A Course In Group Rings

Dr. Leo Creedon

Semester II, 2003-2004

Contents

1 Introduction 2
1.1 Definitions and examples of Rings and Group Rings 2
1.2 Ring Homomorphisms and Ideals 11
1.3 Isomorphism Theorems 15
2 Ideals And Homomorphisms of $R G$ 18
3 Group Ring Representations 27
4 Decomposition of $R G$ 35
A Extra's 52
A. 1 Homework $1+$ Solutions 52
A. 2 Homework $2+$ Solutions 54
A. 3 Autumn Exam + Solutions 56
Bibliography

Chapter 1

Introduction

1.1 Definitions and examples of Rings and Group Rings

Definition 1.1 A ring is a set R with two binary operations + and \cdot such that
(i) $a+(b+c)=(a+b)+c$
(ii) $\exists 0 \in R$ s.t. $a+0=a=0+a$
(iii) $\exists-a \in R$ s.t. $a+(-a)=0=(-a)+a$
(iv) $a+b=b+a$
(v) $a \cdot(b . c)=(a . b) \cdot c$
(vi) $a \cdot(b+c)=a \cdot b+b \cdot c$
(vii) $(a+b) . c=a . c+b \cdot c \quad \forall a, b, c \in R$

Definition 1.2 If $a . b=b . a \forall a, b \in R$, then R is a commutative ring.
Example $1.3(\mathbb{Z},+, \cdot)$ is a commutative ring.
Example 1.4 The set P of polynomials of any degree over \mathbb{R} is a ring (with the obvious multiplication and addition). This is also a commutative ring e.g. $\left(2 x^{2}+1\right)(3 x+2)=(3 x+2)\left(2 x^{2}+1\right) \in P$.

Definition 1.5 If $\exists 1 \in R$ such that 1. $a=a .1 \forall a \in R$, then R is a ring with identity. Otherwise R is a ring without identity.

For us, R (usually) is a ring with identity.
Example 1.6 The set $M_{n}(\mathbb{R})$ of all $n \times n$ matrices with real coefficients is a ring (with matrix addition and matrix multiplication).
(i) $A+(B+C)=(A+B)+C$
(ii) Let $0=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, then $0+A=A+0=A \quad \checkmark$
(iii) If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $-A=\left(\begin{array}{ll}-a & -b \\ -c & -d\end{array}\right)$ and $-A+A=A+-A=$ $0 \checkmark$
(iv) $A+B=B+A \quad \checkmark$
(v) $A \cdot(B \cdot C)=(A \cdot B) \cdot C$
(vi) $A \cdot(B+C)=A \cdot B+B \cdot C \quad \checkmark$
(vii) $(A+B) \cdot C=A \cdot C+B \cdot C \quad \forall A, B, C \in M_{n}(\mathbb{R}) \quad \checkmark$

Note : $M_{n}(\mathbb{R})$ is a non-commutative ring (since $A B \neq B A \forall A, B \in$ $M_{n}(\mathbb{R})$).

Example $1.7 \mathbb{C}=\{a+i b \mid a, b \in \mathbb{R}\}$ is a ring (the complex numbers). It is also a 2-dimensional vector space over \mathbb{R} with basis $\{1, i\}$.

Example 1.8 Consider a 4-dimensional vector space over \mathbb{R} with basis $\{1, i, j, k\}$. We define multiplication as follows

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=-1=i j k \\
i j=k \\
j k=-k \\
j k=i
\end{gathered} \quad k j=-i=j . i k=-j .
$$

$1 . i=i .1=i, 1 . j=j .1=j, 1 . k=k .1=k$ and $1.1=1$

Now define:

$$
\begin{aligned}
(a+b i+c j+d k)(e+f i+g j+h k)= & (a e-b f-c g-d h)+(a f+b e+c h-d g) i \\
& (a g+c e-b h+d f) j+(a h+d e+b g-c f) k
\end{aligned}
$$

This multiplication gives us a non-commutative ring ($i j \neq j i$), called the Quaternions (\mathbb{H}).

Example 1.9 (1840's Hamilton) Consider an n-dimensional vector space (over \mathbb{R} say) with basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ (the basic units). Define the product $e_{i} . e_{j} \forall i, j=1 \ldots n$. Then (as in the previous example) insist on the distributive laws and we see that this new object is a ring, called the set of Hypercomplex Numbers (M).

Example 1.10 If $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ forms a group (under multiplication) G, then the hypercomplex numbers generated by G is called the Group Ring $(\mathbb{R} G)$. Arthur Cayley 1854.

Definition 1.11 Given a group G and a ring R, define the Group Ring $R G$ to be the set of all linear combinations

$$
\alpha=\sum_{g \in G} a_{g} g
$$

where $a_{g} \in R$ and where only finitely many of the $a_{g}{ }^{s}$ are non-zero.
Define the sum

$$
\alpha+\beta=\left(\sum_{g \in G} a_{g} g\right)+\left(\sum_{g \in G} b_{g} g\right)=\sum_{g \in G}\left(a_{g}+b_{g}\right) g .
$$

Define the product

$$
\alpha \beta=\left(\sum_{g \in G} a_{g} g\right)\left(\sum_{h \in G} b_{h} h\right)=\sum_{g, h \in G} a_{g} b_{h} g h
$$

Notes :

(1) We can also write the product $\alpha \beta$ as $\sum_{u \in G} C_{u} u$, where $C_{u}=\sum_{g h=u} a_{g} b_{h}$
(2) $R G$ is a ring (with addition and multiplication defined as above).
(3) Given $\alpha \in R G$ and $\lambda \in R$, we can define a multiplication

$$
\lambda . \alpha=\lambda \sum_{g \in G} a_{g} g=\sum_{g \in G}\left(\lambda a_{g}\right) g .
$$

(4) $R G$ is an example of a hypercomplex number system (if $R=\mathbb{R}$).

Definition 1.12 Let R be a ring. An abelian group $(M,+)$ is called a (left) \boldsymbol{R}-module if for each $a, b \in R$ and $m \in M$, we have a product $a m \in M$ such that
(i) $(a+b) m=a m+b m$
(ii) $a\left(m_{1}+m_{2}\right)=a m_{1}+a m_{2}$
(iii) $a(b m)=(a b) m$
(iv) $1 . m=m \quad \forall a, b \in R$ and $\forall m, m_{1}, m_{2} \in M$.

Similarly we could define a (right) R-module
(i) $m(a+b)=m a+m b$
(ii) $\left(m_{1}+m_{2}\right) a=m_{1} a+a m_{2} a$
(iii) $m(a b)=(m a) b$
(iv) $m .1=m \quad \forall a, b \in R$ and $\forall m, m_{1}, m_{2} \in M$.

If M is a left R-module and a right R-module, then we call M a (two-sided) R-module.

Definition 1.13 Let R be a ring. An element $a \in R$ is invertible in R if $\exists b \in R$ such that $a . b=b . a=1$.

We write $b=a^{-1}$ (the inverse of a) and say that a is a unit of R.

Definition 1.14

$$
\mathcal{U}(R)=\{a \in R \mid \text { if } a \text { is a unit of } R\}
$$

Note that $\mathcal{U}(R)$ is a group (with multiplication) called the group of units of R.

Example $1.15 \mathcal{U}(\mathbb{Z})=\{+1,-1\}$, the cyclic group of order $2\left(\right.$ written $\left.C_{2}\right)$.
Example $1.16 \mathcal{U}(\mathbb{Q})=\mathbb{Q} \backslash\{0\}$.

$$
\left(\frac{a}{b}\right)^{-1}=\frac{b}{a} \text { where } a \neq 0, b \neq 0
$$

Example $1.17 \mathcal{U}(\mathbb{R})=\mathbb{R} \backslash\{0\}$.
Example $1.18 \mathcal{U}(\mathbb{C})=\mathbb{C} \backslash\{0\}$.
Example $1.19 \mathcal{U}(\mathbb{H})=\mathbb{H} \backslash\{0\}$.
Example $1.20 \mathcal{U}\left(M_{n}(\mathbb{R})\right)=\left\{A \in M_{n}(\mathbb{R}) \mid \operatorname{det} A \neq 0\right\}=G L_{n}(\mathbb{R})$.
Definition 1.21 A ring R is called a division ring if every non-zero element of R is a unit. i.e. $\mathcal{U}(R)=R \backslash\{0\}$.
Note : $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ and \mathbb{H} are division rings. \mathbb{Z} and $M_{n}(\mathbb{R})$ are not division rings.

Definition $1.22 A$ division ring R is called a (commutative) field if R is a commutative ring.

Note : \mathbb{Q}, \mathbb{R} and \mathbb{C} are fields. \mathbb{H} is not a field (non-commutative). \mathbb{Z} is not a field (not a division ring).

Definition $1.23\left(\mathbb{Z}_{n},+, \cdot\right)$ is the ring of integers modulo n (where $n \in \mathbb{Z}$, $n>0)$. In fact this is a commutative ring.

Example 1.24 Consider $\left(\mathbb{Z}_{5},+, \cdot\right): 1^{-1}=1,2^{-1}=3,3^{-1}=2$ and $4^{-1}=$ 4. So \mathbb{Z}_{5} is a division ring, so it is a field.

Example 1.25 Consider $\left(\mathbb{Z}_{6},+, \cdot\right): 1^{-1}=1,2^{-1}$ doesn't exist, 3^{-1} doesn't exist, 4^{-1} doesn't exist and $5^{-1}=5$. So $\mathcal{U}\left(\mathbb{Z}_{6}\right)=\{1,5\}=<5>\cong C_{2}$. So \mathbb{Z}_{6} is not a division ring and hence it is not a field.

Definition 1.26 In a ring R, if $a . b=0$ but $a \neq 0$ and $b \neq 0$ then a and b are called zero divisors.

Definition 1.27 If a ring R has no zero-divisors, then R is called an integral domain (or just a domain).

Example $1.28(\mathbb{Z},+, \cdot)$ is an integral domain since $a \cdot b=0 \Longrightarrow a=0$ or $b=0$.

Example 1.29 In \mathbb{Z}_{6}, 2.3=0. So 2 and 3 are zero divisors. Therefore \mathbb{Z}_{6} is not an integral domain.

Example $1.30\left(\mathbb{Z}_{5},+, \cdot\right)$ is an integral domain.
Lemma 1.31 Every division ring is an integral domain.
Proof. We assume that R is a division ring. We want to show that R has no zero divisors. Proceed by contradiction : Assume $a . b=0$, where $a \neq 0$ and $b \neq 0$. Since $0 \neq a \in R$ then we have $a^{-1} \in R . \therefore a^{-1}(a b)=a^{-1}(0)=$ $0=\left(a^{-1} a\right) b=1 . b=b=0$. This is a contradiction.

Notes :

(1) The converse is not true. i.e. there are integral domains which are not division rings. e.g. $(\mathbb{Z},+, \cdot)$ is not an integral domain but not a division ring.
(2) Zero-divisors are never invertible.

Example 1.32 Let $R=\mathbb{F}_{2}=\mathbb{Z}_{2}$ and $G=C_{2}\left(\mathbb{Z}_{2}\right.$ is the ring of order 2, which is a field). Writing down the elements : $\mathbb{F}_{2}=\{0,1\}$ and $C_{2}=$ $\{1, x\}=<x>=<x \mid x^{2}=1>$.

$$
\begin{aligned}
\mathbb{F}_{2} C_{2} & =\left\{\sum_{g \in C_{2}} a_{g} g \mid a_{g} \in \mathbb{F}_{2}\right\} \\
& =\left\{0_{\mathbb{F}_{2}} \cdot 1_{C_{2}}+0_{\mathbb{F}_{2}} \cdot x, 1_{\mathbb{F}_{2}} \cdot 1_{C_{2}}+0_{\mathbb{F}_{2}} \cdot x, 0_{\mathbb{F}_{2}} \cdot 1_{C_{2}}+1_{\mathbb{F}_{2}} \cdot x, 1_{\mathbb{F}_{2}} \cdot 1_{C_{2}}+1_{\mathbb{F}_{2}} \cdot x\right\} \\
& =\left\{0_{\mathbb{F}_{2} C_{2}}, 1_{\mathbb{F}_{2} C_{2}}, 1_{\mathbb{F}_{2}} \cdot x, 1_{\mathbb{F}_{2}} \cdot 1_{C_{2}}+1_{\mathbb{F}_{2}} \cdot x\right\} \\
& =\{0,1, x, 1+x\}
\end{aligned}
$$

Note that . is \mathbb{F}_{2} module multiplication. Now let's construct the cayley tables for $\mathbb{F}_{2} C_{2}$.

$$
\underline{\mathbb{F}_{2} C_{2}}
$$

+	0	1	x	$1+x$
0	0	1	x	$1+x$
1	1	$0(\bullet)$	$1+x$	x
x	x	$1+x$	0	1
$1+x$	$1+x$	x	1	0

$(\bullet) 1+1=1_{\mathbb{F}_{2}} \cdot 1_{C_{2}}+1_{\mathbb{F}_{2}} \cdot 1_{C_{2}}$

$$
=\left(1_{\mathbb{F}_{2}}+1_{\mathbb{F}_{2}}\right) 1_{C_{2}}
$$

$$
=\left(0_{\mathbb{F}_{2}}\right) 1_{C_{2}}=0
$$

$(\star) x+x=1_{\mathbb{F}_{2}} \cdot x+1_{\mathbb{F}_{2}} \cdot x$
$=\left(1_{\mathbb{F}_{2}}+1_{\mathbb{F}_{2}}\right) x$
$=\left(0_{\mathbb{F}_{2}}\right) x=0$
$\left(\mathbb{F}_{2} C_{2},+\right)$ is a group.
$\underline{\mathbb{F}_{2} C_{2}}$

\cdot	0	1	x	$1+x$
0	0	0	0	0
1	0	1	x	$1+x$
x	0	x	1	$1+x$
$1+x$	0	$1+x$	$1+x$	$0(\bullet)$

$(\bullet)(1+x)(1+x)=1(1+x)+x(1+x)$
$=1+x+x+1$
$=2+2 x=0$

Clearly $\left(\mathbb{F}_{2} C_{2}, \cdot\right)$ is not a group (since $\left.0 . a=0 \forall a \in \mathbb{F}_{2} C_{2}\right)$. Also ($\mathbb{F}_{2} C_{2} \backslash$ $\{0\}, \cdot$) does not form a group (since $(1+x)^{2}=0$ and 0 is not an element of $\mathbb{F}_{2} C_{2} \backslash\{0\}$.

