8. Metric Topologies

(8.1) Definition: Let (X, d) be a metric space, $x_{0} \in X$ and let $r \in \mathcal{R}^{+}$. The set $\{x \in$ $\left.X: d\left(x, x_{0}\right)<r\right\}$ is called an open ball in X, such x_{0} is a center of a ball and r is radius of a ball and denoted by $B_{r}\left(x_{0}\right)=\left\{x \in X: d\left(x, x_{0}\right)<r\right\}$.
(8.2) Definition: A closed ball with center x_{0} and radius r is denoted by $\overline{B_{r}}\left(x_{0}\right)=$ $\left\{x \in X: d\left(x, x_{0}\right) \leq r\right\}$.
(8.3) Example: In usual metric space, we have

1. Every open ball contains an open interval.
2. Every closed ball contains a closed interval.

Solution: (1) $d(x, y)=|x-y| \forall x, y \in \mathcal{R}$.
Let $x_{0} \in \mathcal{R}, r>0$
$B_{r}\left(x_{0}\right)=\left\{x \in X: d\left(x, x_{0}\right)<r\right\}=\left\{x \in X:\left|x-x_{0}\right|<r\right\}$
$=\left\{x \in X:-r<x-x_{0}<r\right\}=\left\{x \in X: x_{0}-r<x<x_{0}+r\right\}=\left(x_{0}-r, x_{0}+r\right)$.
(8.4) Example: Let $X=[0,1]$ and a function $d: X \times X \rightarrow \mathcal{R}$ defined by $d(x, y)=$ $|x-y| \forall x, y \in X$. Discuss $B_{1}\left(\frac{1}{2}\right)$ and $B_{\frac{1}{4}}(0)$.

Solution: $B_{1}\left(\frac{1}{2}\right)=\left\{x \in X: d\left(x, \frac{1}{2}\right)<1\right\}=\left\{x \in X:\left|x-\frac{1}{2}\right|<1\right\}$
$=\left\{x \in X: \frac{-1}{2}<x<\frac{3}{2}\right\}=\{x \in X: 0 \leq x \leq 1\}=X$.
(8.5) Example: Discuss an open balls with the center (0,0) and radius 1 for following metric functions:

1. $d_{1}(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}} \quad \forall x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathcal{R}^{2}$.
2. $d_{2}(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right| \quad \forall x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathcal{R}^{2}$.
3. $d_{3}(x, y)=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\} \quad \forall x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathcal{R}^{2}$.

Solution: (1) $r=1, \quad\left(x_{0}, y_{0}\right)=(0,0)$
$B_{r}\left(x_{0}\right)=\left\{x \in X: d\left(x, x_{0}\right)<r\right\}=\left\{\left(x_{1}, x_{2}\right) \in \mathcal{R}^{2}: x_{1}{ }^{2}+x_{2}{ }^{2}<1\right\}$.
(8.6) Example: Let (X, d) be discrete metric space and let $x_{0} \in X, r \in \mathcal{R}^{+}$, then

1. If $r>1$, then $B_{r}\left(x_{0}\right)=X$.
2. If $r \leq 1$, then $B_{r}\left(x_{0}\right)=\left\{x_{0}\right\}$.

Solution: (1) Let $x \in X$, since $d\left(x, x_{0}\right)=\left\{\begin{array}{l}0, x=x_{0} \\ 1, x \neq x_{0}\end{array}\right.$
$\Rightarrow d\left(x, x_{0}\right)<r \Rightarrow x \in B_{r}\left(x_{0}\right) \Rightarrow X \subseteq B_{r}\left(x_{0}\right)$, but $B_{r}\left(x_{0}\right) \subseteq X \Rightarrow B_{r}\left(x_{0}\right)=X$.
(8.7) Definition: Let (X, d) be a metric space and $A \subseteq X$. We said that A is an open set in X, if $\forall x \in X \exists r>0 \ni B_{r}(x) \subset A$.
(8.8) Definition: We say that A is a closed set in X, if A^{c} is an open set in X.
(8.9)Theorem: In any metric space, we have

1. Every open ball is an open set.
2. Every closed ball is a closed set.

Proof: (1) Let (X, d) a metric space and $x_{0} \in X, r>0$.
We must prove that $B_{r}\left(x_{0}\right)$ is an open set.
Let $x \in B_{r}\left(x_{0}\right) \Rightarrow d\left(x, x_{0}\right)<r \Rightarrow r-d\left(x, x_{0}\right)>0$
Put $r-d\left(x, x_{0}\right)=r_{1} \Rightarrow r_{1}>0$, we must prove $B_{r_{1}}\left(x_{0}\right) \subseteq B_{r}\left(x_{0}\right)$.
Let $y \in B_{r_{1}}\left(x_{0}\right) \Rightarrow d\left(y, x_{0}\right)<r_{1} \Rightarrow d\left(y, x_{0}\right)<r-d\left(y, x_{0}\right)<r$
$\Rightarrow d(y, x)+d\left(y, x_{0}\right)<r$
Since $d\left(y, x_{0}\right) \leq d(y, x)+d\left(x, x_{0}\right) \Rightarrow d\left(y, x_{0}\right)<r \Rightarrow y \in B_{r}\left(x_{0}\right)$
$\Rightarrow B_{r}\left(x_{0}\right)$ is an open set.
(8.10) Corollary: In usual metric space (\mathcal{R}, d_{u}), we have

1. Every an open interval is an open set.
2. Every a closed interval is a closed set.
(8.11) Theorem: Let (X, d) is a metric space and $A \subseteq X$, then A is an open iff A equals to union of an open balls.

