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3. Sequences 

(3.1) Definition: Let 𝑋 be a non-empty set. A function which its domain ℕ and its 

codomain 𝑋 is called a sequence in 𝑋, such that  if 𝑓: ℕ ⟶ 𝑋, ∀𝑛 ∈ ℕ ∃ 𝑥𝑛 ∈ 𝑋 ∋

𝑓(𝑛) = 𝑥𝑛. 

(3.2) Example: If {𝑥𝑛} be a sequence defined in ℛ ∋ 𝑥𝑛 = (−1)𝑛 ∀𝑛 ∈ ℕ ⟹

{𝑥𝑛} = {(−1)𝑛} = {−1,1, −1,1, … } a range is {𝑥𝑛: 𝑛 ∈ ℕ} = {−1,1}. 

(3.3) Definition: Let {𝑥𝑛}, {𝑦𝑛} be a sequences in 𝑋, we say that {𝑦𝑛} is a 

subsequence of {𝑥𝑛}, if there is a function 𝜑: ℕ ⟶ ℕ ∋ 

1. 𝑥𝑛 ∘ 𝜑 = 𝑦𝑛; 

2. ∀𝑛 ∈  ℕ ∃𝑘 ∈ ℕ ∋ 𝜑(𝑚) ≥ 𝑛 ∀𝑚 ≥ 𝑘. 

(3.4) Example: Let 𝑥𝑛 =
1

𝑛
 , 𝜎𝑛 =

1

2𝑛−1
, we note that {𝜎𝑛} is a subsequence of {𝑥𝑛}, 

since if we define 𝜓: ℕ ⟶ ℕ by 𝜓(𝑛) = 2𝑛 − 1, 𝜎𝑛 = 𝑥𝑛 ∘ 𝜓 =
1

2𝑛−1
 and then 

{
1

2
,

1

3
,

1

4
, … } be a subsequence of {

1

𝑛
}. 

(3.5) Note: If {𝑦𝑛} is a subsequence of {𝑥𝑛} and {𝑦𝑛} is a subsequence of  {𝑧𝑛}, then 

{𝑧𝑛} is a subsequence of {𝑥𝑛}. 

(3.6) Definition: If {𝑥𝑛} be a sequence in a partially ordered set 𝑋, we say that {𝑥𝑛} 

be an increasing, if 𝑥𝑛 ≤ 𝑥𝑛+1∀ 𝑛, and we say that {𝑥𝑛} be a decreasing, if 𝑥𝑛+1 ≤

𝑥𝑛∀ 𝑛 and we say that {𝑥𝑛} be a monotone, if {𝑥𝑛} an increasing or a decreasing. 

(3.7) Note: 

• 𝑥𝑛 ↑ =  {𝑥𝑛} be an increasing. 

• 𝑥𝑛 ↑  𝑥 =  {𝑥𝑛} be an increasing and  𝑥𝑛 = sup 𝑥𝑛, 𝑛 ∈ ℕ. 

• 𝑥𝑛 ↓ =  {𝑥𝑛} be a decreasing. 

• 𝑥𝑛 ↓ 𝑥 =  {𝑥𝑛} be a decreasing and  𝑥𝑛 =inf 𝑥𝑛, 𝑛 ∈ ℕ. 

(3.8) Definition: Let {𝑥𝑛} be a sequence in a partially ordered set  𝑋, we say that 

{𝑥𝑛} is a converges to 𝑥 ∈ 𝑋, if there is  {𝑎𝑛}, {𝑏𝑛} in 𝑋, such that  

1. 𝑎𝑛 ≤  𝑥𝑛 ≤ 𝑏𝑛 ∀𝑛; 

2. 𝑎𝑛 ↑  𝑥 and 𝑥𝑛 ↓  𝑥𝑛. 