Note : that the unit group of $\mathbb{F}_{2} C_{2}$ is $\{1, x\}$. $\underline{\underline{\mathcal{U}}\left(\mathbb{F}_{2} C_{2}\right)}$

$$
\mathcal{U}\left(\mathbb{F}_{2} C_{2}\right)=\{1, x\} \cong C_{2}
$$

\cdot	1	x
1	1	x
x	x	1

Conjecture $1.33 \mathcal{U}(R G)=G$.
Note that G is isomorphic (as a group) to a subgroup of $\mathcal{U}(R G)$ via the embedding

$$
\theta: G \hookrightarrow \mathcal{U}(R G) \quad g \mapsto 1 . g
$$

We often associate G with $\theta(G)<\mathcal{U}(R G)$ and abusing the notation, we write $G<\mathcal{U}(R G)$.

Recall that in $\mathbb{F}_{2} C_{2},(1+x)^{2}=0$. So $1+x$ is the only zero divisor of $\mathbb{F}_{2} C_{2}$.

Conjecture $1.34 R G=\{0\} \cup \mathcal{U}(R G) \cup \mathcal{Z D}(R G)$ (where $\mathcal{Z} \mathcal{D}(R G)$ are the zero divisors of G.

Consider (1) $\mathbb{F}_{3} C_{2}$ and (2) $\mathbb{F}_{2} C_{3}$.
(1) $\mathbb{F}_{3} C_{2}$
$\mathbb{F}_{3} C_{2}=\left\{a .1+b . x \mid a, b \in \mathbb{F}_{3}\right\}$. There are 3 choices for $a \in\{0,1,2\}$ and there are 3 choices for $b \in\{0,1,2\}$ so there are $3.3=9$ elements in $\mathbb{F}_{3} C_{2}$.
(2) $\mathbb{F}_{2} C_{3}$
$C_{3}=\left\{1, x, x^{2}\right\} . \mathbb{F}_{2} C_{3}=\left\{a .1+b . x+c . x^{2} \mid a, b, c \in \mathbb{F}_{3}\right\}$. There are 2 choices for $a \in\{0,1\}, 2$ choices for $b \in\{0,1\}$ and there are 2 choices for $c \in\{0,1\}$ so there are 2.2.2 $=8$ elements in $\mathbb{F}_{2} C_{3}$.

Now $3 \leq \mid \mathbb{F}_{2} C_{3} \leq 8$ and $C_{3} \triangleleft \mathcal{U}\left(\mathbb{F}_{2} C_{3}\right)$. By Lagranges theorem $\left|c_{3}\right|$ divides $\left|\mathcal{U}\left(\mathbb{F}_{2} C_{3}\right)\right|$ so $3\left|\left|\mathcal{U}\left(\mathbb{F}_{2} C_{3}\right)\right|\right.$ and $| \mathcal{U}\left(\mathbb{F}_{2} C_{3}\right) \mid \leq 8$, therefore $\left|\mathcal{U}\left(\mathbb{F}_{2} C_{3}\right)\right|=3$ or 6 .

Lemma 1.35 Let R be a ring of order m and G a group of order n. Then $R G$ is a finite group ring of size $|R|^{|G|}=m^{n}$.

Proof. $R G=\left\{\sum_{g \in G} a_{g} g \mid a_{g} \in R\right\}$. For each g, there are m choices for a_{g}. So there are $\underbrace{m . m \ldots m}_{|G|=n}$-elements in $R G$. i.e. $m^{n}=|R|^{|G|}$.

Example $1.36\left|\mathbb{F}_{2} C_{2}\right|=\left|\mathbb{F}_{2}\right|^{\left|C_{2}\right|}=2^{2}=4$. The group $\left(\mathbb{F}_{2} C_{2},+\right)$ has order 4 so it is isomorphic to either C_{4} or $C_{2} \times C_{2}$. If $a \in \mathbb{F}_{2} C_{2}$, then $2 . a=0 . a=0$. So every element of $\mathbb{F}_{2} C_{2}$ has order ≤ 2. Thus $\mathbb{F}_{2} C_{2} \not \approx C_{4}$ (since C_{4} has an element of order 4). $\therefore\left(\mathbb{F}_{2} C_{2},+\right) \cong C_{2} \times C_{2}$ (Klein-4-group).

Question : Is $\mathbb{F}_{2} C_{2} \cong \mathbb{Z}_{4}$ (isomorphic as rings) ? Answer : No. What is the additive group of \mathbb{Z}_{4}

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

$$
\text { So }\left(\mathbb{Z}_{2},+\right) \cong C_{4}
$$

Thus $\mathbb{F}_{2} C_{2}$ and \mathbb{Z}_{4} have non-isomorphic additive groups. So they are not
isomorphic as rings.

1.2 Ring Homomorphisms and Ideals

Lemma 1.37 Let $f: R \longrightarrow S$ be a ring homomorphism, then
(i) $f\left(0_{r}\right)=0_{s}$.
(ii) $f(-a)=-f(a)$.

Proof. (i) Take $a \in R . \quad f(a)=f\left(a+0_{r}\right)=f(a)+f\left(0_{r}\right)$. Thus $f(a)=$ $f(a)+f(0)=f(0)+f(a) \forall a \in R$. So

$$
\begin{aligned}
-f(a)+f(a) & =0_{s} \\
& =-f(a)+\left(f(a)+f\left(0_{r}\right)\right) \\
& =\left(-f(a)+f(a)+f\left(0_{r}\right)\right. \\
& =0_{s}+f\left(0_{r}\right)=f\left(0_{r}\right) \\
& =0_{s} \\
& \therefore f\left(0_{r}\right)=0_{s}
\end{aligned}
$$

(ii) $f(a+(-a))=f\left(0_{r}\right)=0_{s}=f(a)+f(-a)$

$$
\therefore f(-a)=-f(a)
$$

Definition 1.38 Let L be a subset of the ring R. L is called a left ideal of R if
(i) $x, y \in L \Longrightarrow x-y \in L$.
(ii) $x \in L, a \in R \Longrightarrow a x \in L$ (left multiplication by an element of R).

$$
\therefore R . L=L
$$

Similarly we could define a right ideal of R. If L is a left ideal of R and a right ideal of R, we say that L is a two-sided ideal of R.
*** (used in the same way that normal subgroups are used in group theory). i.e. If $N \triangleleft G \Longrightarrow G \longrightarrow \frac{G}{N}, g \mapsto g . N$ is a group homomorphism with kernal N and image $\frac{G}{N}$, the factor group or quotient group of G by N.

$$
\frac{G}{N}=\{g N: g \in G\}
$$

Recall : $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ isomorphism theorems of groups.
Let I be an ideal of R. We write $I \triangleleft R$. Notice that I is a ring (usually without the multiplicative identity 1_{r}). $\Longrightarrow I$ is a subring of R.

Example 1.39 Consider the $\operatorname{ring}(\mathbb{Z},+, \cdot)$. Let $n \in \mathbb{Z}$. Then $I=n \mathbb{Z}=$ $\{n . a: a \in \mathbb{Z}\}$ is a (two sided) ideal of \mathbb{Z}, since

$$
\begin{array}{r}
n a-n b=n(a-b) \in n \mathbb{Z} \forall a, b \in \mathbb{Z} \\
c(n . a)=n(c . a) \in n \mathbb{Z} \forall c \in \mathbb{Z}
\end{array}
$$

Example 1.40 Consider the ring $\left(\mathbb{Z}_{6},+, \cdot\right)$. What are the ideals of $\left(\mathbb{Z}_{6},+, \cdot\right)$? Now consider the subset $I_{2}=\left\{2 . a: a \in \mathbb{Z}_{6}\right\}=\{0,2,4\}$. I_{2} is an ideal of $\left.\mathbb{Z}_{6}\right\}$ (exercise). $I_{3}=\left\{3 . a: a \in \mathbb{Z}_{6}\right\}=\{0,3\}$ is an ideal of $\left.\mathbb{Z}_{6}\right\}$ (exercise). $\left.0=\left\{0_{\mathbb{Z}_{6}}\right\} \triangleleft \mathbb{Z}_{6}\right\}$. Also $\mathbb{Z}_{6} \unlhd \mathbb{Z}_{6}$. Note that $\left.\mathbb{Z}_{6}\right\}$ is the only ideal of $\left.\mathbb{Z}_{6}\right\}$ which contains $1_{\mathbb{Z}_{6}}$. Note : $I_{1}=\left\{1 . a: a \in \mathbb{Z}_{6}\right\}=\mathbb{Z}_{6}$. Are there any more ideals of \mathbb{Z}_{6} ? Let I be an ideal of \mathbb{Z}_{6}. What is the size of I ?

Lemma 1.41 (Langrange theorem for rings) Let I be an ideal of a finite ring R. Then $|I| /|R|$.

Proof. $(R,+)$ is a group, $(I,+)$ is a subgroup. Apply Lagranges theorem (for groups), we get $|I| /|R|$.

Applying this lemma to the previous example, we see that $|I|=1,2,3$ or 6 . If $|I|=1$, then $I=\left\{0_{\mathbb{Z}_{6}}\right\}$. If $|I|=6$, then $I=\mathbb{Z}_{6}$. If $|I|=2$, then $I=\{0,3\}$. If $|I|=3$, then $I=\{0,2,4\}$. Thus \mathbb{Z}_{6} has 4 ideals.

Example 1.42 Consider the ring $\left(\mathbb{Z}_{5},+, \cdot\right)$. Let $I_{2}=\left\{2 . a: a \in \mathbb{Z}_{5}\right\}=$ $\{0,2,4,1,3\}=\mathbb{Z}_{5}$. Therefore the only ideals of \mathbb{Z}_{5} are $\left\{0_{\mathbb{Z}_{5}}\right\}$ and \mathbb{Z}_{5}. i.e. Let $I \triangleleft \mathbb{Z}_{5}$, then $|I| /\left|\mathbb{Z}_{5}\right|$ so $|I|=1$ or 5 so $I=\left\{0_{\mathbb{Z}_{5}}\right\}$ or \mathbb{Z}_{5}
Let $f: R \longrightarrow S$ be a ring homomorphism, then $f\left(1_{r}\right)=1_{s}$ is not necessarily true.

Example 1.43 Define $f: M_{2}(\mathbb{Q}) \longrightarrow M_{3}(\mathbb{Q})$ where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto\left(\begin{array}{lll}a & b & 0 \\ c & d & 0 \\ 0 & 0 & 0\end{array}\right)$.
Then $f\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and f is a ring homomorphism. However
$f\left(I_{2}\right)=f\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right) \neq I_{3}$.
Note that here $f(A) f\left(I_{2}\right)=f\left(a \cdot I_{2}\right)=f(A)$. So $f\left(I_{2}\right)$ seems to work like the multiplicative identity on the range of f.

Let $f: R \longrightarrow S$ be a ring homomorphism. Then $\operatorname{Ker}(f)=\{x \in R: f(x)=$ $0\}$. If $x, y \in \operatorname{Ker}(f)$, then $f(x+y)=f(x)+f(y)=0+0=0$. Also $f(x-y)=f(x)-f(y)=0-0=0$.

Let $x \in \operatorname{Ker}(f), s \in R$. Is $x s \in \operatorname{Ker}(f) ? f(x s)=f(x) f(s)=0 . f(s)=0$. $\therefore x s \in \operatorname{Ker}(f)$. So $\operatorname{Ker}(f)$ is an ideal of R.

Definition 1.44 A ring homomorphism $f: R \longrightarrow S$ is called
(i) a monomorphism (or embedding) if f is injective.
(ii) an epimorphism if f is surjective.

Example $1.45 \mathbb{Z} \stackrel{f}{\hookrightarrow} \mathbb{Q}$ where $f(n)=n . \operatorname{Ker}(f)=\{0\} \subset \mathbb{Z}$.
Example $1.46 \mathbb{Z} \stackrel{g}{\longrightarrow} 2 \mathbb{Z}$ where $g(n)=2 n . \operatorname{Ker}(g)=\{0\} \subset \mathbb{Z}$.
Example 1.47 Let p be a prime number. Define $f: \mathbb{Z} \longrightarrow \mathbb{Z}_{p}$ by $f(n)=n+p \mathbb{Z}$.
$f(n+m)=n+m+p \mathbb{Z} . f(n)+f(m)=n+p \mathbb{Z}+m+p \mathbb{Z}=n+m+p \mathbb{Z}$.
$\therefore f(n+m)=f(n)+f(m)$. Also $f(n-m)=f(n)-f(m)$.
$f(n m)=n m+p \mathbb{Z}$.

$$
\begin{aligned}
f(n) f(m) & =(n+p \mathbb{Z})(m+p \mathbb{Z}) \\
& =n m+n p \mathbb{Z}+m p \mathbb{Z}+p^{2} \mathbb{Z} \mathbb{Z} \\
& =n m+p(n \mathbb{Z}+m p \mathbb{Z}+p \mathbb{Z}) \\
& =n m+p \mathbb{Z}
\end{aligned}
$$

Thus $f(n m)=f(n) f(m)$ and f is a ring homomorphism.
$\operatorname{Ker}(f)=\{n \in \mathbb{Z} \mid f(n)=0\}=\left\{n \in \mathbb{Z} \mid n+p \mathbb{Z}=0_{\mathbb{Z}_{p}}=0+p \mathbb{Z}\right\}=\{n p \mid n \in \mathbb{Z}\}$
Since $f(n p)=n p+p \mathbb{Z}=p(n+\mathbb{Z})=p \mathbb{Z}=0+p \mathbb{Z}=0$. So $f: \mathbb{Z} \longrightarrow \mathbb{Z}_{p}$ has kernal $p \mathbb{Z}$.

