Real and Rational Numbers

1. Order Sets

(1.1) Definition: Let R be a relation on a set X, we say that

- R is a reflexive on X, if $x R x \forall x \in X$.
- R is a symmetric on X, if $x R y$, then $y R x$.
- R is a transitive on X, if $x R y$, and $y R z$, then $x R z$.
- R is an anti-symmetric on X, if $x R y$, and $y R x$, then $x=y$.
(1.2) Note: We say that R is a preorder relation on X, if R is a reflexive and transitive, and R is a partial order relation on X, if R is a reflexive, transitive and anti-symmetric.
(1.3) Note: Let $X \neq \emptyset$, then R is a partial order set, we say that (X, R) is a partially order set.
(1.4) Example: The order pairs $(\mathbb{N}, \leq),(\mathbb{Z}, \leq),(\mathbb{Q}, \leq),(\mathcal{R}, \leq),(\mathbb{C}, \leq)$ where $(\leq=$ R) are a partially order sets.
(1.5) Definition: Let X be a partial order set, and $x, y \in X$ we say x, y are comparable, if $x \leq y$ or $y \leq x$.
(1.6) Definition: Let $A \subseteq X$, then A is a totally ordered or chain in X, if every two elements in X are comparable.
(1.7) Example: The order pairs $(\mathcal{R}, \leq),(\mathbb{Q}, \leq)$ are a totally ordered, but (\mathbb{C}, \leq) does not.
(1.8) Definition: Let X be a partial order set and $a, b \in X$, we say that a is a first element or a smallest element in X, if $a \leq x \forall x \in X$. We say that b is a last element or greatest element in X, if $x \leq b \forall x \in X$.
(1.9) Definition: Let X be a partial order set, then X is called a well ordered, if every non empty subset of X contains a first element.
(1.10) Definition: Let X be a partial order set and $a, b \in X$, then a is called a minimal element in X, if $x \in X, x \leq a$, then $a=x$. We say that b is a maximal element in X, if $x \in X, b \leq x$, then $b=x$.
(1.11) Examples:

1. Let $A=\{-3,-2,-1,0,1,4,7\}$, then $\max A=7$ and $\min A=-3$.
2. Min $\mathbb{N}=1$ and $\max \mathbb{N}$ does not exist.
3. Min \mathbb{Z} and $\max \mathbb{Z}$ does not exist.
4. Let $A=\left\{\frac{1}{n}: n \in \mathbb{Z}\right\}$, then $\max A=1$ and $\min A$ does not exist.
5. Let $A=\left\{-\frac{1}{n}: n \in \mathbb{Z}\right\}$, then $\min A=-1$ and $\max A$ does not exist.
6. Let $A=\left\{\mp \frac{1}{n}: n \in \mathbb{Z}\right\}$, then $\max A=1$ and $\min A=-1$.
(1.12) Definition: Let X be a partial order set and $A \subseteq X$, we say that $a \in X$ be lower bound of A, if $a \leq x \forall x \in A$. We say that a called a greatest lower bound of A, if its:
7. A lower bound of A;
8. $a^{\prime}<a$ for all lower bound a^{\prime} of A.
(1.13) Note: We denote of element which a greatest lower bound of A by inf A.
(1.14) Definition: Let X be a partial order set and $A \subseteq X$, we say that $b \in X$ be upper bound of A, if $x \leq b \forall x \in A$. We say that b called a smallest upper bound of A, if its:
9. An upper bound of A;
10. $b<b^{\prime}$ for all upper bound b^{\prime} of A.
(1.15) Note: We denote of element which a smallest upper bound of A by sup A.
(1.16) Examples:
11. Let $A=\{x \in \mathcal{R}: x \leq 2\}$, then $\sup A=2$ and $\inf A$ does not exist.
12. Let $A=\{x \in \mathcal{R}:-4 \leq x \leq 5\}$, then $\sup A=5$ and $\inf A=-4$.
(1.17) Definition: Let X be a partial order set and $A \subseteq X$, we say that A is a bounded below, if there exist a lower bound and A is a bounded above, if there exists an upper bound. We say that A bounded, if A bounded from a lower and an upper.
(1.18) Definition: Let X be a partial order set. We say that X complete or complete ordered, if for all non empty subset and bounded from above A in X, then sup A exists.

2. Real Numbers

(2.1) Axioms of Field

1. Axioms of abelian.

- $x+y=y+x \forall x, y \in \mathcal{R}$.
- $x . y=y \cdot x \quad \forall x, y \in \mathcal{R}$.