(3.9) Note: 𝑥 is called a converge point and written 𝑥𝑛 
0
→ 𝑥. 
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(3.10) Definition: Let {𝑥𝑛} be a sequence in a partially ordered set  𝑋, we have 

• Inferior limit = lim inf  𝑥𝑛, where lim inf 𝑥𝑗 , 𝑛 ∈ ℕ, 𝑗 ≥ 𝑛. 

• Superior limit = lim sup  𝑥𝑛, where lim sup 𝑥𝑗 , 𝑛 ∈ ℕ, 𝑗 ≥ 𝑛. 

(3.11) Note: If lim sup  𝑥𝑛 = lim sup  𝑥𝑛 = 𝑥 ⟹  𝑥𝑛 
0
→ 𝑥. 

Real Sequences 

(3.12) Note: We say that {𝑥𝑛} be a real sequence if 𝑋 = ℛ. 

(3.13) Definition: The numerical sequence is a sequence which be subtract output of 

every term from direct previous term is equal to constant called progression basis 

and denoted by 𝑑. 

(3.14) Example: The numerical sequence which its first term 𝑎 and its basis 𝑑 is  

{𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, … , 𝑎 + (𝑛 − 1)𝑑, … }. The general term of a numerical sequence 

{𝑥𝑛} is 𝑥𝑛 = 𝑎 + (𝑛 − 1)𝑑 where 𝑎 represents a first term and 𝑑 represents a basis 

with the partial summation 

 𝑆𝑛 = ∑ 𝑥𝑘
𝑛
𝑘=1 = ∑ (𝑎 + (𝑘 − 1)𝑑)𝑛

𝑘=1 =
𝑛

2
(2𝑎 + (𝑛 − 1)). 

(3.15) Definition: Geometry progression is a sequence which output of division of 

every term on direct previous term is equal to a constant called progression basis and 

denoted by 𝑟. 

(3.16) Example: Geometric progression which its first term 𝑎 and its basis 𝑟 is  

{𝑎, 𝑎𝑟, 𝑎𝑟2, … , 𝑎𝑟𝑛, … }. The general term is 𝑥𝑛 = 𝑎𝑟𝑛−1 where 𝑎 represents a first 

term and 𝑟 represents a basis with the partial summation 

 𝑆𝑛 = ∑ 𝑥𝑘
𝑛
𝑘=1 = ∑ 𝑎𝑟𝑘−1𝑛

𝑘=1 =
𝑎(1−𝑟𝑛)

1−𝑟
, 𝑟 ≠ 1. 

If 𝑟 = 1 ⟹ 𝑆𝑛 = 𝑎 + 𝑎 + ⋯ + 𝑎 = 𝑛𝑎. 

If |𝑟| < 1 ⟹ ∑ 𝑎𝑟𝑛−1 =
𝑎

1−𝑟

∞
𝑘=1  . 

(3.17)Definition: Arithmetic geometric progression is {𝑎, (𝑎 + 𝑑)𝑟, (𝑎 +

2𝑑)𝑟2, … , (𝑎+(𝑛 − 1)𝑑)𝑟𝑛−1, … }. The general term is 𝑥𝑛 = (𝑎 + (𝑛 − 1)𝑑)𝑟𝑛−1 

and the partial summation is 
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 𝑆𝑛 = ∑ 𝑥𝑘
𝑛
𝑘=1 = ∑ (𝑎 + (𝑘 − 1)𝑑)𝑟𝑘−1𝑛

𝑘=1 =
𝑎(1−𝑟𝑛)

1−𝑟
+

𝑟𝑑(1−𝑛𝑟𝑛−1)+(𝑛−1)𝑟𝑛

(1−𝑟)2
, 𝑟 ≠ 1. 

If |𝑟| < 1 ⟹ ∑ (𝑎+(𝑛 − 1)𝑑)𝑟𝑛−1 =
𝑎

1−𝑟

∞
𝑘=1 +

𝑟𝑑

(1−𝑟)2
 . 