Let $I \triangleleft R$. Then consider the set $R / I=\{I+r: r \in R\}$. Define

- addition by $(r+I)+(s+I)=(r+s)+I$.
- multiplication by $(r+I)(s+I)=(r s)+I$.
R / I is a ring (check i.e. $0_{R / I}=0+I,(r+I)+(-r+I)=0+I=0_{R / I}$, and so on).

Consider the ring homomorphism $f: R \longrightarrow R / I$ defined by $f(r)=r+I$. What is $\operatorname{Ker}(f) ? \operatorname{Ker}(f)=\{r \in R: f(r)=0\}=\{r \in R: f(r)=0+I\}=I$ (Since if $i \in I$, we have $f(i)=i+I=I$).

Therefore given any ideal I of a ring R, we can come up with a ring homomorphism $f: R \longrightarrow R / I$ such that $I=\operatorname{Ker}(f)$. Note that we often write $f(r)=r+I=\bar{r}(r \bmod I)$.

Example $1.48 p \mathbb{Z} \triangleleft \mathbb{Z}, p \mathbb{Z}$ is the kernal of the homomorphism $f: \mathbb{Z} \longrightarrow$ $\mathbb{Z}_{p} \cong \mathbb{Z} / \mathbb{Z}_{p}$.

1.3 Isomorphism Theorems

Theorem 1.49 ($1^{\text {st }}$ Isomorphism theorem for groups) Let $f \mapsto S$. Then $G / N \cong S$ where $N=\operatorname{Ker}(f)$.

For rings, the kernal is an ideal. Let G be a group, $H \triangleleft G$ and $N \unlhd G$. Then

$$
\begin{gathered}
G / N \cong H / 1 \\
\text { also } \\
G / H \cong N / 1
\end{gathered}
$$

Example $1.50 S_{3}=<x, y \mid x^{3}=y^{2}=1, y x y=x^{2}>$. Let's construct a lattice diagram of subgroups

Double lines means normality

Now consider $\omega: R \longrightarrow R / I$ where $\omega(r)=r+I$ (the cononical projection). Let $J \supseteq I$, then $\omega(J)=\{j+I: j \in J\}=J / I \subset R / I . J / I$ is not only a subset, it is also an ideal of R / I i.e. $J / I \triangleleft R / I$.

Note that a ring homomorphism preserves subsets and ideal.
Theorem 1.51 ($2^{\text {nd }}$ Isomorphism Theorem)

Theorem 1.52 ($3^{\text {rd }}$ Isomorphism Theorem)

$$
\begin{aligned}
& R / I\left\{\begin{array}{l}
R \longrightarrow \\
\left|\begin{array}{l}
\omega \\
\omega
\end{array}\right| I / I
\end{array}\right\}\{R / I\} /\{J / I\} \\
& \left.\left.\right|_{J_{1}}\right|_{J_{1} / I}
\end{aligned}
$$

Chapter 2

Ideals And Homomorphisms of $R G$

Let R be a ring (usually commuatative) and G a group. Then $R G$ is a group ring (defined before). Since $R G$ is a ring, we can talk about ideals of G, ring homomorphisms of $R G$ and factor groups of $R G$.

Definition 2.1 Consider the function $\varepsilon: R G \longrightarrow R$ defined by $\varepsilon\left(\sum_{g \in G} a_{g} g\right)=\sum_{g \in G} a_{g}$. This function is called the augmentation map. ε maps $R G$ onto R.

Let $r \in R$ then $\varepsilon(r .1)=r$ (onto). Let $r g \in R G$ and $r h \in R G$, the $\varepsilon(r g)=\varepsilon(r h)=r$. However $r g \neq r h$, thus ε is not one-to-one. ε is a ring homomorphism from $R G$ onto R (an epimorphism). Let $\alpha=\sum_{g \in G} a_{g} g$ and $\beta=\sum_{g \in G} b_{g} g$ where $\alpha, \beta \in R G$. Then
$\varepsilon(\alpha+\beta)=\varepsilon\left(\sum_{g \in G}\left(a_{g}+b_{g}\right) g\right)=\sum_{g \in G}\left(a_{g}+b_{g}\right)=\sum_{g \in G} a_{g}+\sum_{g \in G} b_{g}=\varepsilon(\alpha)+\varepsilon(\beta)$

Now let $\alpha=\left(\sum_{g \in G} a_{g} g\right)$ and $\beta=\left(\sum_{h \in G} b_{h} h\right)$.

$$
\begin{gathered}
\varepsilon(\alpha \beta)=\left(\sum_{g, h \in G} a_{g} b_{h} g h\right)=\sum_{g, h \in G} a_{g} b_{h} \\
\varepsilon(\alpha) \varepsilon(\beta)=\varepsilon\left(\sum_{g \in G} a_{g} g\right) \varepsilon\left(\sum_{h \in G} b_{h} h\right)=\left(\sum_{g \in G} a_{g}\right)\left(\sum_{h \in G} b_{h}\right)=\sum_{g, h \in G} a_{g} b_{h}
\end{gathered}
$$

$\therefore \varepsilon(\alpha+\beta)=\varepsilon(\alpha) \varepsilon(\beta)$ and ε is a ring homomorphism.
$\operatorname{Ker}(\varepsilon)=\left\{\alpha=\sum_{g \in G} a_{g} g \mid \varepsilon(\alpha)=\sum_{g \in G} a_{g}=0\right\} . \operatorname{Ker}(\varepsilon)$ is non empty and non trivial.

Example $2.2 r g+(-r h) \in \operatorname{Ker}(\varepsilon)$ since $\varepsilon(r g+(-r h))=r-r=0$.
Now $\frac{R G}{\operatorname{Ker}(\varepsilon)} \cong R . \operatorname{Ker}(\varepsilon)$ is an ideal called the augmentation ideal of $R G$ and is denoted by $\operatorname{Ker}(\varepsilon)=\Delta(R G)$.

Let $u \in \mathcal{U}(R G)$. Say $u . v=v \cdot u=1$. Then $\varepsilon(u v)=\varepsilon(1)=1=\varepsilon(u) \varepsilon(v)=$ $1 \in R$. So $\varepsilon(u)$ is invertible in R, with inverse $\varepsilon(v)$. So $\varepsilon(\mathcal{U}(R G)) \subset \mathcal{U}(R)$ i.e. ε sends units of $R G$ to units of R.

Let $u \in \mathcal{Z D}(R G)$. Say $u . v=v . u=0$ where $u, v \neq 0$. Then $\varepsilon(u v)=$ $\varepsilon(u) \varepsilon(v)=\varepsilon(0)=0$. Thus $\varepsilon(u) \varepsilon(v)=0$. So either $\varepsilon(u)=0$ or $\varepsilon(v)=0$ or $\varepsilon(u)$ and $\varepsilon(v)$ are zero divisors in R.

If R has no zero divisors then this forces $\varepsilon(u)=0$ or $\varepsilon(v)=0$.
Example 2.3 List all the elements of $\mathbb{F}_{3} C_{2}, \mathcal{U}\left(\mathbb{F}_{3} C_{2}\right)$ and $\mathcal{Z D}\left(\mathbb{F}_{3} C_{2}\right)$.
$C_{2}=\{1, x\}$ and $\mathbb{F}_{3}=\{0,1,2\} . \mathbb{F}_{3} C_{2}=\left\{a_{1} \cdot 1+a_{2} \cdot x \mid a_{i} \in \mathbb{F}_{3}\right\}$. Thus $\left|\mathbb{F}_{3} C_{2}\right|=3.3=3^{2}=9\left(\left|\mathbb{F}_{3}\right|^{\left|C_{2}\right|}\right)$.

Writing the elements in lexicographical order :

$$
\begin{aligned}
& 0+0 \cdot x, 0+1 \cdot x, 0+2 \cdot x \\
& 1+0 \cdot x, 1+1 \cdot x, 1+2 \cdot x \\
& 2+0 \cdot x, 2+1 \cdot x, 2+2 \cdot x
\end{aligned}
$$

$\mathbb{F}_{3} C_{2}=\{0,1,2, x, 2 x, 1+x, 1+2 x, 2+x, 2+2 x\}$.

$$
\varepsilon: \mathbb{F}_{3} C_{2} \longrightarrow \mathbb{F}_{3}
$$

$\varepsilon(\alpha)$	$\alpha \in \mathbb{F}_{3} C_{2}$
0	$\{0,2+x, 1+2 x\}$
1	$\{1, x, 2+2 x\}$
2	$\{2,2 x, 1+x\}$

$\mathcal{U}\left(\mathbb{F}_{3} C_{2}\right)=\{1, x, 2,2 x\}$, since $1^{2}=1,, x^{2}=1,2^{2}=1$ and $(2 x)^{2}=1$. In a group inverses are unique, so we don't need to multiply these anymore. $\mathcal{U}\left(\mathbb{F}_{3} C_{2}\right) \cong C_{2} \times C_{2}$ since it has no elements of order 4 , so $\mathcal{U}\left(\mathbb{F}_{3} C_{2}\right) \not \not C_{4}$.
$(1+x)(1+x)=1+x+x+x^{2}=2+2 x \neq 1 .(1+x)(2+x)=2+x+$ $2 x+x^{2}=0 \neq 1$. Note that these are zero divisors so they are not units. Also $(1+2 x)(1+2 x)=1+2 x+2 x+4 x^{2}=2+x$ and $(1+2 x)(2+2 x)=$ $2+2 x+4 x+4 x^{2}=0$.

$$
\therefore \mathcal{Z D}\left(\mathbb{F}_{3} C_{2}\right)\{1+x, 2+x, 1+2 x, 2+2 x\}
$$

Note $\left.\mathbb{F}_{3} C_{2}\right)=\mathcal{U}\left(\mathbb{F}_{3} C_{2}\right) \cup \mathcal{Z D}\left(\mathbb{F}_{3} C_{2}\right) \cup\{0\}$.
Conjecture 2.4 In general in any group ring $R G$, do we have

$$
\left.\mathbb{F}_{3} C_{2}\right)=\mathcal{U}\left(\mathbb{F}_{3} C_{2}\right) \cup \mathcal{Z D}\left(\mathbb{F}_{3} C_{2}\right) \cup\{0\}
$$

Lemma 2.5 Let I be an ideal of a ring R, with $I \neq R$. Then I contains no invertible elements.

Proof. Suppose $u \in I$, with u invertible (say $u \cdot v=v . u=1$). Now since I is an ideal, we have $v . i \in I \forall i \in I$. In particular, v.u=1 $\in I$. If r is any element of R, then $r .1 \in I$. So $R \subset I$. So $R=I$ contradiction.

Lemma 2.6 Let D be a division ring. Then
(i) D has no ideals (apart from $\{0\}$ and itself).
(ii) D has no zero divisors (done before !).

Proof. (i) Let $I \triangleleft D$, with $I \neq\{0\}$. Let $x \neq 0$ and $x \in I$. So $0 \neq x \in D$, so x is invertible, by the previous lemma $I=D$.
(ii) Let $u . v=0$ with $u \neq 0$ and $v \neq 0$ (and $u, v \in D$). Now u^{-1} and v^{-1} exists so $u^{-1}(u v)=u^{-1} .0 \Longrightarrow v=0$, which is a contradiction.

Definition 2.7 An elementary matrix $E_{i, j}$ is the matrix of all whose entries are) except for the $(i, j)^{\text {th }}$ entry which is 1 .

Example 2.8

$$
E_{1,2}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

Lemma 2.9 Let D be a division ring and $R=M_{n}(D)(n \times n$ matrices over division ring D). Then $M_{n}(D)$ has no ideals (apart from $\{0\}$ and $M_{n}(D)$).

Proof. If $n=1$, then this just part (i) of the above lemma. Let $B_{i}=$ $E_{i, h} A E_{k, i}$. Now all entries of B_{i} equal) except for the $(i, i)^{\text {th }}$, which is $a_{h, k}$. Thus $B_{i}=a_{h, k} E_{i, i} \forall i \in\{1,2, \ldots, n\}$. Now I was a (two sided) ideal, $A \in I$
and $B_{i}=E_{i, h} A E_{k, i}$ so $B_{i} \in I$. (Now add up all the ideals). Let

$$
\begin{aligned}
B & =B_{1}+B_{2}+\cdots+B_{n} \\
& =a_{h, k}\left\{E_{1,1}+E_{2,2}+\cdots+E_{n, n}\right\} \\
& =a_{h, k}\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
\end{aligned}
$$

Thus B is invertible and $B \in I$. Thus (by the secind last lemma)

$$
I=M_{n}(D)
$$

Definition 2.10 Let R_{1} and R_{2} be rings. Define a new ring, the direct sum of R_{1} and R_{2} as

$$
R_{1} \oplus R_{2}=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in R_{1}, r_{2} \in R_{2}\right\} \quad(=\underbrace{R_{1} \times R_{2}}_{\text {cartesian product }})
$$

Let $\left(r_{1}, r_{2}\right)$ and $\left(s_{1}, s_{2}\right) \in R_{1} \oplus R_{2}$. Define $\left(r_{1}, r_{2}\right)+\left(s_{1}, s_{2}\right)=\left(r_{1}+s_{1}, r_{2}+s_{2}\right)$ and $\left(r_{1}, r_{2}\right)\left(s_{1}, s_{2}\right)=\left(r_{1} s_{1}, r_{2} s_{2}\right)$. This defines a ring (check!).
$R_{1} \oplus R_{2}$ is not a division ring since for any non-zero $r \in R_{1}$ and $\sin R_{2}$, we have $(r, 0)(0, s)=(r .0,0 . s)=(0,0)=0 \in R_{1} \oplus R_{2}$. So $(r, 0)$ and $(0, s)$ are zero divisors. So $(r, 0)$ and $(0, s)$ are not invertible. So Hamilton would not be pleased. We could define $\left(R_{1} \oplus R_{2}\right) \oplus R_{3}=R_{1} \oplus R_{2} \oplus R_{3}$ and \ldots and $R_{1} \oplus R_{2} \oplus \ldots \oplus R_{3}$.

Definition 2.11 A ring R is called a simple ring if it's only ideals are $\{0\}$ and R (i.e. no non-trivial ideals).
Note : $M_{n}(D)$ is a simple ring.
Definition 2.12 An element $e \in R$ is called an idempotent if $e^{2}=e$.