2. Axioms of associative.

- $x+(y+z)=(x+y)+z \forall x, y, z \in \mathcal{R}$.
- $x .(y . z) \quad=(x . y) . z \quad \forall x, y, z \in \mathcal{R}$.

3. Axiom of distribution.

$$
x(y+z)=x y+x z \forall x, y, z \in \mathcal{R}
$$

4. Axioms of identity element.

- There is $0 \in \mathcal{R}$ such that $x+0=0+x=x$.
- There is $1 \in \mathcal{R}$ such that $x .1=1 . x=x$.

5. Axioms of inverse element.

- For all $x \in \mathcal{R}$ there is $-x \in \mathcal{R}$ such that $x+(-x)=(-x)+x=0$.
- For all $x \in \mathcal{R}, x \neq 0$ there is $y \in \mathcal{R}$ such that $x . y=y . x=1$.
(2.2) Theorem: Let $x, y, z \in \mathcal{R}$, then

1. $-(x-y)=y-x$.
2. $x-y=x+(-y)$.
3. $x+z=y+z$ iff $x=y$.
4. If $z \neq 0$, then $x z=y z$ iff $x=y$.
5. $x y=0$ iff $x=0$ or $y=0$.
6. $(-x) y=x(-y)=-x y$.
7. $-(-x)=x$.
8. If $x \neq 0$, then $(-x)^{-1}=-x^{-1}$ and $\left(x^{-1}\right)^{-1}=x$.
(2.3) Axioms of order.

There is a non-empty subset of \mathcal{R} which denoted by \mathcal{R}_{+}and its satisfy:

1. If $x, y \in \mathcal{R}_{+}$then $x+y \in \mathcal{R}_{+}$and $x y \in \mathcal{R}_{+}$.
2. If $x \in \mathcal{R}$ then one of following is true $-x \in \mathcal{R}_{+}, x=0, x \in \mathcal{R}_{+}$.
(2.4) Definition:
3. If $x, y \in \mathcal{R}$ then $x<y$ if $y-x \in \mathcal{R}_{+}$.
4. $x \leq y$ means $x<y$ or $x=y$.
5. $x \leq y<z$ means $y<z$ and $x \leq y$.

(2.5) Theorem:

1. For all $x, y \in \mathcal{R}$ then either $x<y$ or $x>y$ or $x=y$.
2. If $x<y$ and $y<z$ then $x<z$.
3. $x+z<y+z$ iff $x<y$.
4. If $x<y$ and $z<w$ then $x+z<y+w$.
5. If $z>0$ then $x z<y z$ iff $x<y$.
6. If $z<0$ then $x z<y z$ iff $x>y$.
7. If $0<x<y$ and $0<z<w$ then $x z<y w$.

(2.6) The Completeness Axiom.

Let $\emptyset \neq A \subseteq \mathcal{R}$ then

1. If A is an upper bounded, then $\sup A$ exists.
2. If A is a lower bounded, then $\inf A$ exists.
(2.7) Theorem: Let $\emptyset \neq A \subseteq \mathcal{R}$ and $a, b \in \mathcal{R}$ then
3. $\operatorname{Inf} A=a$ iff
a. $a \leq x \forall x \in A$.
b. $\forall \varepsilon>0 \quad \exists y \in A \ni \quad y<a+\varepsilon$.
4. $\operatorname{Sup} A=b$ iff
a. $x \leq b \forall x \in A$.
b. $\forall \varepsilon>0 \quad \exists y \in A \ni \quad y>b-\varepsilon$.

Proof: Let $\inf A=a \Rightarrow a$ is a lower bound of $A \Rightarrow a \leq x \forall x \in A \Rightarrow(a)$ satisfies.
Let $\varepsilon>0 \Rightarrow a+\varepsilon>a$, since a is greatest lower bound of $A \Rightarrow a+\varepsilon$ not lower bound of $A \Rightarrow \exists z \in A \ni z<a+\varepsilon \Rightarrow(b)$ satisfies.

