 1, suppose that $n + 1 \le x \Longrightarrow n + 1 \in A$, but this is contradiction since, $\sup A = n \blacksquare$

3. Field of Rational Numbers

(3.1) **Theorem:** Every ordered field contains a field similar a field of rational number.

Proof: Let (F, +, .) be ordered field. $n. 1 = 1 + 1 + \cdots + 1$ (n-times), to prove if $n. 1 = 0 \Rightarrow n = 0$, let k. 1 = 0 ($k \in \mathbb{Z}_+$), since $k. 1 = 1 + 1 + \cdots + 1$ (k-times)

 $\Rightarrow k > 1 \Rightarrow k - 1 > 0 \Rightarrow (k - 1). \ 1 > 0 \Rightarrow n. \ 1 \in F \ \forall \ n \in \mathbb{Z}_+ \ \text{ and } \ n. \ 1 = 0 \ \text{ iff } \\ n = 0, \ \text{also } \ m. \ 1 = n. \ 1 \ \text{iff } \ m = n. \ \text{Since } (F, +, .) \ \text{is a field} \Rightarrow -(n. \ 1) \in F \Rightarrow \\ -n. \ 1 = (-1) + (-1) + \dots + (-1) \ (n \text{-times}) \Rightarrow \mathbb{Z} \subset F, \ \text{since } (F, +, .) \ \text{is a field} \Rightarrow \\ \forall n \in \mathbb{Z}, \ n \neq 0 \Rightarrow \frac{1}{n} \in F \Rightarrow \mathbb{Q} \subset F.$

(3.2) **Theorem:** the equation $x^2 = 2$ has no root in \mathbb{Q} .

Proof: Let $y \in \mathbb{Q} \ni y^2 = 2$, since $y \in \mathbb{Q} \Rightarrow y = \frac{a}{b} \ni a, b \in \mathbb{Z}$, $b \neq 0$ and g.c.d(a,b) = 1. $y^2 = 2 \Rightarrow \frac{a^2}{b^2} = 2 \Rightarrow a^2 = 2b^2 \dots (1)$ $2b^2$ is even number $\Rightarrow a$ is even number $\Rightarrow a$ is even number $\Rightarrow a = 2c \Rightarrow a^2 = 4c^2$, by $(1) \Rightarrow 2b^2 = 4c^2 \Rightarrow b^2$ is even number $\Rightarrow b$ is even number $\Rightarrow g.c.d(a,b) = 2$, but this is contradiction $\Rightarrow y \notin \mathbb{Q}$

- (3.3) **Theorem:** the equation $x^2 = 2$ has an unique positive real root.
- (3.4) <u>Corollary:</u> The field of rational numbers is a proper subset of a field of real numbers $(\mathbb{Q} \subset \mathcal{R})$.

Proof: Since $x^2 = 2$ has a root $\sqrt{2} \implies \sqrt{2} \in \mathcal{R}$, $x^2 = 2$ has no root in $\mathbb{Q} \implies \sqrt{2} \notin \mathbb{Q}$.

(3.5) **Theorem:** The field of rational numbers is an incomplete.

Proof: Let $A = \{x \in \mathbb{Q}: x^2 < 2\} \Longrightarrow A \neq \emptyset$, let $y \in \mathbb{Q}$ with sup $A = y \Longrightarrow y^2 = 2$ or $y^2 < 2$ or $y^2 > 2$.

 $(1)y^2 \neq 2,$

(2) If
$$y^2 < 2$$
, put $z = \frac{4+3y}{3+2y} \Rightarrow z \in \mathbb{Q}$, $z^2 - 2 = \left(\frac{4+3y}{3+2y}\right)^2 - 2 = \frac{y^2-2}{(3+2y)^2} < 0$, $(y^2 < 2) \Rightarrow z^2 < 2 \Rightarrow z \in A \Rightarrow z - y = \frac{4+3y}{3+2y} - y = \frac{2(2-y^2)}{3+2y} > 0 \Rightarrow z > y$, this is contradiction, since y is an upper bound of A .

- (3) If $y^2 > 2 \Rightarrow z^2 > 2 \Rightarrow z$ is an upper bound of A, this is contradiction, since y is a smallest upper bound of A.
- (3.6) **Theorem**(**Density of Rational Numbers**)

If $a, b \in \mathcal{R} \ni a < b \exists r \in \mathbb{Q} \ni a < r < b$.

Proof: (1) b-a>1, put $A=\{n\in\mathbb{N}:n>a\}$, since $a\in\mathcal{R}\Longrightarrow$ by Archimedes theorem $\Rightarrow \exists m\in\mathbb{N}\ni m>a\Rightarrow m\in A\Rightarrow A\neq\emptyset$. Since \mathbb{N} is a well ordered and $\emptyset\neq A\subset\mathbb{N}\Longrightarrow A$ contains a smallest number k, since $k\in A\Longrightarrow k>a$, since k is a smallest number in $A\Longrightarrow k-1\notin A\Longrightarrow k-1\le a\Longrightarrow k\le a+1$, since $b-a>1\Longrightarrow b>a+1\Longrightarrow k
b\Longrightarrow a< k
0 <math>\Longrightarrow a< k< b\Longrightarrow k\in\mathbb{Q}$.

- (2) If $a < 0 < b \Longrightarrow 0 \in \mathbb{Q}$.
- (3) If $a < b < 0 \Rightarrow 0 < -b < -a$, by (1) $\exists r \in \mathbb{Q} \ni -b < r < -a \Rightarrow a < -r < b \Rightarrow -r \in \mathbb{Q}$.