Example 2.13 In $\mathbb{Z}_{6}, 3$ is an idempotent since $3^{2}=9=3$.
Example 2.14 In $M_{2}\left(\mathbb{F}_{2}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ are idempotents since

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Definition 2.15 The center of R is

$$
Z(R)=\{z \in R \mid z r=r z \forall r \in R\}
$$

Question : Is $Z(R)$ a ring ?
Question : Is $Z(R)$ an ideal?
Definition $2.16 e$ is called a central idempotent if $e^{2}=e$ and $e \in Z(R)$.
Definition 2.17 A ring R is semisimple if it can be decomposed as a direct sum of finitely many minimal left ideals. i.e. $R=L_{1} \oplus \cdots \oplus L_{t}$, where L_{i} is a minimal left ideal.

Note : L is a minimal left ideal of R if L is a left ideal of $R(L \nprec R)$ and if J is any other left ideal of R contained in L, then either $J=\{0\}$ or $J=L$.

Example $2.18 M_{n}(D)$ is a semisimple ring. Let $L_{1}=\left(\begin{array}{ccccc}D & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 0\end{array}\right)$
and let $L_{2}=\left(\begin{array}{ccccc}0 & D & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 0\end{array}\right)$ and \ldots let $L_{n}=\left(\begin{array}{ccccc}0 & 0 & 0 & \ldots & D \\ 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 0\end{array}\right)$.
For each i, L_{i} is a minimal left ideal of R (check!). Also
$M_{n}(D)=L_{1} \oplus \cdots \oplus L_{n}$ so $M_{n}(D)$ is semisimple (check!).

Lemma 2.19 Let R be s ring. R is semisimple iff every left ideal of R is a direct summand of R.

Example 2.20 In the above example $L_{1} \oplus L_{2}$ is a left ideal of R and $\left(L_{1} \oplus\right.$ $\left.L_{2}\right) \oplus\left(L_{3} \cdots \oplus L_{n}\right)=R$.

Theorem 2.21 Let R be a ring. R is semisimple iff every left ideal of R is of the form $L=R e$, where $e \in R$ is an idempotent.

Proof. (\Rightarrow) Assume that R is semisimple. Let $L \stackrel{l}{\triangleleft} R$. By the previous lemma, L is a direct summand of R. So there exists a left ideal $L^{\prime} \stackrel{l}{\triangleleft} R$ such that $L \oplus L^{\prime}=R$. So $1=x+y$ for some $x \in L$ and $y \in L^{\prime}$. (Question : Is this decomposition unique ?).
Then $x=x .1=x(x+y)=x^{2}+x y$ So $\underbrace{x y}_{\in L^{\prime}}=\underbrace{x-x^{2}}_{\in L}$. Thus $x y \in L \cap L^{\prime}=\{0\}$.
Thus $x y=0=x-x^{2}$, so $x=x^{2}$. Hence, x is an idempotent. We have shown $L=R x$ where $x \in L$ so $R x \subset L$. We must show $L \subset R x$. Let $a \in L$. Then $a=a .1=a(x+y)=a x+a y=a . \therefore \underbrace{a-a x}_{L}=\underbrace{a y}_{L^{\prime}} \in L \cap L^{\prime}=\{0\}$. So $a-a x=0$ so $a=a x \in R x$. Thus $L \subset R x$. So $L=R x$.
(\Leftarrow) assume that every left ideal of R is of the form $L=R e$ for some idempotent $e \in R$. We will show that every left ideal is a direct summand of R. Let $L \stackrel{l}{\triangleleft} R$. Then $L=R e$. Let $L^{\prime}=R(1-e)$. Then L^{\prime} is a left ideal of R. (Note $\left.(1-e)^{2}=1-e-e+e^{2}=1-2 e+e=1-e\right)$. We must show that $L \oplus L ;=R$ (i.e. $L+L^{\prime}=R$ and $L \cap L^{\prime}=\{0\}$).

Let $x \in R$ Then $x=x .1=x(e+(1-e))=x e+x(1-e) \in L+L^{\prime}$. $\therefore R=L \oplus L^{\prime}$. Let $x \in L \cap L^{\prime}=R e \cap R(1-e)$. Then $x=r . e=s(1-e)$, $r, s \in R$. Thus $x . e=(r . e) . e=r . e^{2}=r . e=x$. Also $x . e=(s(1-e)) e=$ $s\left(e-e^{2}\right)=s(0)=0$. Thus $x=0$ so $L \cap L^{\prime}=\{0\}$ and so $R=L \oplus L^{\prime}$.

Let $\alpha=\sum_{g \in G} a_{g} g \in R G$. Now all but finitely many of the a_{g} 's are non-zero. We define the support of α as

$$
\operatorname{supp} \alpha=\left\{g \in G \mid a_{g} \neq 0\right\}
$$

The group $<\operatorname{supp} \alpha>$ (generated by the support of α) is a finitely generated group. So $R<\operatorname{supp} \alpha>\subset R G$.

Proposition 2.22 The set $\{g-1 \mid g \in G, g \neq 1\}$ is a basis for $\Delta(G)$ over R.
i.e. $\Delta(G)=\left\{\sum_{g \in G} a_{g}(g-1) \mid g \in G, g \neq 1\right\}$ and the $g-1$ are linearly independant over R.
Proof. Let $\alpha=\sum_{g \in G} a_{g} g \in \Delta(G)$. So $\sum_{g \in G} a_{g}=0$. Thus $\alpha=\sum_{g \in G} a_{g} g-0=$ $\sum_{g \in G} a_{g} g-\sum_{g \in G} a_{g}=\sum_{g \in G} a_{g}(g-1)$ so this is a spanning set for $\Delta(G)$. We will show linear independance :

Let $\sum_{g \in G} a_{g}(g-1)=0$. Then $0=\sum_{g \in G} a_{g} g-\sum_{g \in G} a_{g}=\sum_{g \in G} a_{g} g=0 \Longleftrightarrow a_{g}=$ $0 \forall g \in G$. Since G is linear independant over R, by the definition of the group ring $R G$.

Note : $R G$ has dimension $|G|$ over $R . \Delta(G)$ has dimension $|G|-1$ over R. If R is a field then these are vector spaces. Otherwise they are R-modules.

Proposition 2.23 Let R be a commutative ring. The map

$$
*: R G \longrightarrow R G \quad \text { where } \sum_{g \in G} a_{g} g \mapsto \sum_{g \in G} a_{g} g^{-1}
$$

is an involution. Then * has the following properties:
(i) $(\alpha+\beta)^{*}=\alpha^{*}+\beta^{*}$
(ii) $(\alpha \beta)^{*}=\alpha^{*} \beta^{*}$
(iii) $\left(\alpha^{*}\right)^{*}=\alpha$

Proof. Homework 2.

Proposition 2.24 Let $I \triangleleft R$ and let G be a group. Then

$$
I G=\left\{\sum_{g \in G} a_{g} g \mid a_{g} \in I\right\} \triangleleft R G
$$

Also

$$
\frac{R G}{I G} \cong\left(\frac{R}{I}\right) G
$$

Proof. (a) $I G$ is a commutative group under $+\checkmark$. Let $\alpha=\sum_{g \in G} a_{g} g \in I G$ and $\beta=\sum_{h \in G} b_{h} h \in R G$ (so $a_{g} \in I$ and $b_{h} \in R$ forall $g, h \in G$).

$$
\alpha \beta=\left(\sum_{g \in G} a_{g} g\right)\left(\sum_{h \in G} b_{h} h\right)=\sum_{g, h \in G} \underbrace{a_{g} b_{h}}_{\in I} g h \in I G
$$

So $I G$ is an ideal of $R G$.
(b) $\frac{R G}{I G}=\{\beta+I G \mid \beta \in R G\}$ and $\left(\frac{R}{I}\right) G=\left\{\sum_{g \in G}\left(a_{g}+I\right) g \left\lvert\, a_{g}+I \in \frac{R}{I}\right.\right\}$. i.e.
$a_{g} \in R$ and $g \in G$. Define

$$
\theta: \frac{R G}{I G} \longrightarrow\left(\frac{R}{I}\right) G
$$

by $\theta(\beta+I G)=\theta\left(\sum_{g \in G} b_{g} g+I G\right)=\sum_{g \in G}\left(b_{g}+I\right) G$. We must show that θ is an isomorphism.
$\theta(\alpha+I G+\beta+I G)=\theta(\alpha+\beta+I G)=\theta\left(\sum\left(a_{g}+b_{g}+I G\right)=\sum\left(a_{g}+b_{g}+I\right) g\right.$. Also $\theta(\alpha+I G)+\theta(\beta+I G)=\sum\left(b_{g}+I\right) g+\sum\left(a_{g}+I\right) g=\sum\left(a_{g}+b_{g}+I\right) g$ \checkmark.
$\theta((\alpha+I G)(\beta+I G))=\theta(\alpha \beta+I G)=\theta\left(\sum_{g \in G} a_{g} g \sum_{h \in G} b_{h} h+I G\right)=\sum_{g, h \in G}\left(a_{g} b_{h}+I\right) g h$.
Also $\theta(\alpha+I G) \theta(\beta+I G)=\left(\sum\left(a_{g}+I\right) g\right)\left(\sum\left(b_{h}+I\right) h\right)=\sum\left(a_{g}+I\right)\left(b_{h}+\right.$ $I) g h=\sum\left(a_{g} b_{h}+I\right) g h \checkmark . \therefore \theta$ is a ring homomorphism. It remains to show that θ is bijective but we will do this on homework 2 .

Chapter 3

Group Ring Representations

Definition 3.1 Let G be a finite group and R a ring. The R-module $R G$ (the group ring $R G$) with the natural multiplication $g \alpha(g \in G, \alpha \in R G)$. Now given $g \in G, g$ acts on the basis of $R G$ by left multiplication and permutes the basis elements. Define $\mathcal{T}: G \longrightarrow G L_{n}(R)$ where $g \mapsto \mathcal{T}_{g}$ and \mathcal{I}_{g} acts on the basis elements by left multiplication. So if $G=\left\{g_{1}=\right.$ $\left.1, g_{2}, \ldots, g_{n}\right\}$ and $\mathcal{I}_{g} g_{i}=g g_{i} \in G$. The function \mathcal{T} from G to $G L_{n}(R)$ is called the (left-regular) group representation of the finite group G over the ring R.

Think of \mathcal{I}_{g} as left multiplication by a group element or left multiplication of a column vector by a $n \times n$ matrix.

Lemma 3.2 Let G be a finite group of order n. Let R be a ring. Then the group representation \mathcal{T} is an injective homomorphism (monomorphism) from G to $G L_{n}(R)$.

Proof. Let $g, h \in G$ and $g_{i} \in G$ where g_{i} are the basis elements. We want to show $\mathcal{T}(g h)=\mathcal{T}(g) \mathcal{T}(h)$. Now $\mathcal{T}(g h) .\left(g_{i}\right)=(g h) . g_{i}=g\left(h g_{i}\right)=$ $\mathcal{I}_{g}\left(\mathcal{T}_{h}\left(g_{i}\right)\right) \forall g_{i} \in G=\mathcal{T}(g) \mathcal{T}(h)\left(g_{i}\right) . \therefore \mathcal{T}(g h)=\mathcal{T}(g) \mathcal{T}(h)$.

1-1: We must show that if $\mathcal{T}(g)=I_{n} \in G L_{n}(R) \Longrightarrow g=1_{G}$. Let $g \in G$ with $\mathcal{T}(g)=I_{n}$. Then $\mathcal{T}(g)\left(g_{i}\right)=g_{i} \forall g_{i} \in G$. In particular (with $\left.g_{i}=g_{1}=1_{G}\right), \mathcal{T}(g)(1)=I_{n} \Longrightarrow g \cdot 1=1 \Longrightarrow g=1$.

Example 3.3 Let $G=C_{3}=<a \mid a^{3}=1>$.
$\therefore R G=\left\{\lambda_{1} \cdot 1+\lambda_{2} \cdot a+\lambda_{3} \cdot a^{2} \mid \lambda_{i} \in R\right\}$. What does $g \cdot \alpha$ look like (where $g \in G$ and $\alpha \in R G)$?

$$
\begin{aligned}
1\left(\lambda_{1} \cdot 1+\lambda_{2} \cdot a+\lambda_{3} \cdot a^{2}\right) & =\lambda_{1} \cdot 1+\lambda_{2} \cdot a+\lambda_{3} \cdot a^{2} \\
(*) a\left(\lambda_{1} \cdot 1+\lambda_{2} \cdot a+\lambda_{3} \cdot a^{2}\right) & =\lambda_{3} \cdot 1+\lambda_{1} \cdot a+\lambda_{2} \cdot a^{2} \\
(* *) a^{2}\left(\lambda_{1} \cdot 1+\lambda_{2} \cdot a+\lambda_{3} \cdot a^{2}\right) & =\lambda_{2} \cdot 1+\lambda_{3} \cdot a+\lambda_{1} \cdot a^{2}
\end{aligned}
$$

Correspondance

$$
1 \longleftrightarrow\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), a \longleftrightarrow\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), a^{2} \longleftrightarrow\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

(these are the basis elements which are acted upon, permuted by left-multiplication by 3×3 matrices).
$\mathcal{T}: 1 \longrightarrow\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,
$a \longrightarrow\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ from $(*) a\left(\lambda_{1} \cdot 1+\lambda_{2} \cdot a+\lambda_{3} \cdot a^{2}\right) \longleftrightarrow a\left(\begin{array}{c}\lambda_{1} \\ \lambda_{2} \\ \lambda_{3}\end{array}\right)=\left(\begin{array}{c}\lambda_{3} \\ \lambda_{1} \\ \lambda_{2}\end{array}\right)$,
$a^{2} \longrightarrow\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$ from $(* *) a^{2}\left(\lambda_{1} \cdot 1+\lambda_{2} \cdot a+\lambda_{3} \cdot a^{2}\right) \longleftrightarrow a^{2}\left(\begin{array}{c}\lambda_{1} \\ \lambda_{2} \\ \lambda_{3}\end{array}\right)=$ $\left(\begin{array}{l}\lambda_{2} \\ \lambda_{3} \\ \lambda_{1}\end{array}\right)$.

