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Real and Rational Numbers

Order Sets

Definition: Let R be a relation on a set X, we say that

R isareflexiveon X, if xRx V x € X.

R is a symmetric on X, if xRy, then yRx.

R is a transitive on X, if xRy, and yRz, then xRz.

R is an anti-symmetric on X, if xRy, and yRx, then x = y.

Note: We say that R is a preorder relation on X, if R is a reflexive and
transitive, and R is a partial order relation on X, if R is a reflexive, transitive
and anti-symmetric.

Note: Let X # @, then R is a partial order set, we say that (X, R) is a partially
order set.

Example: The order pairs (N, <), (Z, <), (Q, <), (R, <), (C, <) where (<=
R) are a partially order sets.

Definition: Let X be a partial order set, and x,y € X we say x,y are
comparable, ifx < yory < x.

Definition: Let A € X, then A is a totally ordered or chain in X, if every two
elements in X are comparable.

Example: The order pairs (R, <), (Q, <)are a totally ordered, but (C, <) does
not.

Definition: Let X be a partial order set and a, b € X, we say that a is a first
element or a smallest element in X, if a < x Vx € X. We say that b is a last
element or greatest elementin X, if x < b Vx € X.

Definition: Let X be a partial order set, then X is called a well ordered, if every
non empty subset of X contains a first element.

(1.10) Definition: Let X be a partial order set and a, b € X, then a is called a minimal

elementin X, if x € X, x < a, then a = x. We say that b is a maximal element
inX,ifxeX, b<x,thenb = x.

(1.11) Examples:

1. LetA ={-3,-2,-1,0,1,4,7},thenmax A = 7and min A = —3.
Min N = 1 and max N does not exist.

Min Z and max Z does not exist.

Let A = {:n € Z}, then max A = 1 and min A does not exist.
Let A = {—:n € Z}, then min A = —1 and max A does not exist.
Let A = {+::n € Z}, thenmax A = 1and min A = —1.

o 0k~ wDd



Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical
Analysis (1) [2021-2022]

(1.12) Definition: Let X be a partial order set and A € X, we say that a € X be lower
bound of 4, if a < x Vx € A. We say that a called a greatest lower bound of A,
if its:

1. A lower bound of 4;
2. a' < a for all lower bound a’ of A.

(1.13) Note: We denote of element which a greatest lower bound of A by inf A.

(1.14) Definition: Let X be a partial order set and A € X, we say that b € X be upper
bound of A4, if x < b Vx € A. We say that b called a smallest upper bound of
A, if its:

3. An upper bound of A4;

4. b < b’ for all upper bound b’ of A.
(1.15) Note: We denote of element which a smallest upper bound of A by sup A.
(1.16) Examples:

1. LetA ={x € R:x < 2}, thensup A = 2 and inf A does not exist.

2. LetA={x €R:—4 < x <5}, thensup A =5and inf A = —4.

(1.17) Definition: Let X be a partial order set and A < X, we say that A is a bounded
below, if there exist a lower bound and A is a bounded above, if there exists an
upper bound. We say that A bounded, if A bounded from a lower and an upper.

(1.18) Definition: Let X be a partial order set. We say that X complete or complete
ordered, if for all non empty subset and bounded from above A in X, then sup
A exists.

2. Real Numbers

(2.1) Axioms of Field

1. Axioms of abelian.
e x+ty=y+xVx,y€R.
e X.y =y.x Vx,y€EQR.
2. Axioms of associative.
e x+(y+z2)=x+y)+zVx,y,zER.
o x.(y.2) =(x.y).z Vxy,z€R.
3. Axiom of distribution.

x(y+z)=xy+xz Vx,y,Z€ER

4. Axioms of identity element.
e ThereisO0 e Rsuchthatx +0=0+x = x.
e Thereis1l € Rsuchthatx.1 =1.x = x.
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5.

Axioms of inverse element.
e Forall x € Rthereis —x € Rsuchthat x + (—x) = (—x) + x = 0.
e Forallx e R, x #0thereisy e Rsuchthatx.y =y.x = 1.

(2.2) Theorem: Let x,y,z € R, then

1.

—x—-y)=y-—x

2. x —y=x+(—y).

~N o Ok w

8.

x+z=y+ziffx=y.

Ifz+#0,thenxz = yziffx = y.
xy=0iffx=00ry=0.

(—0)y = x(=y) = —xy.

—(—x) = x.

If x = 0,then (—x)"' = —x"1and (x 1) =x.

(2.3) Axioms of order.

There is a non-empty subset of R which denoted by R, and its satisfy:

1.
2.

Ifx,yeR, thenx+yeR, andxy € R,.
If x € R then one of following istrue —x e R, x =0, x E R, .

(2.4) Definition:

1.
2.
3.

Ifx,y e Rthenx <yify—x eR,.
x<ymeansx <yorx =y.
x<y<zmeansy < zandx <y.

(2.5) Theorem:

1.

Forall x,y € Rtheneitherx <yorx >yorx=y.

2. Ifx <yandy < zthenx < z.

o bk w

7.

x+z<y+ziffx<y.
Ifx<yandz<wthenx+z<y+w.
Ifz>0thenxz <yziffx <y.
Ifz<Othenxz <yziffx >y.
If0<x<yand 0 <z < wthenxz < yw.

(2.6) The Completeness Axiom.

Let® # A € R then
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1. If A is an upper bounded, then sup A exists.
2. If A is alower bounded, then inf A exists.

(2.7) Theorem: Let® + A € R and a, b € R then

1. InfA=aliff
a<xVxE€A.
Ve>0 3yed 3 y<a-+te
SupA = b iff
x<bVx€A.
Ve>0 3yeA > y>b—e.

oo MDD

Proof: LetinfA = a = aisalowerbound of A = a < x Vx € A = (a) satisfies.