Now let (a), (b) are satisfy
(a) $\Rightarrow a$ is a lower bound of A, let $c \in \mathcal{R} \ni a<c$. We must prove that c not lower of A. Put $\varepsilon=c-a \Rightarrow \varepsilon>0 \Rightarrow \exists y \in A \ni y<a+\varepsilon \Rightarrow y<a+(c-a)=c \Rightarrow \inf$ $A=a$
(2) Assume that $\sup A=b \Rightarrow b$ an upper bound of $A \Rightarrow x \leq b \forall x \in A \Rightarrow$ (1)

Now to prove (2) let $\varepsilon>0 \Rightarrow-\varepsilon<0 \Rightarrow b-\varepsilon<b$, since b is a smallest upper bound of $A \Rightarrow b-\varepsilon$ does not upper bound of $A \Rightarrow \exists z \in A \ni b-\varepsilon<y$.
(1) means b is an upper bound of A, let $d \in \mathcal{R} \ni d<b$. Put $\varepsilon=b-d \Rightarrow \varepsilon>0 \Rightarrow$ $\exists y \in A$ by (2) $\ni y>b-\varepsilon \Rightarrow y>b-(b-d)=d \Rightarrow \sup A=b$
(2.8) Theorem:(Archimedes property)

If $x, y \in \mathcal{R}$ and $x>0$ then $\exists n \in \mathbb{Z}^{+} \ni n x>y$.
Proof: Let $\exists a, b \in \mathcal{R} \ni a>0$ and $n a \leq b \forall n \in \mathbb{N}$. Put $A=\{n a: n \in \mathbb{N}\}, 1 . a=a \in$ $A \Rightarrow \emptyset \neq A \subseteq \mathcal{R}, n a \leq b \forall n \in \mathbb{N} \Rightarrow b$ is an upper bound of $A \Rightarrow A$ bounded from above. Since \mathcal{R} satisfies the completeness $\Rightarrow \exists y \in \mathcal{R} \ni y=\sup A$. $a>0 \Rightarrow-a<$ $0 \Rightarrow y-a<y$ since y is a smallest upper bound of $A \Rightarrow y-a$ does not upper bound of $A \Rightarrow \exists m \in \mathbb{N} \ni y-a \leq m a \Rightarrow y \leq m a+a \Rightarrow y \leq(m+1) a$, since $m+1 \in \mathbb{N} \Rightarrow(m+1) a \in A \Rightarrow y$ does not upper bound of $A \Rightarrow$ contradiction
(2.9) Corollary:

1. $\forall x \in \mathcal{R}_{+} \exists n \in \mathbb{Z}_{+} \ni \frac{1}{n}<x$.
2. $\forall x \in \mathcal{R} \exists n \in \mathbb{Z}_{+} \ni n>x$.
3. $\forall x \in \mathcal{R} \exists m, n \in \mathbb{Z} \ni m<x<n$.
4. $\forall x \in \mathcal{R} \exists$ a unique integer $n \in \mathbb{Z} \ni n \leq x<n+1$.

Proof: (1) Put $b=1$ and $a=\varepsilon \Rightarrow \exists n \in \mathbb{Z}_{+} \ni n a>b \Rightarrow n \varepsilon>1 \Rightarrow \frac{1}{n}<\varepsilon$.
(2) Put $b=x$ and $a=1 \Rightarrow \exists n \in \mathbb{Z}_{+} \ni n a>b \Rightarrow n>x$.
(3) since $x \in \mathcal{R} \Rightarrow$ by (2) $\exists n \in \mathbb{Z}_{+} \ni n>x$, now we must prove that $\exists m \in \mathbb{Z}_{+} \ni$ $m<x$. Put $A=\{k \in \mathbb{Z}: k>-x\} \Rightarrow A \subseteq \mathcal{R}$ and A is a lower bound (since \mathcal{R} satisfies completeness) $\Rightarrow \exists y \in \mathcal{R} \ni \inf A=y \Rightarrow y>-x \Rightarrow-y<x$, put $m=$ $-y \Rightarrow m<x$.
(4) Put $A=\{m \in \mathbb{Z}: m \leq x\} \Rightarrow \emptyset \neq A \subseteq \mathcal{R}$ and A has an upper bound, (since \mathcal{R} satisfies completeness) $\Rightarrow \exists n \in \mathcal{R} \ni$ sup $A=n \Rightarrow n \leq x$. To prove $x<n+1$, suppose that $n+1 \leq x \Rightarrow n+1 \in A$, but this is contradiction since, $\sup A=n$

3. Field of Rational Numbers

(3.1) Theorem: Every ordered field contains a field similar a field of rational number.