(3.18) Definition: Let {𝑥𝑛} be a real sequence, we say that {𝑥𝑛}  

1. Convergent, if ∃ 𝑟 ∈ ℛ ∋  ∀𝜀 > 0 ∃𝑘 ∈ ℤ+ ∋ |𝑥𝑛 − 𝑥| < 𝜀 ∀𝑛 > 𝑘, we say 

that a point 𝑥 is a limit point of {𝑥𝑛} and its written by lim
𝑛→∞

𝑥𝑛 or  𝑥𝑛 → 𝑥 

where 𝑛 → ∞, therefore   𝑥𝑛 → 𝑥 iff |𝑥𝑛 − 𝑥| → 0. 

2. Divergent, if {𝑥𝑛} does not convergent. 

3. Cauchy sequence, if ∀𝜀 > 0∃ 𝑘 ∈ ℤ+ ∋ |𝑥𝑛 − 𝑥𝑚| < 𝜀 ∀𝑛, 𝑚 > 𝑘 and then 

{𝑥𝑛} is a Cauchy sequence iff |𝑥𝑛 − 𝑥𝑚| → 0 where 𝑛, 𝑚 → ∞. 

(3.19) Examples: 

1. Show that {𝑥𝑛} → 𝑥. 

Solution: since ∀𝜀 > 0 ⟹ |𝑥𝑛 − 𝑥| = 0 < 𝜀. 

2. Show that {
1

𝑛
} → 0. 

Solution: since ∀𝜀 > 0 (by Archimedes property), ∃𝑘 ∈ ℤ+ ∋
1

𝑘
< 𝜀 ⟹ ∀𝑛 > 𝑘 ⟹

1

𝑛
<

1

𝑘
⟹

1

𝑛
< 𝜀, so |

1

𝑛
− 0| =

1

𝑛
< 𝜀 ∀𝑛 > 𝑘. 

3. Show that {𝑛} be a divergent. 

Solution: since if we assume that {𝑛} be a convergent ⟹ ∃𝑥 ∈ ℛ ∋   𝑥𝑛 → 𝑥 and 

then ∀𝜀 > 0 ⟹ (𝑥 − 𝜀, 𝑥 + 𝜀) contains of terms {𝑛}, since 𝑥 + 𝜀 ∈ ℛ ⟹ (by 

Archimedes property) ⟹ ∃𝑘 ∈ ℤ+ ∋ 𝑥 + 𝜀 < 𝑘, since 𝑥 + 𝜀 < 𝑘 < 𝑘 + 1 < ⋯ ⟹

𝑘, 𝑘 + 1, 𝑘 + 2 ∉ (𝑥 − 𝜀, 𝑥 + 𝜀), this means (𝑥 − 𝜀, 𝑥 + 𝜀) does not contain on 

terms of {𝑛}, but this is contradiction. 

4. Show that {𝑥𝑛} such that 𝑥𝑛 = {
𝑛, 𝑛 ≤ 106

1, 𝑛 > 106 converges to one . 

Solution: since ∀𝜀 > 0, take 𝑘 > 106 ∀𝑛 > 𝑘 ⟹ 𝑥𝑛 = 1 and then |𝑥𝑛 − 1| = 0 <

𝜀 ⟹ 𝑥𝑛 → 1. 

5. Show that {(−1)𝑛} be a divergent. 
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Solution: since if we suppose that {(−1)𝑛} be a convergent ⟹ ∃𝑥 ∈ ℛ ∋ 𝑥𝑛 =

(−1)𝑛 → 𝑥, let 𝜀 > 0 ∃𝑘 ∈ ℤ+ ∋ |𝑥𝑛 − 𝑥| < 𝜀 ∀𝑛 > 𝑘 ⟹ |(−1)𝑛 − 𝑥| < 𝜀 ∀𝑛 >

𝑘 ⟹ 𝑥 − 𝜀 < (−1)𝑛 < 𝑥 + 𝜀 ∀𝑛 > 𝑘 ⟹ (−1)𝑛 ∈ (𝑥 − 𝜀, 𝑥 + 𝜀)∀𝑛 > 𝑘.  