Note

$$
\begin{gathered}
a\left(\lambda_{1} \cdot 1+\lambda_{2} \cdot a+\lambda_{3} \cdot a^{2}\right) \\
\longleftrightarrow\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\left(\begin{array}{c}
\lambda_{1} \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
\lambda_{2} \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
\lambda_{3}
\end{array}\right)\right) \\
=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right)=\left(\begin{array}{c}
\lambda_{3} \\
\lambda_{1} \\
\lambda_{2}
\end{array}\right) \\
\left.\longleftrightarrow \lambda_{3} \cdot 1+\lambda_{1} \cdot a+\lambda_{2} \cdot a^{2}\right)
\end{gathered}
$$

We can extend the definition of a left regular group representation to a left regular group ring representation as follows :

Let R be a commutative ring and G a finite group. Define

$$
\mathcal{T}: R G \longrightarrow M_{n}(R), \quad \sum_{g \in G} a_{g} g \mapsto \sum_{g \in G} a_{g} \mathcal{T}_{g}
$$

where \mathcal{T}_{g} acts on the basis $G=\left\{g_{1}=1, g_{2}, \ldots, g_{n}\right\}$ by left multiplication (i.e. $\mathcal{T}_{g}\left(g_{i}\right)=g g_{i}$.

Lemma $3.4 \mathcal{T}$ above is a ring (write $\mathcal{T}_{\alpha}=\mathcal{T}(\alpha)$) homomorphism from the group ring $R G$ to the set of $n \times n$ matrices over R. Also $\mathcal{T}(r \alpha)=r \mathcal{T}(\alpha) \forall r \in$ $R, \forall \alpha \in R G$. Also if R is a field then $\mathcal{T}: R G \longrightarrow M_{n}(R)$ is injective.

Proof. Homework 2.
If R is commutative then define

- $\operatorname{det}(\alpha)=\operatorname{det}(\mathcal{T}(\alpha))$
- $\operatorname{tr}(\alpha)=\operatorname{tr}(\mathcal{T}(\alpha))$
- eigenvalue of $(\alpha)=$ eigenvalue of $(\mathcal{T}(\alpha))$
- eigenvectors of $(\alpha)=$ eigenvectors of $(\mathcal{T}(\alpha))$ where $\alpha \in R G$.

Lemma 3.5 Let K be a field and G a finite group.
(i) If $\alpha \in K G$ is nilpotent (i.e. $\exists m \in N$ such that $\alpha^{m}=0$), then the eigenvalues of $(\mathcal{T}(\alpha))$ are all zero.
(ii) If $\beta \in K G$ is a unit of finite order (i.e. $\exists n \in N$ such that $\beta^{n}=1$), then the eigenvalues of $(\mathcal{T}(\alpha))$ are all $n^{\text {th }}$ roots of unity.
(iii) If $f(\gamma)=0, \exists \gamma \in K G$ and $\exists f \in K[x]$ (the set of all polynomials over K) then $f\left(\lambda_{i}\right)=0 \forall$ eigenvalues λ_{i} of $(\mathcal{T}(\gamma))$

Proof. Note that $(i i i) \Longrightarrow(i)$ and (ii). (i) Let $\alpha \in K G$ with $\alpha^{m}=0$. Let λ be an eigenvalue of $(\mathcal{T}(\alpha))$ i.e. $(\mathcal{T}(\alpha)) X=\lambda X$ where X is a $n \times 1$ column vector with entries in K. Now $(\mathcal{T}(\alpha))^{m} \cdot X=\lambda^{m} \cdot X .(\mathcal{T}(\alpha))^{m} \cdot X=$ $\mathcal{T}(\alpha)^{m} \cdot X=\mathcal{T}(0) \cdot X=0_{n \times n} X=0_{n \times 1}$ since \mathcal{T} is a ring homomorphism.
$\therefore \lambda^{m} \cdot X=0_{n \times 1} \Longrightarrow \lambda^{m}=0_{n \times 1}$ (since K has no zero divisors) $\Longrightarrow \lambda=0$.
(ii) Let $\beta \in K G$ with $\beta^{n}=1$. Let λ be an eigenvalue of $(\mathcal{T}(\beta))$ i.e. $(\mathcal{T}(\beta)) X=\lambda X . \quad$ Now $(\mathcal{T}(\beta))^{n} \cdot X=\lambda^{n} \cdot X . \quad(\mathcal{T}(\beta))^{n} \cdot X=\mathcal{T}\left(\beta^{n}\right) \cdot X=$ $\mathcal{T}(1) \cdot X=I_{n \times n} \cdot X=X . \therefore \lambda^{n} \cdot X=X \Longrightarrow \lambda^{n}=1$ (since K is a field) $\Longrightarrow \lambda$ is an $\mathrm{n}^{\text {th }}$ root of unity.
(iii) Let $f(\gamma)=0 \forall \gamma \in K G$ and $\exists f \in K[x]$. Let λ be an eigenvalue of $(\mathcal{T}(\gamma)) \therefore(\mathcal{T}(\gamma)) X=\lambda X . \Longrightarrow f(\mathcal{T}(\gamma)) \cdot X=f(\lambda) \cdot X$ since \mathcal{T} is a K - linear ring homomorphism on $R G \cdot f(\mathcal{T}(\gamma)) \cdot X=\mathcal{T}(f(\gamma)) \cdot X=\mathcal{T}(0) \cdot X=0 \cdot X=0$. $\therefore f(\lambda) . X=0 \Longrightarrow f(\lambda)=0$.

Example 3.6 Let R be a ring and let G be a finite group. We define the trivial group representation of G as :

$$
\mathcal{T}: G \longrightarrow G L_{n}(R) \quad g \mapsto I_{n \times n}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

$\mathcal{T}(g h)=I_{n \times n} . \mathcal{T}(g) \mathcal{T}(h)=I_{n \times n} . I_{n \times n}=I_{n \times n}$. So $\mathcal{T}: G \longrightarrow\left\{I_{n \times n}\right\} \cong C_{1}$ is a group epimorphism.

We now extend \mathcal{T} to a group ring representation. $\mathcal{T}: R G \longrightarrow M_{n}(R)$ where

$$
\sum_{g \in G} a_{g} g \mapsto \sum_{g \in G} a_{g} \mathcal{T}(g)=\sum_{g \in G}\left(a_{g} I_{n \times n}\right)=\left(\sum_{g \in G} a_{g}\right) I_{n \times n}=\varepsilon\left(\sum_{g \in G} a_{g} g\right) I_{n \times n}
$$

Example 3.7 Let $2 g+(-2 h) \in R G$. Then $\mathcal{T}(2 g+(-2 h))$
$=\varepsilon(2 g+(-2 h)) I_{n \times n}=(2+-2) I_{n \times n}=0 I_{n \times n}=0_{n \times n}=\left(\begin{array}{ccccc}0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 0\end{array}\right)$.
Example 3.8 Let $2 g+(-2 h)+21 \in R G$. Then $\mathcal{T}(2 g+(-2 h)=21)$
$=\varepsilon(2 g+(-2 h)+21) I_{n \times n}=(2+-2+21) I_{n \times n}=21 I_{n \times n}=\left(\begin{array}{ccccc}21 & 0 & 0 & \ldots & 0 \\ 0 & 21 & 0 & \ldots & 0 \\ 0 & 0 & 21 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 21\end{array}\right)$.
Note $\mathcal{T}: R G \longrightarrow M_{n}(R)$ is onto and the $\operatorname{Ker}(\mathcal{T})=\Delta(R G)$.
Lemma 3.9 Let G be a finite group and K a field. Let \mathcal{T} be the left regular representation of $K G$ and let $\gamma=\sum_{g \in G} c_{g} g \in K G$. Then the trace of $\mathcal{T}(\gamma)$ is

$$
\operatorname{tr}(\mathcal{T}(\gamma))=|G| \cdot c_{1}
$$

(where c_{1} is the coefficient of $g_{1}=1$. For example if $\gamma=2+3 g+4 h \in K G$, then $c_{1}=2$).
Proof. The traces of similar matrices are the same and so $\operatorname{tr}(\mathcal{T}(\gamma))$ is independant of choice of basis. Fix the basis $G=\left\{g_{1}=1, g_{2}, \ldots, g_{n}\right\}$ (a K basis of $K G) . \therefore \mathcal{T}(\gamma)=\mathcal{T}\left(\sum_{g \in G} c_{g} g\right)=\sum_{g \in G} c_{g} \mathcal{T}(g)=\sum_{i=1}^{n} c_{g_{i}} \mathcal{T}\left(g_{i}\right)$. If $g \neq 1$, then $g g_{i} \neq g_{i} \forall i$ so g permutes the basis of $K G$.

So the matrix of $\mathcal{T}(g)$ has all zero's in it's main diagonal. Hence the $\operatorname{tr}(\mathcal{T}(g))=0 \forall g \in G$ except for $g=1$.

$$
\begin{aligned}
\therefore \operatorname{tr}(\mathcal{T}(\gamma)) & =\operatorname{tr}\left(\sum_{i=1}^{n} c_{g_{i}} g_{i}\right) \\
& =\sum_{i=1}^{n} c_{g_{i}} \operatorname{tr}\left(\mathcal{T}\left(g_{i}\right)\right) \\
& =c_{g_{1}} \operatorname{tr}\left(\mathcal{T}\left(g_{1}\right)\right)+c_{g_{2}} \operatorname{tr}\left(\mathcal{T}\left(g_{2}\right)\right)+\cdots+c_{g_{n}} \operatorname{tr}\left(\mathcal{T}\left(g_{n}\right)\right) \\
& =c_{g_{1}} \operatorname{tr}\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)+0+\cdots+0 \\
& =c_{g_{1} \cdot} \cdot|G| \\
& =c_{1} \cdot|G|
\end{aligned}
$$

Theorem 3.10 (Berman-Higman) Let $\gamma=\sum_{g \in G} c_{g} g$ be a unit of finite order in $\mathbb{Z} G$, where G is a finite group and $c_{1} \neq 0$. Then $\gamma= \pm 1=c_{1}$.
Proof. Let $|G|=n$ and let $\gamma^{m}=1$. Considering $\mathbb{Z} G$ as a subring of $\mathbb{C} G$, we will consider it's left regular representation and apply the previous lemma. Then $\operatorname{tr}(\mathcal{T}(\gamma))=n . c_{1}$. Now $\gamma^{m}=1$ therefore all the eigenvalues of $\mathcal{T}(\gamma)$ are the $n^{\text {th }}$ roots of unity.
$\therefore \operatorname{tr}(\mathcal{T}(\gamma))=\operatorname{tr}\left(\mathcal{T}\left(\sum_{i=1}^{n} c_{g_{i}} g_{i}\right)\right)=\sum c_{g} \operatorname{tr}(\mathcal{T}(g))=\sum($ eigenvalue of $\operatorname{tr}(\mathcal{T}(\gamma)))$
Now $\mathcal{T}(\gamma)$ is similar to a diagonal matrix $D(\mathcal{T}(\gamma) \sim D)$. So $\operatorname{tr}(\mathcal{T}(\gamma))=\operatorname{tr} D$ $=\sum$ diagonal elements of $D=\sum$ eigenvalues of $D=\sum$ eigenvalue of $\mathcal{T}(\gamma)$
$=\sum_{i=1}^{n} \eta_{i}$ where η_{i} is an $\mathrm{n}^{\text {th }}$ roots of unity.

$$
\begin{aligned}
\therefore n c_{1} & =\sum_{i=1}^{n} \eta_{i} \\
\therefore\left|n c_{1}\right| & =\left|\sum_{i=1}^{n} \eta_{i}\right| \leq \sum_{i=1}^{n}\left|\eta_{i}\right|=n . \\
\therefore\left|c_{1}\right| & \leq 1 \Longrightarrow c_{1}= \pm 1 \\
\therefore n c_{1} & =\sum_{i=1}^{n} \eta_{i}=n \text { or }-n, \text { so } \eta_{i}=\eta_{i} \forall i \\
\text { so } n c_{1} & =n \eta_{i} \Longrightarrow \eta_{i}= \pm 1 \forall i \\
\therefore \mathcal{T}(\gamma) & \sim D=I \text { or } I \\
\therefore \mathcal{T}(\gamma) & =I \text { or } I
\end{aligned}
$$

But $\mathcal{T}: \mathbb{C} G \longrightarrow M_{n}(\mathbb{C})$ is injective, so $\gamma= \pm 1\left(=c_{1}\right)$.

Corollary 3.11 Let $\gamma \in Z(\mathcal{U}(\mathbb{Z} G))$ where $\gamma^{m}=1$ and G is finite. Then $\gamma= \pm g \exists g \in G$. (i.e. all central torsion units are trivial).

Proof. Let $\gamma \in Z(\mathcal{U}(\mathbb{Z} G))$ with $\gamma^{m}=1$ and $|G|=n$. Let $\gamma=\sum_{i=1}^{n} c_{g_{i}} g_{i}$ and let $c_{g_{2}} \neq 0 \exists g_{2} \in G . \therefore \gamma g_{2}^{-1}=\sum_{i=1}^{n} c_{g_{i}} g_{i} g_{2}^{-1}(\star)$ is a unit of finite order in $\mathbb{Z} G\left(\right.$ Let $g_{2}{ }^{m_{2}}=1$, then $\left(\gamma g_{2}{ }^{-1}\right)^{m \cdot m_{2}}=\gamma^{m \cdot m_{2}}\left(g_{2}^{-1}\right)^{m \cdot m_{2}}=1.1=1$ since γ is central).

Now from (\star) the coefficient of 1 in γg_{2}^{-1} is $c_{g_{2}} \neq 0$. Now applying the Berman-Higman theorem to $\gamma g_{2}{ }^{-1}$ to get that

$$
\gamma g_{2}^{-1}= \pm 1=c_{g_{2}} \Longrightarrow \gamma= \pm 1 . g_{2}= \pm g_{2} \exists g_{2} \in G
$$

Theorem 3.12 (Higman) Let A be a finite abelian group. Then the group of torsion units of $\mathbb{Z} A$ equals $\pm A$.