Proof: Let $(F,+,$.$) be ordered field. n .1=1+1+\cdots+1$ (n-times), to prove if $n .1=0 \Rightarrow n=0$, let $k .1=0\left(k \in \mathbb{Z}_{+}\right)$, since $k .1=1+1+\cdots+1(k$-times $)$
$\Rightarrow k>1 \Rightarrow k-1>0 \Rightarrow(k-1) .1>0 \Rightarrow n .1 \in F \forall n \in \mathbb{Z}_{+}$and $n .1=0$ iff $n=0$, also $m .1=n .1$ iff $m=n$. Since $(F,+,$.$) is a field \Rightarrow-(n .1) \in F \Rightarrow$ $-n .1=(-1)+(-1)+\cdots+(-1)(n$-times $) \Rightarrow \mathbb{Z} \subset F$, since $(F,+,$.$) is a field \Rightarrow$ $\forall n \in \mathbb{Z}, n \neq 0 \Rightarrow \frac{1}{n} \in F \Rightarrow \mathbb{Q} \subset F$.
(3.2) Theorem: the equation $x^{2}=2$ has no root in \mathbb{Q}.

Proof: Let $y \in \mathbb{Q} \ni y^{2}=2$, since $\quad y \in \mathbb{Q} \Rightarrow y=\frac{a}{b} \ni a, b \in \mathbb{Z}, \quad b \neq 0 \quad$ and g.c. $d(a, b)=1$. $y^{2}=2 \Rightarrow \frac{a^{2}}{b^{2}}=2 \Rightarrow a^{2}=2 b^{2} \ldots$ (1) $2 b^{2}$ is even number $\Rightarrow a^{2}$ is even number $\Rightarrow a$ is even number $\Rightarrow a=2 c \Rightarrow a^{2}=4 c^{2}$, by (1) $\Rightarrow 2 b^{2}=4 c^{2} \Rightarrow$ b^{2} is even number $\Rightarrow b$ is even number \Rightarrow g.c. $d(a, b)=2$, but this is contradiction $\Rightarrow y \notin \mathbb{Q}$
(3.3) Theorem: the equation $x^{2}=2$ has an unique positive real root.
(3.4) Corollary: The field of rational numbers is a proper subset of a field of real numbers $(\mathbb{Q} \subset \mathcal{R})$.

Proof: Since $x^{2}=2$ has a root $\sqrt{2} \Rightarrow \sqrt{2} \in \mathcal{R}, x^{2}=2$ has no root in $\mathbb{Q} \Rightarrow$ $\sqrt{2} \notin \mathbb{Q}$.
(3.5) Theorem: The field of rational numbers is an incomplete.

Proof: Let $A=\left\{x \in \mathbb{Q}: x^{2}<2\right\} \Rightarrow A \neq \emptyset$, let $y \in \mathbb{Q}$ with $\sup A=y \Rightarrow y^{2}=2$ or $y^{2}<2$ or $y^{2}>2$.
(1) $y^{2} \neq 2$,
(2) If $y^{2}<2$, put $z=\frac{4+3 y}{3+2 y} \Rightarrow z \in \mathbb{Q}, \quad z^{2}-2=\left(\frac{4+3 y}{3+2 y}\right)^{2}-2=\frac{y^{2}-2}{(3+2 y)^{2}}<0$, $\left(y^{2}<2\right) \Rightarrow z^{2}<2 \Rightarrow z \in A \Rightarrow z-y=\frac{4+3 y}{3+2 y}-y=\frac{2\left(2-y^{2}\right)}{3+2 y}>0 \Rightarrow z>y$, this is contradiction, since y is an upper bound of A.
(3)If $y^{2}>2 \Rightarrow z^{2}>2 \Rightarrow z$ is an upper bound of A, this is contradiction, since y is a smallest upper bound of A.

(3.6) Theorem (Density of Rational Numbers)

If $a, b \in \mathcal{R} \ni a<b \exists r \in \mathbb{Q} \ni a<r<b$.
Proof: (1) $b-a>1$, put $A=\{n \in \mathbb{N}: n>a\}$, since $a \in \mathcal{R} \Rightarrow$ by Archimedes theorem $\Rightarrow \exists m \in \mathbb{N} \ni m>a \Rightarrow m \in A \Rightarrow A \neq \emptyset$. Since \mathbb{N} is a well ordered and $\emptyset \neq A \subset \mathbb{N} \Rightarrow A$ contains a smallest number k, since $k \in A \Rightarrow k>a$, since k is a smallest number in $A \Rightarrow k-1 \notin A \Rightarrow k-1 \leq a \Rightarrow k \leq a+1$, since $b-a>$ $1 \Rightarrow b>a+1 \Rightarrow k<b \Rightarrow a<k<b \Rightarrow k \in \mathbb{Q}$.
(2) If $a<0<b \Rightarrow 0 \in \mathbb{Q}$.
(3) If $a<b<0 \Rightarrow 0<-b<-a$, by (1) $\exists r \in \mathbb{Q} \ni-b<r<-a \Rightarrow a<-r<$ $b \Rightarrow-r \in \mathbb{Q}$.