Let 𝑥 = 1, take 𝜀 =
1

4
⟹

1

4
𝜀 > 0 ⟹ (−1)𝑛 ∈ (1 −

1

4
𝜀, 1 +

1

4
𝜀)∀𝑛 is an even, 

(−1)𝑛 ∉ (1 −
1

4
𝜀, 1 +

1

4
𝜀)∀𝑛 is an odd,  this means that  (1 −

1

4
𝜀, 1 +

1

4
𝜀) does not 

contain all terms of {(−1)𝑛} and then {(−1)𝑛} does not converge to 1. 

By same way we prove that {(−1)𝑛} does not converge to −1. 

Now, let 𝑥 ≠ 1, 𝑥 ≠ −1, let 𝑎1 = |1 − 𝑥|, 𝑎2 = |−1 − 𝑥|, take 𝜀 ∋ 𝜀 < 𝑎1, 𝜀 < 𝑎2, 

we deduce that (𝑥 − 𝜀, 𝑥 + 𝜀) does not contain on any term of{(−1)𝑛} ⟹ (−1)𝑛  

does not converge to 𝑥. 

(3.20) Theorem: 

1. If a real sequence is a convergent, then a converge point is a unique. 

2. Every convergent sequence be Cauchy sequence. 

Proof: (1) Let   𝑥𝑛 → 𝑥,   𝑥𝑛 → 𝑦 ∋ 𝑥 ≠ 𝑦 and let |𝑥 − 𝑦| = 𝜀 ⟹ 𝜀 > 0, since   𝑥𝑛 →

𝑥 ⟹ ∃𝑘1 ∈ ℤ+ ∋ |𝑥𝑛 − 𝑥| <
𝜀

2
∀𝑛 > 𝑘1,   𝑥𝑛 → 𝑦 ⟹ ∃𝑘2 ∈ ℤ+ ∋ |𝑥𝑛 − 𝑦| <

𝜀

2
∀𝑛 > 𝑘2 put 𝑘 =max {𝑘1, 𝑘2} ⟹ |𝑥𝑛 − 𝑥| <

𝜀

2
, |𝑥𝑛 − 𝑦| <

𝜀

2
 ∀𝑛 > 𝑘 ⟹ 𝜀 =

|𝑥 − 𝑦| = |(𝑥𝑛 − 𝑥) + (𝑥𝑛 − 𝑦| ≤ |𝑥𝑛 − 𝑥| + |𝑥𝑛 − 𝑦| <
𝜀

2
+

𝜀

2
= 𝜀, but this is  a 

contradiction ⟹ 𝑥 = 𝑦. 

(2) let   {𝑥𝑛} be a convergent sequence ⟹ ∃𝑥 ∈ 𝑋 ∋   𝑥𝑛 → 𝑥, let 𝜀 > 0, since   𝑥𝑛 →

𝑥 ⟹ ∃𝑘 ∈ ℤ+ ∋ |𝑥𝑛 − 𝑥| <
𝜀

2
∀𝑛 > 𝑘, if 𝑛, 𝑚 ≥ 𝑘 ⟹ |𝑥𝑛 − 𝑥𝑚| = |(𝑥𝑛 − 𝑥) +

(𝑥 − 𝑥𝑚| ≤ |𝑥𝑛 − 𝑥| + |𝑥𝑚 − 𝑥| <
𝜀

2
+

𝜀

2
= 𝜀 and then   {𝑥𝑛} be Cauchy sequence. 

(3.21) Definition: If   {𝑥𝑛} be a real sequence, we say that   {𝑥𝑛} is  

1. Bounded above, if ∃𝑀1 ∈ ℛ ∋ 𝑥𝑛 ≤ 𝑀1∀𝑛; 

2. Bounded below, if ∃𝑀2 ∈ ℛ ∋ 𝑀2 ≤ 𝑥𝑛∀𝑛; 

3. Bounded, if ∃𝑀 ∈ ℛ ∋ |𝑥𝑛| ≤ 𝑀 ∀𝑛. 

 

(3.22) Examples: 
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1. {
1

𝑛
} is a bounded, since |

1

𝑛
| < 2 ∀𝑛. 

