13. Uniform Continuity

(13.1)Definition: If $\left(X, d_{1}\right),\left(Y, d_{2}\right)$ be metric spaces. We said that a function $f: X \rightarrow$ Y is an uniform continuous on X, if $\forall \varepsilon>0 \exists \delta>0 \ni \forall x, y \in X$, then $d_{1}(x, y)<$ $\delta \Rightarrow d_{2}(f(x), f(y))<\varepsilon$.
(13.2)Theorem: Every uniform continuous is continuous.

Proof: let $\left(X, d_{1}\right),\left(Y, d_{2}\right)$ are metric spaces and let a function $f: X \rightarrow Y$ is an uniform continuous. Let $x_{0} \in X$, we must prove that f be continuous at x_{0}.

Let $\varepsilon>0$, since f is an uniform continuous $\Rightarrow \exists \delta>0 \ni \forall x, y \in X$, then
$d_{1}(x, y)<\delta \Rightarrow d_{2}(f(x), f(y))<\varepsilon$, since $x_{0} \in X \Rightarrow \forall x \in X \Rightarrow d_{1}\left(x, x_{0}\right)<\delta \Rightarrow$ $d_{2}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon \Rightarrow f$ is a continuous at $x_{0} \Rightarrow f$ is a continuous.
(13.3) Example: Let $\left(\mathcal{R}, d_{u}\right)$ be usual metric space and a function $f: \mathcal{R} \rightarrow \mathcal{R}$ defined by $f(x)=x^{2}, x \in \mathcal{R}$, then f is continuous, but does not uniform continuous.

Solution: $\varepsilon>0 \ni \forall \delta>0 \exists x, y \in \mathcal{R}$ and $|x-y|<\delta \Longrightarrow|f(x)-f(y)|>\varepsilon$
Let $\delta>0$, (by Archimedes property) $\exists k \in \mathbb{Z}^{+} \ni \frac{1}{k}<\delta$
Put $y=k+\frac{1}{k}, x=k \Rightarrow|x-y|=\frac{1}{k}<\delta$, but $|f(x)-f(y)|=2+\frac{1}{k^{2}}>2$
$\Rightarrow f$ does not uniform continuous.

Real- Valued Functions

(13.4) Definition: Let $f, g \in R V(X)=\{f: X \rightarrow \mathcal{R}\}, \lambda \in \mathcal{R}$. Define $f+g, \lambda f, \frac{f}{g},|f|$ as following:

- $(f+g)(x)=f(x)+g(x)$
- $(\lambda f)(x)=\lambda f(x)$
- $(f g)(x)=f(x) g(x)$
- $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0 \forall x \in X$
- $|f|(x)=|f(x)|$
(13.5)Theorem: If $f, g \in C(X)$ which denoted to set of all a continuous functions and defined from (X, d) into $\left(\mathcal{R}, d_{u}\right)$ and $\lambda \in \mathcal{R}$, then

1. $f+g \in C(X)$.
2. $\lambda f \in C(X)$.
3. $f g \in C(X)$.
4. $\frac{f}{g} \in C(X)$.
5. $|f| \in C(X)$.

Proof: (1) let $x_{0} \in X, \varepsilon>0$
Since $f, g \in C(X) \Rightarrow f: X \rightarrow \mathcal{R}, g: X \rightarrow \mathcal{R}$ are continuous functions
$\Rightarrow f, g$ are continuous at x_{0}
Since $f: X \rightarrow \mathcal{R}$ is continuous at $x_{0} \Rightarrow \exists \delta_{1}>0 \ni \forall x \in X \Rightarrow d\left(x, x_{0}\right)<\delta_{1} \Rightarrow$ $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\varepsilon}{2}$

Since $g: X \rightarrow \mathcal{R}$ is continuous at $x_{0} \Rightarrow \exists \delta_{2}>0 \ni \forall x \in X \Rightarrow d\left(x, x_{0}\right)<\delta_{2} \Rightarrow$ $\left|g(x)-g\left(x_{0}\right)\right|<\frac{\varepsilon}{2}$

