4. Infinite Series

Let $\left\{a_{n}\right\}$ a real sequence and $S_{1}=a_{1}, S_{2}=a_{1}+a_{2}, S_{3}=a_{1}+a_{2}+a_{3}, \ldots, S_{n}=$ $a_{1}+a_{2}+\cdots+a_{n}$. A sequence of partial sums $\left\{S_{n}\right\}$ is called an infinite series and its denoted by $\sum_{n=1}^{\infty} a_{n}$. We say that $a_{1}, a_{2}, a_{3}, \ldots$ be a terms of infinite series $\sum_{n=1}^{\infty} a_{n}$ and called of numbers $S_{1}, S_{2}, S_{3}, \ldots$ be a partial sums of infinite series $\sum_{n=1}^{\infty} a_{n}$.
(4.1) Definition: Let $\left\{a_{n}\right\}$ be a real sequence and $S_{n}=\sum_{k=1}^{n} a_{k}$, we called of $\left\{S_{n}\right\}$ is an infinite series and denoted by $\sum_{n=1}^{\infty} a_{n}$.
(4.2) Definition: We say that $\sum_{n=1}^{\infty} a_{n}$ is a convergent, if $\left\{S_{n}\right\}$ is a converge to S, this means $\left(\lim _{n \rightarrow \infty} S_{n}=S\right), S$ is called infinite series sum $\sum_{n=1}^{\infty} a_{n}$, this means $S=$ $\sum_{n=1}^{\infty} a_{n}$. If $\left\{S_{n}\right\}$ is a divergent (i.e. $\lim _{n \rightarrow \infty} S_{n}$ does not exist).
(4.3) Example: Does $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ convergent ?
$a_{n}=\frac{1}{n(n+1)}, S_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} \frac{1}{k(k+1)}=\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right)=1-\frac{1}{n+1} \Rightarrow S_{n} \rightarrow$ $1 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$ and then $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is a convergent.
(4.4) Theorem: (some special infinite series)

1. $\sum_{n=1}^{\infty} a r^{n-1} \ni a \neq 0, r \neq 0$ is called geometric series and r is a basis of series. $\sum_{n=1}^{\infty} a r^{n-1}$ is a convergent, if $|r|<1, S=\frac{a}{1-r}$ and otherwise its be a divergent.
2. $\sum_{n=1}^{\infty} \frac{1}{n}$ is called a harmonic series and it's a divergent.

Proof: (1) if $r=1 \Rightarrow S_{n}=a+a+\cdots+a=n a \Rightarrow\{n a\}$ does not convergent, if it's a convergent, so it's a bounded, this means $\exists M \in \mathcal{R}^{+} \ni|n a| \leq M \forall n \in \mathbb{Z}^{+} \Rightarrow$ $n|a| \leq M \Rightarrow n \leq \frac{M}{|a|} \forall n \in \mathbb{Z}^{+}$, but this a contradiction (Archimedes property) \Rightarrow $\sum_{n=1}^{\infty} a r^{n-1}$ is a divergent.
(2) $a_{n}=\frac{1}{n}, S_{n}=\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}, S_{2 n}=\sum_{k=1}^{2 n} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+$ $\frac{1}{n+1}+\cdots+\frac{1}{2 n} \Rightarrow S_{2 n}-S_{n} \geq \frac{1}{2} \forall n \in \mathbb{Z}^{+}$, i.e. if $m=2 n, n \geq 1 \Rightarrow\left|S_{m}-S_{n}\right| \geq$ $\frac{1}{2} \forall n, m \in \mathbb{Z}^{+} \Rightarrow\left\{S_{n}\right\}$ does not Cauchy sequence $\Rightarrow\left\{S_{n}\right\}$ does not convergent \Rightarrow $\sum_{n=1}^{\infty} \frac{1}{n}$ is a divergent.
(4.5) Examples:

1. $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$ is a convergent, since $r=\frac{1}{2}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=2$.
2. $\sum_{n=1}^{\infty} 4^{n-1}$ is a divergent, since $r=4$.
3. $\sum_{n=1}^{\infty}\left(-\frac{1}{6}\right)^{n-1}$ is a convergent, since $r=-\frac{1}{6}$ and $\sum_{n=1}^{\infty}\left(-\frac{1}{6}\right)^{n-1}=\frac{6}{7}$.
4. $0.1+0.01+0.001+\cdots$ is a convergent, since $0.1+0.01+0.001+\cdots=$ $\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{3}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{10^{n}}=\sum_{n=1}^{\infty} \frac{1}{10} \cdot \frac{1}{10^{n-1}} \Rightarrow a=\frac{1}{10}, r=\frac{1}{10} \Rightarrow$ $\sum_{n=1}^{\infty} \frac{1}{10^{n}}=\frac{1}{9}$.
5. The number $0.16666 \ldots$ is a convergent, let $0.16=0.16666 \ldots=0.1+$ $0.06+0.006+0.0006+\cdots=0.1+\sum_{n=1}^{\infty} \frac{6}{10^{n+1}}=\sum_{n=1}^{\infty} \frac{6}{100} \cdot \frac{1}{10^{n-1}} \Rightarrow a=$ $\frac{6}{100}, r=\frac{1}{10} \Rightarrow 0.16=0.1+\sum_{n=1}^{\infty} \frac{1}{10^{n+1}}=\frac{1}{15}$.
(4.6) Theorem: Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be a convergent infinite series, then
6. $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ is a convergent and $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$.
7. $\sum_{n=1}^{\infty} \lambda a_{n}$ is a convergent $\forall \lambda \in \mathcal{R}$ and $\sum_{n=1}^{\infty} \lambda a_{n}=\lambda \sum_{n=1}^{\infty} a_{n}$.

Proof: (1) Let $S_{n}=\sum_{k=1}^{\infty} a_{k}$ and $T_{n}=\sum_{k=1}^{\infty} b_{k}$, since $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be a convergent infinite series $\Rightarrow \sum_{n=1}^{\infty} a_{n}=S, \sum_{n=1}^{\infty} b_{n}=T \Rightarrow\left\{S_{n}\right\},\left\{T_{n}\right\}$ be a convergent $\Rightarrow S_{n} \rightarrow S, T_{n} \rightarrow T \Rightarrow S_{n}+T_{n} \rightarrow S+T, S_{n}+T_{n}=\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right) \rightarrow$ $S+T \Rightarrow \sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=S+T=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$.
(4.7) Corollary: If $\sum_{n=1}^{\infty} a_{n}$ is a convergent and $\sum_{n=1}^{\infty} b_{n}$ is a divergent, then

1. $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ is a divergent.
2. $\sum_{n=1}^{\infty} \lambda b_{n}$ is a divergent $\forall \lambda \neq 0$.

Proof: (1) Suppose that $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ is a convergent, since $\sum_{n=1}^{\infty} a_{n}$ is a convergent $\Rightarrow-\sum_{n=1}^{\infty} a_{n}$ is a convergent.

Since $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty}\left(a_{n}+b_{n}-a_{n}\right)$ is a convergent, but this is a contradiction.
(4.8) Example: $\sum_{n=1}^{\infty} \frac{1}{n}$ and $-\sum_{n=1}^{\infty} \frac{1}{n}$ are a divergent, but $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n}\right)=\sum_{n=1}^{\infty} 0$ is a convergent.