2. {
𝑛

𝑛+1
} is a bounded, since |

𝑛

𝑛+1
| < 1 ∀𝑛. 

3. {(−1)𝑛} is a bounded, since |(−1)𝑛| ≤ 1 ∀𝑛. 

4. {𝑛} does not bounded, since if we suppose that {𝑛} is a bounded ⟹ ∃𝑀 ∈

ℛ+ ∋ |𝑛| ≤ 𝑀  ∀𝑛, but this is a contradiction (Archimedes property) since 

𝑛 ≥ 𝑀, 𝑛 ∈ ℤ+. 

5. {3𝑛} does not bounded. 

(3.23) Theorem: Every Cauchy sequence be a bounded, and then every convergent 

sequences be a bounded. 

Proof: Let  {𝑥𝑛} be Cauchy sequence, we must prove that {𝑥𝑛} is a bounded. Let 𝜀 =

1, since {𝑥𝑛} is a Cauchy sequence ⟹ ∃𝑘 ∈ ℤ+ ∋ |𝑥𝑛 − 𝑥𝑚| < 1∀𝑛, 𝑚 > 𝑘, let 

𝑚 = 𝑘 + 1 ⟹ |𝑥𝑛 − 𝑥𝑚| < 1∀𝑛 > 𝑘, since |𝑥𝑛| − |𝑥𝑘+1| ≤ |𝑥𝑛 − 𝑥𝑘+1| ⟹ |𝑥𝑛| −

|𝑥𝑘+1| < 1  ∀𝑛 > 𝑘 ⟹ |𝑥𝑛| < 1 + |𝑥𝑘+1| ∀𝑛 > 𝑘, put 𝑀 = 

max{|𝑥1|, |𝑥2|, … , |𝑥𝑘|, |𝑥𝑘+1| + 1}, and then {𝑥𝑛} is a bounded. 

(3.24) Note: If a real sequence is a bounded, then its not a necessary be a convergent, 

for example  {(−1)𝑛} is a bounded, but does not convergent. 

(3.25) Definition: Let {𝑥𝑛} be a real sequence. We said that {𝑥𝑛} 

1. Non-decreasing, if 𝑥𝑛 ≤ 𝑥𝑛+1 ∀𝑛. 

2. Increasing, if 𝑥𝑛 < 𝑥𝑛+1 ∀𝑛. 

3. Non-increasing, if  𝑥𝑛+1 ≤ 𝑥𝑛 ∀𝑛. 

4. Decreasing, if 𝑥𝑛+1 < 𝑥𝑛 ∀𝑛. 

(3.26) Note: We said that {𝑥𝑛} is a monotonic, if its be satisfy any one of above. 

(3.26) Examples: 

1. {
1

√2
} is a decreasing ⟹  a monotonic. 

2. {
𝑛

𝑛+1
} is an increasing ⟹ a monotonic. 

3. {(−1)𝑛} does not a monotonic. 

(3.27) Theorem: 

1. Every bounded real sequence and monotonic be a convergent. 

2. Every bounded real sequence contains on a convergent partial sequence. 
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(3.28) Theorem: (Some special sequences) 

1. If 𝑝 > 0 ⟹ 𝑥𝑛 =
1

𝑛𝑝
→ 0. 

2. If 𝑝 > 0 ⟹ 𝑥𝑛 = 𝑛𝑝 → 1. 

3. 𝑥𝑛 = √𝑛
𝑛

→ 1. 