Example 3.13 What are the torsion units of $\mathbb{Z} C_{3}$? Just $\pm C_{3}$.
If $C_{3}=<x \mid x^{3}=1>=\left\{1, x, x^{2},\right\}$, then the torsion units of $\mathbb{Z} C_{3}$ are $\pm C_{3}=\left\{1, x, x^{2},-1,-x,-x^{2}\right\} \cong C_{3} \times C_{2}=<x>\times<-1>\cong C_{6} \cong<-x>$.

Question : Are the torsion units of $R G$ equals $\pm G$ or $\mathcal{U}(R) . G$ for all groups G and rings R ?

Chapter 4

Decomposition of $R G$

Theorem 4.1 Let R be a semisimple ring with

$$
R=\oplus_{i=1}^{t} L_{i}
$$

where the L_{i} are minimal left ideals. Then $\exists e_{1}, e_{2}, \ldots, e_{n} \in R$ such that
(i) $e \neq 0$ is an idempotent for $i=1, \ldots, t$.
(ii) If $i \neq j$, then $e_{i} e_{j}=0$.
(iii) $e_{1}+e_{2}+\cdots+e_{t}=1$.
(iv) e_{i} cannot be written as $e_{i}=e_{i}^{\prime}+e_{i}^{\prime \prime}$ (where e_{i}^{\prime} and $e_{i}^{\prime \prime}$ are idempotents such that $\left.e_{i}^{\prime} e_{i}^{\prime \prime}=0=e_{i}^{\prime \prime} e_{i}^{\prime}\right)$.

Conversely, if $\exists e_{1}, e_{2}, \ldots, e_{t} \in R$ satisfying the four conditions above, then the left ideals $L_{i}=R e_{i}$ are minimal and $R=\oplus_{i=1}^{t} L_{i}$ (and $\therefore R$ is semisimple). Proof. (\Rightarrow). Let $R=\oplus_{i=1}^{t} L_{i}$, where L_{i} is a minimal left ideal (for $i=$ $\{1,2, \ldots, t\}$).
(iii) $1 \in R$, so $1=e_{1}+e_{2}+\cdots+e_{t} \exists e_{i} \in L_{i}$.
(i) Indeed, $e_{i}=1 . e_{i}=\left(e_{1}+e_{2}+\cdots+e_{t}\right) e_{i}=e_{1} e_{i}+e_{2} e_{i}+\cdots+e_{i}^{2}+\cdots+e_{t}$.
$\Longrightarrow \underbrace{e_{i}-e_{i}^{2}}_{\in L_{i}}=\underbrace{e_{1} e_{i}+e_{2} e_{i}+\cdots+e_{i-1} e_{i}+e_{i+1} e_{i}+\cdots+e_{t}}_{L_{1} \oplus L_{2} \oplus \cdots \oplus L_{i-1} \oplus L_{i+1} \oplus \cdots \oplus L_{t}}$.
$\therefore e_{i}-e_{i}{ }^{2} \in L_{1} \oplus L_{2} \oplus \cdots \oplus L_{i-1} \oplus L_{i+1} \oplus \cdots \oplus L_{t} \Longrightarrow e_{i}-e_{i}{ }^{2}=0 \Longrightarrow e_{i}=e_{i}{ }^{2}$.
(ii) $e_{i}=\left(0, \ldots, 0,1 . e_{i}, 0, \ldots, 0\right) \in L_{1} \oplus \cdots \oplus L_{t} . \therefore e_{i} e_{j}=$ $\left(0, \ldots, 0,1 . e_{i}, 0, \ldots, 0\right)\left(0, \ldots, 0,1 . e_{j}, 0, \ldots, 0\right)=(0, \ldots, 0)=0$.
(iv) Assume that (iv) does not hold, so $e_{i}=e_{i}^{\prime}+e_{i}^{\prime \prime}$, (where e_{i}^{\prime} and $e_{i}^{\prime \prime}$ are idempotents such that $\left.e_{i}^{\prime} e_{i}^{\prime \prime}=0=e_{i}^{\prime \prime} e_{i}^{\prime}\right)$. Note that $R=\oplus_{i=1}^{t} L_{i}=\oplus_{i=1}^{t} R e_{i}$. $R e_{i} \subset L_{i}$ since $e_{i} \in L_{i}$ and L_{i} is a left ideal. Show $L_{i} \subset R e_{i}$. Let $a \in L_{i}$. Then $a=a .1=a\left(e_{1}+e_{2}+\cdots+e_{t}\right)=a e_{1}+a e_{2}+\cdots+a e_{t}$.
$\Longrightarrow \underbrace{a-a e_{i}}_{\in L_{i}}=\underbrace{a e_{1}+a e_{2}+\cdots+a e_{i-1}+a e_{i+1}+\cdots+a e_{t}}_{L_{1} \oplus L_{2} \oplus \cdots \oplus L_{i-1} \oplus L_{i+1} \oplus \cdots \oplus L_{t}}$.
$\therefore a-a e_{i}=0 \Longrightarrow a=a e_{i} \in R e_{i}$ and so $R e_{i}=l_{i}$.
$L_{i}=R e_{i}=R\left(e_{i}^{\prime}+e_{i}^{\prime \prime}\right)=R e_{i}^{\prime} \oplus R e_{i}^{\prime \prime}$. Now $R e_{i}^{\prime}$ and $R e_{i}^{\prime \prime}$ are left ideal so L_{i} is not minimal. This is a contradiction.
(\Leftarrow) skip.

Note : A set of idempotents $\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$ with properties (i),(ii) and (iii) above are called complete family of orthogonal idempotents. If $\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$ has the property of (i)-(iv), then it is called a set of primitive idempotents.

Theorem 4.2 (Wedderburn-Artin Theorem) R is a semisimple ring if and only if R can be decomposed as a direct sum of finitely many matrix rings over division rings.

$$
\text { i.e. } R \cong M_{n_{1}}\left(D_{1}\right) \oplus M_{n_{2}}\left(D_{2}\right) \oplus \cdots \oplus M_{n_{s}}\left(D_{s}\right)
$$

where D_{i} is a division ring and $M_{n_{i}}\left(D_{i}\right)$ is the ring of $n_{i} \times n_{i}$ matrices over D_{i}.

Theorem 4.3 Let R be a semisimple ring. Then the wedderburn-artin decomposition above is unique.

$$
\text { i.e. } R \cong \oplus_{i=1}^{s} M_{n_{i}}\left(D_{i}\right) \cong \oplus_{i=1}^{t} M_{m_{i}}\left(D_{i^{\prime}}\right) \Longrightarrow s=t
$$

and after permuting indices $n_{i}=m_{i}$ and $D_{i}=D_{i^{\prime}} \forall i \in 1, \ldots, s$.
Theorem 4.4 (Maschke's Theorem) Let G be a group and R a ring. Then $R G$ is semisimple if the following conditions hold:
(i) R is semisimple
(ii) G is finite
(iii) $|G|$ is invertible in R.

Corollary 4.5 Let G be a group and K a field. Then $K G$ is semisimple if and only if G is finite and the characteristic $K \nmid|G|$.

Proof. First note that any field K is semisimple ($K=M_{1}(K)$ and use a previous lemma).
(\Leftarrow) Let $|G|<\infty$ and char $K \nmid|G|$. So $|G| \in K \backslash\{0\}$.
$(\Rightarrow)|G|$ is invertible in K. Now apply maschke's theorem \Longrightarrow let $K G$ be semisimple. G is finite by maschke's and also $|G|$ is invertible in K so $|G| \in K \backslash\{0\}$. So $|G|$ is not a multiple of char $K \in K . \therefore K \nmid|G|$.

Theorem 4.6 Let G be a finite group and K a finite field such that char $K \nmid|G|$. Then $K G \cong \oplus_{i=1}^{s} M_{n_{i}}\left(D_{i}\right)$ where D_{i} is a division ring containing K in it's center and

$$
|G|=\sum_{i=1}^{s}\left(n_{i}{ }^{2} \cdot \operatorname{dim}_{K}\left(D_{i}\right)\right)
$$

Definition 4.7 A field K is algebraically closed if contains all of the roots of the polynomials in $K[x]$.

Example $4.8 \mathbb{C}$ is algebraically closed, while \mathbb{H} is not.
Corollary 4.9 Let G be a finite group and K an algebraically closed field, where char $K \nmid|G|$. Then

$$
K G \cong \oplus_{i=1}^{s} M_{n_{i}}(K) \quad \text { and } \quad|G|=\sum_{i=1}^{s} n_{i}^{2}
$$

Example $4.10 \mathbb{C} C_{3}$. Note that C_{3} is finite and char $\mathbb{C}=0 \nmid 3$ so maschke's theorem does apply and

$$
\mathbb{C} C_{3} \cong \oplus_{i=1}^{s} M_{n_{i}}\left(D_{i}\right)=\oplus_{i=1}^{s} M_{n_{i}}(\mathbb{C}) \text { by the corollary above }
$$

Counting dimensions we see that $3=\sum_{i=1}^{s} n_{i}{ }^{2}=\sum_{i=1}^{3} 1^{2} . \therefore D_{i}=\mathbb{C}, n_{i}=1 \forall i$ and $s=3 . \therefore \mathbb{C} C_{3} \cong \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} . \therefore \mathcal{U}\left(\mathbb{C} C_{3}\right) \cong \mathcal{U}(\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C})=\mathcal{U}(\mathbb{C}) \times$ $\mathcal{U}(\mathbb{C}) \times \mathcal{U}(\mathbb{C})$.

The zero divisors of $\mathbb{C} C_{3}$ correspond bijectively to the zero divisors of $\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$

$$
=\{(a, b, 0) \mid a, b \in \mathbb{C}\} \cup\{(a, 0, c) \mid a, c \in \mathbb{C}\} \cup\{(0, b, c) \mid b, c \in \mathbb{C}\}
$$

Example $4.11 \mathbb{C} S_{3} . S_{3}$ is finite and $\mathbb{C}=0 \nmid 6$ so maschke's theorem does apply and

$$
\mathbb{C} S_{3} \cong \oplus_{i=1}^{s} M_{n_{i}}\left(D_{i}\right)=\oplus_{i=1}^{s} M_{n_{i}}(\mathbb{C})
$$

$6=1^{2}+1^{2}+2^{2}$ or $6=\sum_{i=1}^{6} 1^{2}$. So $\mathbb{C} S_{3} \cong \mathbb{C} \oplus \mathbb{C} \oplus M_{2}(\mathbb{C})$ or
$\mathbb{C} S_{3} \cong \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$. But $\oplus_{i=1}^{6} \mathbb{C}$ is a commutative ring so $\mathbb{C} S_{3} \not \not ⿻ \oplus_{i=1}^{6} \mathbb{C}$.
$\therefore \mathbb{C} S_{3} \cong \mathbb{C} \oplus \mathbb{C} \oplus M_{2}(\mathbb{C})$ and $\therefore \mathcal{U}\left(\mathbb{C} S_{3}\right) \cong \mathcal{U}(\mathbb{C}) \times \mathcal{U}(\mathbb{C}) \times G L_{2}(\mathbb{C})$. The zero divisors of $\mathbb{C} S_{3}$ correspond bijectively to the zero divisors of $\mathbb{C} \oplus \mathbb{C} \oplus M_{2}(\mathbb{C})$.

$$
\begin{aligned}
& =\left\{(a, b, A) \mid a, b, \in \mathbb{C}, A \in \mathcal{Z D}\left(M_{2}(\mathbb{C})\right)\right\} \\
& =\left\{(a, 0, A) \mid a, \in \mathbb{C}, A \in \mathcal{Z D}\left(M_{2}(\mathbb{C})\right)\right\} \cup\left\{(0, b, A) \mid b, \in \mathbb{C}, A \in \mathcal{Z D}\left(M_{2}(\mathbb{C})\right)\right\}
\end{aligned}
$$

Example $4.12 \mathbb{F}_{2} C_{2}$ does not compose as $\oplus_{i=1}^{s} M_{n_{i}}\left(D_{i}\right)$ since $2 \mid 2$ (i.e char $\left.\mathbb{F}_{2}| | G \mid\right)$.

Theorem 4.13 (Wedderburn) A finite division ring is a field.
Example $4.14 \mathbb{F}_{3} C_{2}$. Maschke's theorem applies since $\left|C_{2}\right|<\infty$ and char $\mathbb{F}_{3} \nmid\left|C_{2}\right| . \therefore \mathbb{F}_{3} C_{2} \cong \oplus_{i=1}^{s} M_{n_{i}}\left(D_{i}\right) .2=\sum_{i=1}^{s}\left(n_{i}{ }^{2} . \operatorname{dim}_{\mathbb{F}_{3}}\left(D_{i}\right)\right)$. Note that \mathbb{F}_{3} is not algebraically closed (check). So we need $\operatorname{dim}_{\mathbb{F}_{3}}\left(D_{i}\right)$. Now $2=1+1=$ 1.2. So $\operatorname{dim}_{\mathbb{F}_{3}}(D)=1$ or 2 . $\therefore \mathbb{F}_{3} C_{2} \cong \mathbb{F}_{3} \oplus \mathbb{F}_{3}$ or $\therefore \mathbb{F}_{3} C_{2} \cong D$ where $\operatorname{dim}_{\mathbb{F}_{3}}(D)=2$.

$$
\therefore \mathbb{F}_{3} C_{2} \cong \mathbb{F}_{3} \oplus \mathbb{F}_{3} \text { or } \mathbb{F}_{3^{2}}
$$

Question : Which one is it ?

Theorem 4.15 The unit group of any finite field $\mathbb{F}_{p^{n}}$ (with p a prime) is cyclic of order $p^{n}-1$. So $\mathcal{U}\left(\mathbb{F}_{p^{n}}\right) \cong C_{p^{n}-1}$. So any element of $\mathbb{F}_{p^{n}}$ has (multiplicative) order dividing $p^{n}-1$.

Example 4.16 Consider $\mathbb{F}_{5} .1=1.2^{2}=4,2^{3}=3,2^{4}=1.3^{2}=4$, $3^{3}=2,3^{4}=1.4^{2}=1$. Therefore the elements of $\mathcal{U}\left(\mathbb{F}_{5}\right)$ have order $1,4,4,2$. These all divide $5-1=4$.