Let e >0 = a+ ¢ > a, since a is greatest lower bound of A = a + € not lower
boundof A = 3z € A3 z < a+ ¢ = (b) satisfies.

Now let (a), (b) are satisfy

(@) = a is a lower bound of A, let c € R 3 a < c. We must prove that ¢ not lower of
A Puite=c—a=¢e>0=3Jy€dAd3y<a+e=>y<a+(c—a)=c=inf
A=a

(2) Assume that sup A = b = b anupperboundof A =>x<bVx €A = (1)

Now to prove (2) let e >0 = —e< 0= b —¢e < b, since b is a smallest upper
bound of A = b — £ does not upper boundof A = 3z€A3b—e < y.

(1) means b is an upper bound of A, letd e R3d <b.Pute=b—-d=e>0=
dJyeAby(@Q3y>b—-ec=>y>b—(b—d)=d=SupA=>b n

(2.8) Theorem:(Archimedes property)
Ifx,yeRandx > 0then3an € Z* 3 nx > y.

Proof: Letda, b eR3a>0andna<bVneN.PutA={nane€N},l.a=a€
A=Q0+AC R, na<bVneN= bisan upper bound of A = A bounded from
above. Since R satisfies the completeness = Iy e R 3y =sup A.a>0= —a <
0= y—a<ysince y is a smallest upper bound of A = y — a does not upper
bound of A= 3ImeNsy—a<ma=y<ma+a=y<(m+1)a, since
m+1€N= (m+ 1)a € A = y does not upper bound of A = contradiction m
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(2.9) Corollary:

1. VXER,ANEL, D <x.

2. VXERINEZ, d3n>x.

3. VxeRImneZ osm<x<n.

4, Vx e RJauniqueinteger n€Z a3 n<x<n+1.

Proof: (1)Puth=1anda=e¢=3n€Z, dna>b=ne>1=_<ec.

(2)Putb=xanda=1=3In€Z, na>b=n>x.

(3) since x e R = by (2) In € Z, 3 n > x, now we must prove that Im € Z, 3
m<x. Put A={k€ Z:k>—-x}=AC R and A is a lower bound (since R
satisfies completeness) = Iy eR3I INfA=y=y> - x= -y <x, put m=
—y=>m<Xx.

4 PutA={me Zm<x}=0+AC R and A has an upper bound, (since R
satisfies completeness) =3Ine€R 3 sup A=n=n<x. To provex <n+1,
suppose thatn + 1 < x = n + 1 € A, but this is contradiction since, supA =n m

3. Field of Rational Numbers

(3.1) Theorem: Every ordered field contains a field similar a field of rational
number.

Proof: Let (F,+,.) be ordered field. n.1=14+1+4 -4+ 1 (n-times), to prove if
nl=0=n=0,letk.1=0(k €Z,),sincek.1=1+1+ -4 1(k-times)

=>k>1=k—-1>0=>(k—-1).1>0=nl1€FVvneZ, and n.1 =0 iff
n=20, also m.1 =n.1 iff m =n. Since (F,+,.) is a field = -(n.1) EF =
—n.1=(-1)+(-1)+ -+ (—1) (n-times) = Z c F, since (F,+,.) is a field =
VneZ,n¢0=>%eF=>QcF. [ |

(3.2) Theorem: the equation x2 = 2 has no root in Q.

Proof: Lety € Q3y?=2, since yEQ=>y=% Sa,b€Z b#0 and
a? . .
g.c.d(a,b) =1.y>=2= Z=2= a’ = 2b?% ... (1) 2b%is even number = a? is
even number = a is even number= a = 2c¢ = a? = 4c¢?, by (1) = 2b? = 4¢? =
b? is even number= b is even number = g.c.d(a,b) =2, but this is
contradiction=y € Q |
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(3.3) Theorem: the equation x2 = 2 has an unique positive real root.

(3.4) Corollary: The field of rational numbers is a proper subset of a field of real
numbers (Q c R).

Proof: Since x2 =2 has a root V2 =+v2 €R, x2 =2 has no root in Q =
V2 ¢ Q. n

(3.5) Theorem: The field of rational numbers is an incomplete.

Proof: Let A={x e Q:x?<2}= A+ 0, letyeQwithsupd=y=y?=2o0r
y2<2ory?>2,

1)y? # 2,
2 _ 443y 2 o _ [(4+3y 2 5 y2-2
@If y*<2, put z=32=z€Q 7z2-2= (3+2y) 2= <0,
2 2 4ty 2(2-yP)
(y'<2)=z°<2=z€EA=2z Y =30y =2y >0=>z>y,

this is contradiction, since y is an upper bound of A.
() If y2 > 2 = z? > 2 = z is an upper bound of A4, this is contradiction, since y
Is a smallest upper bound of A. [ |

(3.6) Theorem(Density of Rational Numbers)
IfabeR32a<bareQsa<r<hb.

Proof: (1) b—a>1, put A={n€N:n>a}, since a € R = by Archimedes
theorem = 3IAmeNOIm>a=me€e A= A # @. Since N is a well ordered and
@ +# A c N = A contains a smallest number k, since k € A = k > a, since k is a
smallest number in A =>k—-1¢A=k—-1<a=k<a+1, since b—a>
1=b>a+1=>k<b=a<k<b=keqQ.

2 Ifa<0<b=0€eqQ.

B)Ifa<h<0=0<-b<—-a by(@)IreQa-br<r<—a=>a<-r<
b= —reqQ. [