4. If |𝑎| < 1 ⟹ 𝑥𝑛 = 𝑎𝑛  → 0. 

Proof: (1) let  𝜀 > 0, take 𝑘 > (
1

𝜀
)1/𝑝 ∀𝑛 > 𝑘 ⟹ 𝑛 > (

1

𝜀
)1/𝑝 ⟹

1

𝑛𝑝
< 𝜀 ⟹

|
1

𝑛𝑝
− 0| < 𝜀. 

(2) a. if 𝑝 > 1 ⟹ √𝑝𝑛 > 1, put 𝑦𝑛 = √𝑝𝑛 − 1 ⟹ 𝑦𝑛 > 0 ⟹ √𝑝𝑛 = 1 + 𝑦𝑛 ⟹ (1 +

𝑦𝑛)𝑛 = 1 + 𝑛𝑦𝑛 +
𝑛(𝑛−1)

2
𝑦𝑛

2 + ⋯ + 𝑦𝑛
𝑛, since 𝑦𝑛 > 0 ∀𝑛 ⟹ 𝑝 ≥ 1 + 𝑛𝑦𝑛 ⟹

𝑝−1

𝑛
≥ 𝑦𝑛 ⟹ 0 < 𝑦𝑛 <

𝑝−1

𝑛
⟹ 𝑦𝑛 → 0 ⟹ 𝑥𝑛 → 0. 

b. if 𝑝 = 1 ⟹ √𝑝𝑛 = 1 ∀𝑛 ⟹ √𝑝𝑛 → 1. 

c. if 0 < 𝑝 < 1 ⟹
1

𝑝
> 1, put 𝜆 =

1

𝑝
⟹ √𝑝𝑛 =

1

√𝜆
𝑛  and √𝜆

𝑛
→ 1, since 𝜆 > 0 ⟹

√𝑝𝑛 → 1. 

(3) let 𝑦𝑛 = √𝑛
𝑛

− 1, since √𝑛
𝑛

> 1∀𝑛 ⟹ 𝑦𝑛 > 0 ∀𝑛 ⟹ √𝑛
𝑛

= 1 + 𝑦𝑛 ⟹ 𝑛 = (1 +

𝑦𝑛)𝑛 = 1 + 𝑛𝑦𝑛 +
𝑛(𝑛−1)

2
𝑦𝑛

2 + ⋯ + 𝑦𝑛
𝑛 ⟹ 𝑛 >

𝑛(𝑛−1)

2
𝑦𝑛

2 ⟹ 𝑦𝑛
2 <

2

𝑛−1
⟹

|𝑦𝑛| < √
2

𝑛−1
⟹ 𝑦𝑛 < √

2

𝑛−1
 ∀𝑛 ≥ 2 ⟹ 𝑦𝑛 → 0 ⟹ 𝑥𝑛 → 0. 

(4) ∀𝜀 > 0 ∃𝑘 ∈ ℤ+ ∋ |𝑥𝑛| < 𝜀 ∀𝑛 > 𝑘. 

a. if 𝑎 = 0, 𝑘 = 0. 

b. if 𝑎 ≠ 0 ⟹
1

|𝑎|
 exists, put 𝑏 = |𝑎| − 1 ⟹

1

|𝑎|
= 1 + 𝑏, since |𝑎| < 1 ⟹

1

|𝑎|
>

1 ⟹ 𝑏 > 0, |𝑎𝑛| = |𝑎|𝑛 =
1

(1+𝑏)𝑛
  , (1 + 𝑏)𝑛 = 1 + 𝑛𝑏 + ⋯ + 𝑏𝑛 > 𝑛𝑏 ⟹

1

(1+𝑏)𝑛
<

1

𝑛𝑏
⟹ |𝑎𝑛| <

1

𝑛𝑏
 ∀𝑛,  put 𝑘 >

1

𝜀𝑏
∀𝑛 > 𝑘 ⟹ 𝑛 >

1

𝜀𝑏
⟹

1

𝑛𝑏
< 𝜀 ⟹ |𝑎𝑛| <

𝜀 ⟹ 𝑥𝑛 = 𝑎𝑛 → 0. 