Proof: If $A=\emptyset$, the proof will end.
If $A \neq \emptyset$, let A is an open set in X.
$\Rightarrow \forall x \in A \exists r_{x}>0 \ni B_{r_{x}}(x) \subseteq A \Rightarrow A \subseteq \bigcup_{x \in A} B_{r_{x}}(x) \subset A$
$\Rightarrow A=\bigcup_{x \in A} B_{r_{x}}(x) \Rightarrow A$ equals to union of an open balls.
$\Longleftarrow)$ let A equals to union of an open balls.
Since each open ball is an open set $\Rightarrow A$ equals to union of an open set.
$\Rightarrow A$ is an open set.
(8.12) Example: Prove that, every subset of discrete metric space is an open and closed.

Solution: Let (X, d) is discrete metric space and $A \subseteq X$. If $A=\emptyset$, the proof will end.

If $A \neq \emptyset$, let $x \in A$, take $r=\frac{1}{2}$.
$B_{r}(x)=\left\{y \in X: d(y, x)<\frac{1}{2}\right\}=\{y \in X: d(y, x)=0\}=\{y \in X: y=x\}=\{x\} \subset A$
$\Rightarrow A$ is an open set.
Let $B \subseteq X \Rightarrow B^{c} \subseteq X \Rightarrow B^{c}$ is an open set in $X \Rightarrow B$ is a closed set.
(8.13)Theorem: Let (X, d) be a metric space.

1. Each of \emptyset, X be an open sets in X.
2. If $A_{1}, A_{2}, \ldots, A_{n}$ be an open sets in X, then $\bigcap_{i=1}^{n} A_{i}$ be an open set in X.
3. If $A_{\lambda} \forall \lambda \in \Lambda$ is an open set in X, then $U_{\lambda \in \Lambda} A_{\lambda}$ be an open set in X.

Proof: (1) suppose that \emptyset be a non- open set
$\Rightarrow \exists x \in \emptyset \ni B_{r}(x) \subseteq \emptyset \forall r>0$, this is impossible, since \emptyset does not contain on element $\Rightarrow \emptyset$ is an open set.

Since $B_{r}(x) \subseteq X \forall x \in X, r>0 \Longrightarrow X$ be an open set.
(8.14) Example: Let $\left(\mathcal{R}, d_{u}\right)$ be usual metric space, and let $A_{n}=\left(\frac{-1}{n}, \frac{1}{n}\right) \forall n \in \mathbb{Z}^{+}$, we note that A_{n} be an open set $\forall n \in \mathbb{Z}^{+}$and $\bigcap_{i=1}^{\infty} A_{n}=\{0\}$ be a non- open set.
(8.15)Theorem: Let (X, d) be a metric space.

1. Each of \emptyset, X be a closed sets in X.
2. If $A_{1}, A_{2}, \ldots, A_{n}$ be a closed sets in X, then $\bigcup_{i=1}^{n} A_{i}$ be a closed set in X.
3. If $A_{\lambda} \forall \lambda \in \Lambda$ is a closed set in X, then $\bigcap_{\lambda \in \Lambda} A_{\lambda}$ be a closed set in X.

Proof: (1) since $\emptyset^{c}=X$ and X is an open set in $X \Rightarrow \emptyset^{c}$ is an open set in X
$\Rightarrow \varnothing$ is a closed set in X
Since $X^{c}=\emptyset$ and \emptyset is an open set in $X \Rightarrow X^{c}$ is an open set in X
$\Rightarrow X$ is a closed set in X.
(8.16) Example: Let $\left(\mathcal{R}, d_{u}\right)$ be usual metric space, and let $A_{n}=\left[\frac{1}{n}, 1\right] \forall n \in \mathbb{Z}^{+}$, we note that A_{n} be a closed set $\forall n \in \mathbb{Z}^{+}$and $\bigcup_{i=1}^{\infty} A_{n}=(0,1]$ be a non- closed set.
(8.17) Notes:

1. The point $x_{0} \in A^{\prime} \Leftrightarrow \forall$ open ball with center x_{0} contains on infinite number of points in A.
2. $\bar{A}=\{x \in X: d(x, A)=0\}$.
(8.18)Theorem: In any metric space (X, d) be every single set is a closed, \Rightarrow every finite set be a closed.