Put $\delta=\min \left\{\delta_{1}, \delta_{2}\right\} \Rightarrow \delta>0 \forall x \in X \Rightarrow d\left(x, x_{0}\right)<\delta$
$(f+g)(x)-(f+g)\left(x_{0}\right)=(f(x)+g(x))-\left(f\left(x_{0}\right)+g\left(x_{0}\right)\right)$
$=\left(f(x)-f\left(x_{0}\right)\right)+\left(g(x)-g\left(x_{0}\right)\right)$
$\left|(f+g)(x)-(f+g)\left(x_{0}\right)\right|=\left|f(x)-f\left(x_{0}\right)\right|+\left|\left(g(x)-g\left(x_{0}\right)\right)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$
$\Rightarrow f+g$ is continuous at $x_{0} \Rightarrow f+g \in C(X)$.

Boundedness

(13.6)Definition: Let (X, d) be metric space and $A \subseteq X$. We said that A is bounded in X, if $\delta(A)=\sup \{d(x, y): x, y \in A\}<\infty$ or $B=\{d(x, y): x, y \in A\}$ is bounded in \mathcal{R}. We say that X is bounded space, if $\delta(X)<\infty$.
(13.7)Theorem: Let (X, d) be metric space and $A \subseteq X$. We said that A is bounded in $X \Leftrightarrow \forall x_{0} \in A \exists k \in \mathbb{Z}^{+} \ni d\left(x, x_{0}\right)<k \forall x \in A$.
(13.8)Example: In usual metric space $\left(\mathcal{R}, d_{u}\right)$, we have

1. $A_{1}=(a, b), A_{2}=(a, b], A_{3}=[a, b), A_{4}=[a, b]$ be a bounded, since $\delta\left(A_{i}\right)=$ $b-a \forall i=1,2,3,4$.
2. A space \mathcal{R} is unbounded, since $\delta(\mathcal{R})=\infty$.
(13.9)Definition: Let X, d) be metric space and (\mathcal{R}, d_{u}) is usual metric space. We said that a function $f: X \rightarrow \mathcal{R}$ is a bounded, if $\exists M \in \mathcal{R}^{+} \ni|f(x)| \leq M \forall x \in X$.

Intermediate Value Property

(13.10)Definition: Let $\left(\mathcal{R}, d_{u}\right)$ is usual metric space. We said that $f:[a, b] \rightarrow \mathcal{R}$ satisfies an intermediate value property, if $\forall x, y \in[a, b], \forall s$ between $f(x), f(y) \exists z$ between $x, y \ni f(z)=s$.
(13.11) Example: Let $\left(\mathcal{R}, d_{u}\right)$ be usual metric space and let a function $f:[a, b] \rightarrow \mathcal{R}$ defined by $f(x)=x \forall x \in[a, b]$, then a function f satisfies an intermediate value property.

Solution: let $x, y \in[a, b] \ni x<y$ and let $f(x)<s<f(y)$
Since $f(x)=x \forall x \in[a, b] \Rightarrow x<s<y$
Since $f(s)=s \Rightarrow f$ satisfies an intermediate value property.

(13.12) Theorem (Intermediate Value Theorem)

Let $\left(\mathcal{R}, d_{u}\right)$ is usual metric space. If a function $f:[a, b] \rightarrow \mathcal{R}$ is a continuous, then $\forall s$ between $f(a), f(b), \exists z$ in $[a, b] \ni f(z)=s$.
(13.13) Example: Let $\left(\mathcal{R}, d_{u}\right)$ be usual metric space. If a function $f:[0,1] \rightarrow \mathcal{R}$ defined as $f(x)=\left\{\begin{array}{c}\sin \frac{1}{x}, 0<x \leq 1 \\ 0, x=0\end{array}\right.$, then f satisfies an intermediate value property, but its discontinuous.