 

(3.29) Theorem: Let {𝑥𝑛}, {𝑦𝑛} be a real sequences such that 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦, 

then  
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1. 𝑥𝑛 + 𝑦𝑛 → 𝑥 + 𝑦. 

2. 𝜆𝑥𝑛 → 𝜆𝑥 ∀𝜆 ∈ ℛ. 

3. 𝜆 + 𝑥𝑛 → 𝜆 + 𝑥 ∀𝜆 ∈ ℛ. 

4. 𝑥𝑛𝑦𝑛 → 𝑥𝑦. 

5. 
𝑥𝑛

𝑦𝑛
→

𝑥

𝑦
 where 𝑦𝑛 ≠ 0  ∀𝑛. 

6. 
1

𝑦𝑛
→

1

𝑦
 where 𝑦𝑛 ≠ 0  ∀𝑛. 

7. |𝑥𝑛| → |𝑥|. 

8. |𝑥𝑛 − 𝑦𝑛| → |𝑥 − 𝑦|. 

9. If 𝑥𝑛 ≤ 𝑦𝑛 ⟹ 𝑥 ≤ 𝑦  ∀𝑛. 

Proof: (1) let 𝜀 > 0, since 𝑥𝑛 → 𝑥 ⟹ ∃𝑘1 ∈ ℤ+ ∋ |𝑥𝑛 − 𝑥| <
𝜀

2
∀𝑛 > 𝑘1, since 𝑦𝑛 →

𝑦 ⟹ ∃𝑘2 ∈ ℤ+ ∋ |𝑦𝑛 − 𝑦| <
𝜀

2
∀𝑛 > 𝑘2, put 𝑘 = max {𝑘1, 𝑘2} ⟹ |𝑥𝑛 − 𝑥| <

𝜀

2
, |𝑦𝑛 − 𝑦| <

𝜀

2
∀𝑛 > 𝑘, |(𝑥𝑛 − 𝑥) + (𝑥𝑛 − 𝑦)| ≤ |𝑥𝑛 − 𝑥| + |𝑥𝑛 − 𝑥| <

𝜀

2
+

𝜀

2
= 𝜀, 

so 𝑥𝑛 + 𝑦𝑛 → 𝑥 + 𝑦. 

(3.30) Theorem: 

1. For all real number, there is Cauchy sequence of rational numbers converge of 

them. 

2. For all real number, there is Cauchy sequence of irrational numbers converge 

of them. 

3. There is Cauchy sequence of rational numbers does not converge to any 

rational number. 

 Proof: (1) let 𝑟 ∈ ℛ, since 𝑟 −
1

𝑛
< 𝑟 < 𝑟 +

1

𝑛
∀𝑛 ∈ ℤ+ ⟹ (by density of rational 

numbers) ⟹ ∀𝑛 ∈ ℤ+∃𝑟𝑛 ∈ ℚ ∋ |𝑟𝑛 − 𝑟| <
1

𝑛
  ∀𝑛 ∈ ℤ+ ⟹ 𝑟 −

1

𝑛
  < 𝑟𝑛 < 𝑟 +

1

𝑛
∀𝑛 ∈ ℤ+, now, we must prove that 𝑟𝑛 → 𝑟, let 𝜀 > 0 ⟹ (by Archimedes property) 

⟹ ∃𝑘 ∈ ℤ+ ∋
1

𝑘
<  𝜀 ∀𝑛 > 𝑘 ⟹

1

𝑛
<

1

𝑘
⟹ |𝑟𝑛 − 𝑟| <

1

𝑛
<

1

𝑘
< 𝜀 ⟹ 𝑟𝑛 → 𝑟. 

(3.31) Definition: We said that a space 𝑋 is a complete, if every Cauchy sequence in  

𝑋 be a convergent in 𝑋. 

(3.32) Note: ℚ is an incomplete, while ℛ is a complete. 

 

 


