2. Irrational and Real numbers

Let \mathbb{Q}^{c} be a complement set of \mathbb{Q} in real number $\mathcal{R} . \mathbb{Q}^{c}=\mathcal{R} \backslash \mathbb{Q}=\{x \in \mathcal{R}: x \notin \mathbb{Q}\}$, \mathbb{Q}^{c} is called the set of irrational numbers, since $\mathbb{Q}^{c} \neq \mathbb{Q} \Rightarrow \sqrt{2} \in \mathbb{Q}^{c}$.
(2.1)Theorem: Let $x \in \mathbb{Q}$ and $y \in \mathbb{Q}^{c}$, then
(1) $x+y \in \mathbb{Q}^{c}$.
(2) $x y \in \mathbb{Q}^{c}$, with $x \neq 0$.

Proof: (1) Assume that $x+y \notin \mathbb{Q}^{c}$, since $x+y \in \mathcal{R} \Rightarrow x+y \in \mathbb{Q}$, since $x \in \mathbb{Q}$ and \mathbb{Q} is a field $\Rightarrow-x \in \mathbb{Q}$, also $(x+y)+(-x) \in \mathbb{Q} \Rightarrow y \in \mathbb{Q}$, but this is a contradiction.
2)Let $x y \notin \mathbb{Q}^{c} \Rightarrow x y \in \mathbb{Q}$, since \mathbb{Q} is a field and $x \in \mathbb{Q}, x \neq 0 \Rightarrow \frac{1}{x}=x^{-1} \in$ \mathbb{Q}, also $\frac{1}{x}(x y) \in \mathbb{Q} \Rightarrow y \in \mathbb{Q}$, but this is a contradiction.
(2.2)Theorem:(Density of irrational numbers)

Let $a, b \in \mathcal{R} \ni a<b \exists s \in \mathbb{Q}^{c} \ni a<s<b \Rightarrow \exists$ an infinity irrational numbers between any two real numbers.

Proof: Since $a<b \Rightarrow a-\sqrt{2}<b-\sqrt{2}$, since $a-\sqrt{2}$ and $b-\sqrt{2}$ are real numbers \Rightarrow by using density of rational numbers $\Rightarrow \exists r \in \mathbb{Q} \ni a-\sqrt{2}<r<b-$ $\sqrt{2} \Rightarrow a<r+\sqrt{2}<b \Rightarrow$ since $r \in \mathbb{Q}$ and $\sqrt{2} \in \mathbb{Q}^{c} \Rightarrow s=r+\sqrt{2} \in \mathbb{Q}^{c} \Rightarrow a<$ $s<b$. Now, since $a<s \Rightarrow \exists s_{1} \in \mathbb{Q} \ni a<s_{1}<s$, by continuing this operation, we get on an infinite number of irrational numbers located between a, b.
(2.3) Definition: Let $a, b \in \mathcal{R} \ni a<b$, then
$(a, b)=\{x \in \mathcal{R}: a<x<b\}$
$[a, b]=\{x \in \mathcal{R}: a \leq x \leq b\}$
$(a, b]=\{x \in \mathcal{R}: a<x \leq b\}$
$[a, b)=\{x \in \mathcal{R}: a \leq x<b\}$
$(-\infty, b)=\{x \in \mathcal{R}:-\infty<x<b\}$
$(-\infty, b]=\{x \in \mathcal{R}:-\infty<x \leq b\}$
$(a, \infty)=\{x \in \mathcal{R}: a<x \leq \infty\}$
$[a, \infty)=\{x \in \mathcal{R}: a \leq x<\infty\}$.
(2.4) Note: According to density of rational and irrational numbers, we can say that every interval of real numbers contains an infinite number of rational and irrational.
(2.5) Definition: (Absolute Value) Let x be a real number, absolute value of x is denoted by $|x|$ and defined as:

$$
|x|=\left\{\begin{array}{r}
x, x \geq 0 \\
-x, x<0
\end{array}\right.
$$

(2.6)Theorem:(Properties of Absolute Value)

1. $|x|=\max \{-x, x\} \forall x \in \mathcal{R} \Rightarrow|x| \geq-x,|x| \geq x$.
2. $|x| \geq 0 \forall x \in \mathcal{R}$.
3. $|x|=0$ iff $x=0$.
4. $|x|=|-x| \forall x \in \mathcal{R}$.
5. $|x-y|=|y-x| \forall x, y \in \mathcal{R}$.
6. $|x y|=|x||y| \forall x, y \in \mathcal{R}$.
7. $\left|\frac{x}{y}\right|=\frac{|x|}{|y|} \forall x, y \in \mathcal{R}, y \neq 0$.
8. $|x+y| \leq|x|+|y| \forall x, y \in \mathcal{R}$.
9. $|x-y| \leq|x|+|y| \forall x, y \in \mathcal{R}$.
10. $||x|-|y|| \leq|x-y| \forall x, y \in \mathcal{R}$.
11. $|x| \leq a$ iff $-a \leq x \leq a$.

Some Important Inequalities

(2.7)Theorem:

1. Cauchy-schwars Inequality.

If $p, q \in \mathcal{R} \ni \frac{1}{p}+\frac{1}{q}=1 \Rightarrow \sum_{i=1}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}\left|y_{i}\right|^{p}\right)^{\frac{1}{p}} \ni x_{i}, y_{i} \in \mathcal{R}$. In particular, if $p=2 \Rightarrow q=2$ and $\sum_{i=1}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}\left|y_{i}\right|^{2}\right)^{\frac{1}{2}}$.
2. Minkokowsks Inequality.