Thus $\mathcal{U}\left(\mathbb{F}_{3} C_{2}\right) \cong \mathcal{U}\left(\mathbb{F}_{3}\right) \times \mathcal{U}\left(\mathbb{F}_{3}\right)=C_{2} \times C_{2}$ or $\mathcal{U}\left(\mathbb{F}_{3} C_{2}\right) \cong \mathcal{U}\left(\mathbb{F}_{3^{2}}\right)=C_{3^{2}-1}=$ C_{8}. However (by homework 1) $\mathcal{U}\left(\mathbb{F}_{3} C_{2}\right) \cong C_{2} \times C_{2}$. So $\mathbb{F}_{3} C_{2} \nsubseteq \mathbb{F}_{3^{2}}$ so

$$
\mathbb{F}_{3} C_{2} \cong \mathbb{F}_{3} \oplus \mathbb{F}_{3}
$$

(Alternatively, note that $\mathcal{U}\left(\mathbb{F}_{3} C_{2}\right)$ and $\mathbb{F}_{3} \oplus \mathbb{F}_{3}$ contain zero divisors but $\mathbb{F}_{3^{2}}$ does not).

Theorem 4.17 Let G be a finite group and K a field such that char $K \nmid|G|$. Then

$$
K G \cong \oplus_{i=1}^{s} M_{n_{i}}\left(D_{i}\right) \cong K \oplus \oplus_{i=1}^{s-1} M_{n_{i}}\left(D_{i}\right)
$$

(i.e. the field itself appears at least once as a direct summand in the WedderburnArtin decomposition).
Proof. Later

Lemma 4.18 Let K be a finite field. Then if char $K \nmid|G|<\infty$, then

$$
K G \cong \oplus_{i=1}^{s} M_{n_{i}}\left(K_{i}\right)
$$

where the K_{i} are fields (i.e. all the division rings appearing are fields).
Proof. Clearly $K G \cong \oplus_{i=1}^{s} M_{n_{i}}\left(D_{i}\right)$ where the D_{i} are division rings. But D_{i} is a division ring such that $\operatorname{dim}_{K} D_{i}<\infty$ (since G is finite). Now Wedderburn's theorem implies that D_{i} must be a field.

Example 4.19 Consider $\mathbb{F}_{5} S_{3} . \mathbb{F}_{5} S_{3} \cong \oplus_{i=1}^{s} M n_{i}\left(D_{i}\right) \cong \mathbb{F}_{5} \oplus \oplus_{i=1}^{s-1} M_{n_{i}}\left(D_{i}\right) \cong$ $\mathbb{F}_{5} \oplus \oplus_{i=1}^{s-1} M_{n_{i}}\left(K_{i}\right)$.
$\therefore \oplus_{i=1}^{s-1} M_{n_{i}}\left(K_{i}\right)$ is a 5 -dimensional vectors space over \mathbb{F}_{5}. But $\mathbb{F}_{5} S_{3}$ is non-commutative so $n_{i}>1 \exists i$.

$$
\begin{gathered}
\therefore \oplus_{i=1}^{s-1} M_{n_{i}}\left(K_{i}\right)=\mathbb{F}_{5} \oplus M_{2}\left(\mathbb{F}_{5}\right) \\
\therefore \mathbb{F}_{5} S_{3} \cong \oplus_{i=1}^{s} M n_{i}\left(K_{i}\right) \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus M_{2}\left(\mathbb{F}_{5}\right) \\
\therefore \mathcal{U}\left(\mathbb{F}_{5} S_{3}\right) \cong \mathcal{U}\left(\mathbb{F}_{5}\right) \times \mathcal{U}\left(\mathbb{F}_{5}\right) \times \mathcal{U}\left(M_{2}\left(\mathbb{F}_{5}\right)\right) \cong C_{4} \times C_{4} \times G L_{2}\left(\mathbb{F}_{5}\right)
\end{gathered}
$$

$G L_{2}\left(\mathbb{F}_{5}\right)=\left\{A \in M_{2}\left(\mathbb{F}_{5}\right) \mid \operatorname{det} A=0\right\}=\left\{A \in M_{2}\left(\mathbb{F}_{5}\right) \mid\right.$ rows of A are linearly independant.
Check : $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$. Now let's count the size of $G L_{2}\left(\mathbb{F}_{5}\right):$

There are $5^{2}-1=24$ choices for the first row (not including the zero row) and there are $5^{2}-5=20$ choices for the second row (not a multiple of the first row). $\therefore\left|G L_{2}\left(\mathbb{F}_{5}\right)\right|=\left(5^{2}-1\right)\left(5^{2}-5\right)=480 . \therefore \mathcal{U}\left(\mathbb{F}_{5} S_{3}\right)$ has order 4.4.480 $=7680$.

Theorem $4.20 G L_{2}\left(\mathbb{F}_{p}\right)$ is a non abelian group of order $\left(p^{2}-1\right)\left(p^{2}-p\right)$. $G L_{2}\left(\mathbb{F}_{p^{n}}\right)$ is a non abelian group of order $\left(p^{2 n}-1\right)\left(p^{2 n}-p^{n}\right) . G L_{3}\left(\mathbb{F}_{p^{n}}\right)$ is a non abelian group of order? (Homework).

Definition 4.21 Let $x \in G$ be an element of order n (i.e. $x^{n}=1$). Then define

$$
\widehat{x}=1+x+x^{2}+\cdots+x^{n-1} \in R G
$$

Definition 4.22 Let $H<G\left(H\right.$-finite so $\left.H=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}\right)$. Then define

$$
\widehat{H}=h_{1}+h_{2}+\cdots+h_{n} \in R H \subset R G
$$

So $\widehat{x}=<x>\in R<x>\subset R G$.
Lemma 4.23 Let H be a finite subgroup of G and R any ring (with unity). If $|H|$ is invertible in R then $e_{H}=\frac{1}{|H|} . \widehat{H} \in R H$ is an idempotent. Moreover if $H \triangleleft G$ then $e_{H}=\frac{1}{|H|} \widehat{H}$ is central in $R G$.

Proof. (i) $H<G$.

$$
\begin{aligned}
e_{H}^{2} & =\frac{1}{|H|} \cdot \widehat{H} \frac{1}{|H|} \cdot \widehat{H} \\
& =\frac{1}{|H|^{2}} \sum_{i=1}^{n} h_{i} \widehat{H} \quad \text { where }|H|=n \\
& =\frac{1}{|H|^{2}} \sum_{i=1}^{n} \widehat{H} \\
& =\frac{1}{|H|^{2}} \cdot n \cdot \widehat{H} \\
& =\frac{1}{|H|^{2}} \cdot|H| \cdot \widehat{H} \\
& =\frac{1}{|H|} \cdot \widehat{H}=e_{H}
\end{aligned}
$$

(ii) Let $H \triangleleft G$. We will show that e_{H} commutes with every element of $R G$. It suffices to show that e_{H} commutes with every element of G. So we must show that $e_{H}{ }^{g}=g^{-1} e_{H} g=e_{H} \forall g \in G$. Now $e_{H}{ }^{g}=g^{-1} \frac{1}{|H|} \cdot \widehat{H} g$ $=\frac{1}{|H|} g^{-1}\left(h_{1}+h_{2}+\cdots+h_{n}\right) g=\frac{1}{|H|}\left(h_{1}+h_{2}+\cdots+h_{n}\right)=e_{H}$.

Definition 4.24 Let X be a subset of $R G$. Then the left-annihilator of X in $R G$ is

$$
\operatorname{ann}_{l}(X)=\{\alpha \in R G \mid \alpha \cdot x=0 \forall x \in X\}
$$

Similarly we can define the right-annihilator of X in $R G$ is

$$
\operatorname{ann}_{r}(X)=\{\alpha \in R G \mid x . \alpha=0 \forall x \in X\}
$$

Definition $4.25 \Delta_{R}(G, H)=\left\{\sum_{h \in H} \alpha_{h}(h-1) \mid \alpha_{h} \in R G\right\}$ We usually write $\Delta_{R}(G, H)=\Delta(G, H)$.
Note : $\Delta(G, H) \stackrel{l}{\triangleleft} R G$ (left ideal, check).
Note : $\Delta(G, G)=\Delta(G)$.

Lemma 4.26 Let $H<G$ and R a ring. Then $\operatorname{ann}_{r}(\Delta(G, H)) \neq 0$ iff H is finite. In this case

$$
a_{n n_{l}}(\Delta(G, H))=\widehat{H} \cdot R G
$$

Furthermore, if $H \triangleleft G$ then \widehat{H} is central in $R G$ and

$$
a_{n n_{r}}(\Delta(G, H))=a_{n n_{l}}(\Delta(G, H))=\widehat{H} \cdot R G=R G \cdot \widehat{H}
$$

Proof. (\Rightarrow). Let's assume that $\operatorname{ann}_{r}(\Delta(G, H)) \neq 0$ and let $0 \neq \alpha=$ $\sum a_{g} g \in a_{n n_{r}}(\Delta(G, H))$. So if $h \in H$ we get $(h-1) \alpha=0$ (since $h-1 \in$ $\Delta(G, H))$.
$\Longrightarrow h \alpha=\alpha$, so $\sum a_{g} g=\sum a_{g} h_{g}$. Let $g_{0} \in \operatorname{supp} \alpha$, so $\alpha_{g_{0}} \neq 0$. So $h g_{0} \in \operatorname{supp} \alpha \forall h \in H$. But $\operatorname{supp} \alpha$ is finite so H is finite.
(\Leftarrow). Conversely, let H be finite. $\therefore \widehat{H}$ exists and $\widehat{H} \in \operatorname{ann}_{r}(\Delta(G, H))$. $\therefore a_{n n_{r}}(\Delta(G, H)) \neq 0$.
$"$ In this case \ldots ": Assume that $a_{n n_{r}}(\Delta(G, H)) \neq 0$ i.e. H is finite. Let $0 \neq \alpha=\sum a_{g} g \in a_{n n_{r}}(\Delta(G, H))$. As before $\alpha_{g_{0}}=\alpha_{h g_{0}}$.

Now we can partition G into it's cosets (generated by H) to get

$$
\begin{aligned}
\alpha & =\sum a_{g} g \\
& =a_{g_{0}} \widehat{H} g_{0}+a_{g_{1}} \widehat{H} g_{1}+\cdots+a_{g_{t}} \widehat{H} g_{t} \\
& =\widehat{H}\left(\sum_{i=1}^{t} a_{g_{i}} g_{i}\right) \\
& =\widehat{H} B \exists B \in R G \\
& \therefore \operatorname{ann}_{r}(\Delta(G, H)) \subset \widehat{H} . R G .
\end{aligned}
$$

Clearly $\widehat{H} . R G \subset \operatorname{ann}_{r}(\Delta(G, H))($ since $(h-1) \widehat{H} R G=0 . R G=0)$.
"Furthermore ..." easy.

Proposition 4.27 Let R be a ring and $H \triangleleft G$. If $|H|$ is invertible in R then letting $e_{H}=\frac{1}{|H|} \cdot \widehat{H}$ we have

$$
R G \cong R G . e_{H} \oplus R G\left(1-e_{H}\right)
$$

where $R G \cdot e_{H} \cong R(G / H)$ and $R G\left(1-e_{H}\right) \cong \Delta(G, H)$.

Proof. e_{H} is a central idempotent. By the Pierce decomposition

$$
R G \cong R G \cdot e_{H} \oplus R G\left(1-e_{H}\right)
$$

Now show $R G . e_{H} \cong R(G / H)$. Consider $\phi: G \longrightarrow G e_{H}$ where $g \mapsto g e_{H}$. This is a group epimorphism since $\phi(g h)=g h e_{h}=g h e_{H}^{2}=g e_{H} h e_{H}=\phi(g) \phi(h)$. $\operatorname{Ker} \phi=\left\{g \in G \mid g e_{H}=e_{H}\right\}=\left\{g \in G \mid g e_{H}-e_{H}=0\right\}=\left\{g \in G \mid(g-1) e_{H}=\right.$ $0\}=H$ since $(g-1) \frac{1}{|H|} \widehat{H}=0 \Longrightarrow g \widehat{H}=\widehat{H}$.

$$
\therefore \frac{G}{K e r \phi}=\frac{G}{H} \cong \operatorname{Im} \phi=G e_{H}
$$

(by the $1^{\text {st }}$ Isomorphism Theorem of Groups). Now $G e_{H}$ is a basis of the group ring $R G e_{H}$ so $R G . e_{H} \cong R(G / H)$.

Now show $R G\left(1-e_{H}\right) \cong \Delta(G, H) . R G\left(1-e_{H}\right)=\left\{\alpha \in R G \mid \alpha R G e_{H}=0\right\}$ $=a_{n n}\left(R G e_{H}\right)$. Clearly, $\Delta(G, H) \subset a_{n n}\left(R G e_{H}\right)$ since $\sum_{h \in H} \alpha_{h}(1-h) R G e_{H}$
$=\sum_{h \in H} \alpha_{h}(1-h) \frac{1}{|H|} \cdot \widehat{H} R G=0$. It remains to show that $\operatorname{ann}\left(R G e_{H}\right) \subset \Delta(G, H)$ (skip).

Corollary 4.28 Let R be a ring and G a finite group with $|G|$ invertible in R. Then

$$
R G \cong R \oplus \Delta(G)
$$

Proof. Let $H=G \triangleleft G$ in the previous proposition.

$$
\begin{aligned}
\therefore R G & \cong R(G / G) \oplus \Delta(G, G) \\
& \cong R\{1\} \oplus \Delta(G) \\
& \cong R \oplus \Delta(G)
\end{aligned}
$$

Lemma 4.29 Let $H<G$ and S a set of generators of H. Then $\{s-1 \mid s \in S\}$ is a set of generators of $\Delta(G, H)$, as a left ideal of $R G$.