If $p \geq 1 \Rightarrow\left(\sum_{i=1}\left|x_{i}+y_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}\left|y_{i}\right|^{p}\right)^{\frac{1}{p}} \ni x_{i}, y_{i} \in \mathcal{R}$.

Countable Sets.

(2.8) Definition: Let A, B be a sets. We say that A is an equivalent to B and written by $A \sim B$, if there is a bijective function from A into B and written $A \nsim B$, if A is an inequivalent to B.
(2.9)Theorem:

1. If $E=\{2,4,6, \ldots\}$, then $\mathbb{N} \sim E$.
$(f: \mathbb{N} \rightarrow E$ defined by $f(n)=2 n \forall n \in \mathbb{N})$
2. If $O=\{1,3,5, \ldots\}$, then $\mathbb{N} \sim O$.
$(f: \mathbb{N} \rightarrow O$ defined by $f(n)=2 n-1 \forall n \in \mathbb{N})$
3. If $\mathbb{N}^{*}=\{0,1,2,3, \ldots\}$, then $\mathbb{N} \sim \mathbb{N}^{*}$.
$\left(f: \mathbb{N} \rightarrow \mathbb{N}^{*}\right.$ defined by $\left.f(n)=n-1 \forall n \in \mathbb{N}\right)$
4. $\mathbb{Z} \sim \mathbb{N}^{*} .\left(f: \mathbb{Z} \rightarrow \mathbb{N}^{*}\right.$ defined by $f(x)=\left\{\begin{array}{r}-2 x, x \leq 0 \\ 2 x-1, x>0\end{array}\right)$
5. $\mathbb{N} \sim \mathbb{Q}$.

We deduce that $E, O, \mathbb{N}, \mathbb{N}^{*}, \mathbb{Z}, \mathbb{Q}$ are equivalent.
6. If $A=[0,1], I_{1}=(a, b), I_{2}=(a, b], I_{3}=[a, b), I_{4}=[a, b]$ then $A \sim I_{i} \forall i=$ 1,2,3,4.
$\left(f: A \rightarrow I_{i}\right.$ defined by $\left.f(x)=a+(b-a) x \forall x \in A\right)$
7. If $A=(-1,1)$ and $B=(a, b)$, then $A \sim B$.
$\left(f: A \rightarrow B\right.$ defined by $\left.f(x)=\frac{1}{2}(b-a) x+\frac{1}{2}(b+a) \forall x \in A\right)$
8. If $A=(0,1)$ then $A \sim \mathcal{R}^{+}$.
$\left(f: A \rightarrow \mathcal{R}^{+}\right.$defined by $\left.f(x)=\frac{x}{1-x} \forall x \in A\right)$
9. If $A=(-1,1)$ then $A \sim \mathcal{R}$.
$(f: A \rightarrow \mathcal{R}$ defined by $f(x)=\sin x \forall x \in A)$
10.If $A=\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ then $A \sim \mathcal{R}$.
$(f: A \rightarrow \mathcal{R}$ defined by $f(x)=\tan x \forall x \in A)$
11. If $A=(0,1)$ then $A \sim \mathcal{R}$.
12. For all $k \in \mathbb{N}$ put $\mathbb{N}_{k}=\{1,2,3, \ldots, k\}$ then
a. $\mathbb{N}_{k} \nsim \mathbb{N}$.
b. $\mathbb{N}_{k} \sim \mathbb{N}_{1}$ iff $k=1$.
13. $P(X) \nsim X \forall$ set X.
(2.10) Definition: Let A be a set. We say that A is a finite set, if A is a non-empty set or equivalent to \mathbb{N}_{k} for some $k \in \mathbb{N}$. We say that A is an infinite set, if A does not finite set.
(2.11) Definition: If A is a finite set, then $A \sim \mathbb{N}_{k}$ for some $k \in \mathbb{N}$ and then there is a bijective function $f: \mathbb{N}_{k} \rightarrow A$, put $f(i)=a_{i} \forall i \in \mathbb{N}_{k} \Rightarrow a_{i} \in A \forall i=1,2,3, \ldots, k$ and then $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.

(2.12)Theorem:

1. Let A, B be a non-empty sets such that $A \sim B$ then
a. A is a finite iff B is a finite.
b. A is an infinite iff B is an infinite.
2. For all finite set inequivalent to proper subset.
3. Every subset of finite set be a finite.
4. If A is an infinite set and $A \subset B$ then B is an infinite set.
5. If A is an infinite set and B is a set then $A \cup B$ is an infinite.
(2.13) Definition: Let A is a set. We say that A be a countable set, if A be a finite or equivalent to \mathbb{N}. We say that A be an infinite and countable, if A be an infinite and equivalent to \mathbb{N}. We say that A be an uncountable, if A be an infinite and inequivalent to \mathbb{N}.
(2.14)Theorem:
6. Every finite set is a countable.
7. Each of $O, E, \mathbb{N}, \mathbb{N}^{*}, \mathbb{Z}, \mathbb{Q}$ be an infinite and countable set.
8. Each of \mathcal{R} and an intervals of \mathcal{R} are an uncountable sets.
(2.15) Note: If A be an infinite countable set, then $\mathbb{N} \sim A$ and then there is a bijective function $f: \mathbb{N} \rightarrow A, \quad$ put $f(n)=a_{n} \forall n \in \mathbb{N}$ and then $A=\left\{a_{n}: n \in \mathbb{N}\right\}=$ $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$.
(2.16)Theorem:
9. Every countable infinite set be an equivalent to a proper subset.
10. Every infinite set contains a countable infinite subset.
11. The set $\mathbb{N} \times \mathbb{N}$ be a countable.
12. If A, B are a countable sets, then
a. $A \cup B$ be a countable.
b. $A \times B$ be a countable.