Proof. Let $H=<s>$. Let $1 \neq h \in H \therefore h=s_{1}{ }^{\varepsilon_{1}} s_{2}{ }^{\varepsilon_{2}} \ldots s_{r}{ }^{\varepsilon_{r}}$, where $s_{i} \in S$ and $\varepsilon_{i}= \pm 1$. Recall

$$
\Delta_{R}(G, H)=\left\{\sum_{h \in H} \alpha_{h}(h-1) \mid \alpha_{h} \in R G\right\} .
$$

So we must show that $h \in H \Longrightarrow h-1 \in R G\{s-1 \mid s \in S\}$. Now $h-1=$ $s_{1}{ }^{\varepsilon_{1}} \ldots s_{r}{ }^{\varepsilon_{r}}-1=\left(s_{1}{ }^{\varepsilon_{1}} \ldots s_{r-1}{ }^{\varepsilon_{r-1}}\right)\left(s_{r}{ }^{\varepsilon_{r}}-1\right)+\left(s_{1}{ }^{\varepsilon_{1}} \ldots s_{r-1}{ }^{\varepsilon_{r-1}}-1\right)$.

If $\varepsilon_{r}=1$ then we are done (by induction on r). If $\varepsilon_{r}=-1$, then use $s_{r}^{-1}-1=s_{r}^{-1}\left(1-s_{r}\right)=-s_{r}^{-1}\left(s_{r}-1\right)$ and $h-1 \in R G\{s-1 \mid s \in S\}$.

Note : we used $x^{-1}-1-x^{-1}(1-x)$ and $x y-1=x(y-1)+(x-1)$ and induction on r.

Recall : If $N \triangleleft G$ then G / N is commutative if and only if $G^{\prime}<N$.
Lemma 4.30 Let R be a commutative ring and I an ideal of $R G$. Then $R G / I$ is commutative if and only if $\Delta\left(G, G^{\prime}\right) \subset I$.

Proof. Let $I \triangleleft R G, R$ commutative. $(\Rightarrow) . R G / I$ commutative $\Longrightarrow \forall g, h \in$ G we have $g h-h g \in I . g h=h g=h g\left(g^{-1} h^{-1} g h-1\right)=h g([h, g]-1) \in I$. $\Longrightarrow[h, g]-1 \in I . \therefore \Delta\left(G, G^{\prime}\right) \subset I$ (by the previous lemma).
(\Leftarrow). Assume $\Delta\left(G, G^{\prime}\right) \subset I$. Then $g h-h g=h g([h, g]-1) \in \Delta\left(G, G^{\prime}\right) \subset I$. $\therefore g h=h g \bmod \Delta\left(G, G^{\prime}\right)$, so g and h commute modulo I so $R G / I$ is commutative.

Proposition 4.31 Let G be finite. Let $R G$ be semisimple (i.e. $R G \cong$ $\oplus_{i=1}^{s} M_{n_{i}}\left(D_{i}\right)$). Let $e_{G^{\prime}}=\frac{1}{\left|G^{\prime}\right|} \cdot \widehat{G^{\prime}}$. Then

$$
R G \cong R G e_{G^{\prime}} \oplus R G\left(1-e_{G^{\prime}}\right) \cong R\left(G / G^{\prime}\right) \oplus \Delta\left(G, G^{\prime}\right)
$$

Here $R\left(G / G^{\prime}\right)$ is the direct sum of all the commutative summands of the decomposition of $R G$ and $\Delta\left(G, G^{\prime}\right)$ is the direct sum of all the non-commutative summands of the decomposition of $R G$.

Proof. Clearly $R G \cong R\left(G / G^{\prime}\right) \oplus \Delta\left(G, G^{\prime}\right)$. Now it is also clear that $R\left(G / G^{\prime}\right) \cong \oplus$ sum of the commutative summands of $R G$. It suffices to show that $\Delta\left(G, G^{\prime}\right)$ contains no commutative summands.

Assume $\Delta\left(G, G^{\prime}\right) \cong A \oplus B$ where A is commutative (and $\neq\{0\}$). Thus $R G \cong R\left(G / G^{\prime}\right) \oplus A \oplus B$. Now $R G / B \cong R\left(G / G^{\prime}\right) \oplus A$ (check). (In general, $R \cong C \oplus D \Longrightarrow R / C \cong D)$. So $R G / B$ is commutative, so by the previous lemma , $\Delta\left(G, G^{\prime}\right) \subset B$. Thus $\Delta\left(G, G^{\prime}\right) \cong A \oplus B \subset B$ which is a cotradiction.

Definition 4.32 $D_{2 n}=<x, y \mid x^{n}=y^{2}=1, y x y=x^{-1}>$ is called the dihedral group of order $2 n$.
Note : $D_{2.3}=D_{6} \cong S_{3}$.
Example 4.33 $\mathbb{F}_{3} D_{10}$. Note that Maschke applies so $\mathbb{F}_{3} D_{10} \cong \oplus_{i=1}^{s} M_{n_{i}}\left(D_{i}\right)$ $\cong \oplus_{i=1}^{s} M_{n_{i}}\left(K_{i}\right)$ (where K_{i} are finite fields containing $\left.\mathbb{F}_{3}\right) \mathbb{F}_{3} \oplus \oplus_{i=1}^{t} M_{n_{i}}\left(K_{i}\right)$

Note : $D_{10}=<x, y \mid x^{5}=y^{2}=1, y x y=x^{4}>. \therefore[x, y]=x^{-1} y^{-1} x y=$ $x^{4} y x y=x^{4} \cdot x^{4}=x^{8}=x^{3} . \therefore D_{10}{ }^{\prime}><x^{3}>$ so $D_{10}><x>\cong C_{5}$.
$\therefore \mathbb{F}_{3} D_{10} \cong \mathbb{F}_{3}\left(D_{10} / D_{10}{ }^{\prime}\right) \oplus$ non-commutative piece $\cong \mathbb{F}_{3} C_{2} \oplus$ non-commutative piece $\cong \mathbb{F}_{3} \oplus \mathbb{F}_{3} \oplus$ non-commutative piece. By counting dimensions we get either

$$
\mathbb{F}_{3} D_{10} \cong \mathbb{F}_{3} \oplus \mathbb{F}_{3} \oplus M_{2}\left(\mathbb{F}_{3}\right) \oplus M_{2}\left(\mathbb{F}_{3}\right)
$$

or

$$
\mathbb{F}_{3} D_{10} \cong \mathbb{F}_{3} \oplus \mathbb{F}_{3} \oplus M_{2}\left(\mathbb{F}_{3^{2}}\right)
$$

Example $4.34 \mathbb{F}_{5} D_{12} .5 \nmid 12$ so maschke applies. $\mathbb{F}_{5} D_{12} \cong \oplus_{i=1}^{s} M_{n_{i}}\left(D_{i}\right) \cong$

$$
\begin{aligned}
\mathbb{F}_{5} \oplus_{i=1}^{s-1} M_{n_{i}}\left(K_{i}\right) & . D_{12}=<x, y \mid x^{6}=y^{2}=1, y x y=x^{5}>. D_{12}^{\prime}=? \\
{\left[x^{i} y^{j}, x^{k} y^{l}\right] } & =y^{-j} x^{-i} y^{-l} x^{-k} x^{i} y^{j} x^{k} y^{l} \quad i, k \in\{0,1,2,3,4,5\} j, l \in\{0,1\} \\
& =y^{j} x^{-i} y^{l} x^{-k} x^{i} y^{j} x^{k} y^{l} \\
& =x^{(-i)(-1) j} y^{j+l} x^{i-k} y^{j} x^{k} y^{l} \\
& =x^{(-i) j(-1)} x^{(i-k)(-1)(j+l)} y^{j+j+l} x^{k} y^{l} \\
& =x^{(-i) j(-1)+(i-k)(-1)(j+l)} x^{k(-1)(2 j+l)} y^{2 j+2 l} \\
& =x^{(-i) j(-1)+(i-k)(-1)(j+l)+k(-1)(2 j+l)} .1 \\
& =x^{[(-i) j(-1)+(i)(-1)(j+l)]+[(-k)(-1)(j+l)+k(-1)(2 j+l)]} \\
& =x^{i\{(-1) j(-1)+(-1)(j+l)\}+k\{(-1)(-1)(j+l)+(-1)(2 j+l)\}}
\end{aligned}
$$

Now consider a number of cases
(i) j and l even:

$$
[,]=x^{i\{-1+1\}+k\{(-1)+1\}}=x^{0}=1
$$

(ii) j even and lodd:

$$
[,]=x^{i\{-1+(-1)\}+k\{1+(-1)\}}=x^{-2 i}
$$

(iii) j odd and l even:

$$
[,]=x^{i\{1+(-1)\}+k\{1+1\}}=x^{2 k}
$$

(iii) j and l odd:

$$
\begin{gathered}
{[,]=x^{i\{1+1\}+k\{-1+(-1)\}}=x^{2 i-2 k}} \\
\therefore D_{12}^{\prime}=\left\{1, x^{2}, x^{4}\right\} \cong C_{3} \\
\therefore D_{12} / D_{12}^{\prime} \cong C_{4} \text { or } C_{2} \times C_{2} \text { (considering sizes) }
\end{gathered}
$$

Note : $D_{12} \cong D_{6} \times C_{2}$ also $C_{12} \not \approx C_{6} \times C_{2}$ but $C_{12} \cong C_{3} \times C_{4}$. $D_{12} \cong D_{6} \times$ $C_{2}=<x^{2}, y \mid\left(x^{2}\right)^{3}=y^{2}=1, y\left(x^{2}\right) y=\left(x^{2}\right)^{-1}>\times<x^{3}>=\left\{x^{2 i} \cdot y^{j} \cdot x^{3 k} \mid i \in\right.$ $\{0,1,2\}, j \in\{0,1\}, k \in\{0,1\}\}$.

$$
\therefore \frac{D_{12}}{D_{12}{ }^{\prime}} \cong \frac{D_{6} \times C_{2}}{C_{3}} \cong \frac{D_{6}}{C_{3}} \times C_{2}=C_{2} \times C_{2}
$$

$$
\begin{array}{r}
\mathbb{F}_{5} D_{12} \cong \mathbb{F}_{5}\left(C_{2} \times C_{2}\right) \oplus N C P \\
\mathbb{F}_{5} D_{12} \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus N C P
\end{array}
$$

$\therefore N C P$ has dimension 8. So $N C P \cong M_{2}\left(\mathbb{F}_{5}\right) \oplus M_{2}\left(\mathbb{F}_{5}\right)$ or $N C P \cong M_{2}\left(\mathbb{F}_{5^{2}}\right)$.
So $\mathcal{U}\left(\mathbb{F}_{5} D_{12}\right) \cong C_{4} \times C_{4} \times C_{4} \times C_{4} \times G L_{2}\left(\mathbb{F}_{5}\right) \times G L_{2}\left(\mathbb{F}_{5}\right)$ or $\mathcal{U}\left(\mathbb{F}_{5} D_{12}\right) \cong C_{4} \times C_{4} \times C_{4} \times C_{4} \times G L_{2}\left(\mathbb{F}_{5^{2}}\right)$.

$$
\left|\mathcal{U}\left(\mathbb{F}_{5} D_{12}\right)\right|=(p-1)^{4}\left\{\left(p^{2}-1\right)\left(p^{2}-p\right)\right\}^{2}=4^{4}\{(24)(20)\}^{2}=2^{18} 3^{2} 5^{2}
$$

or

$$
\left|\mathcal{U}\left(\mathbb{F}_{5} D_{12}\right)\right|=(p-1)^{4}\left\{\left(q^{2}-1\right)\left(q^{2}-q\right)\right\}=4^{4}\left\{\left(\left(5^{2}\right)^{2}-1\right)\left(\left(5^{2}\right)^{2}-5^{2}\right)\right\}
$$

Note that $D_{12}<\mathcal{U}\left(\mathbb{F}_{5} D_{12}\right.$ so $12| | \mathcal{U}\left(\mathbb{F}_{5} D_{12}\right) \mid$. But 12 divides the order of both cases so this does not help to differentiate between them. Also, $U=$ $\mathcal{U}\left(\mathbb{F}_{5} D_{12}\right) \cong \mathcal{U}\left(\mathbb{F}_{5}\left(D_{6} \times C_{2}\right)\right)>\mathcal{U}\left(\mathbb{F}_{5} D_{6}\right)$ and $U>\mathcal{U}\left(\mathbb{F}_{5} C_{2}\right)$.

Lemma 4.35 $Z\left(M_{n}(K)\right)=I_{n \times n} . K$. Thus $\operatorname{dim}_{K}\left(Z\left(M_{n}(K)\right)\right)=1$.
Definition 4.36 Let G be a finite group and R a commutative ring. Let $\left\{C_{i}\right\}_{i \in I}$ be the set of conjugacy classes of G. Then

$$
\widehat{C}_{i}=\sum_{c \in C_{i}} c \in R G
$$

is called the class sum of C_{i}.
Theorem 4.37 Let G be a group and R a commutative ring. Then the set of class sums $\left\{\widehat{C}_{i}\right\}$ of G forms a basis for $Z(R G)$ over R. Thus $Z(R G)$ has dimension t over R, where t is the number of conjugacy classes of G.
Proof. Let \widehat{C}_{i} be a class sum. Let $g \in G$. Then $\widehat{C}_{i}^{g}=\widehat{C}_{i} . \therefore \widehat{C}_{i} \in Z(R G)$. Let $\alpha=\sum a_{g} g \in Z(R G)$. Let $h \in G$. Then $\alpha^{h}=\alpha$ so $a_{g^{h}}=a_{g}($ coefficient of $g=$ coefficient of g^{h}). Thus the entire conjugacy class C_{i} has the same coefficient in the expansion of $\alpha . \therefore \alpha=\sum_{i \in I} c_{i} \widehat{C}_{i}\left(c_{i} \in R\right)$. $\therefore Z(R G) \subset\left\{\right.$ linear combinations of \widehat{C}_{i} over $\left.R\right\}$.
$\therefore Z(R G)=\left\{\right.$ linear combinations of \widehat{C}_{i} over $\left.R\right\}$.
It remains to show linear independance of $\left\{\widehat{C}_{i}\right\}$. Suppose $\sum_{i \in I} c_{i} \widehat{C}_{i}=0$. Then we have an R-linear combination of elements of G, but the elements of G are linear independant over R. So the coefficients are all 0 .

$$
\sum_{i \in I} c_{i} \widehat{C}_{i}=0 \Longrightarrow c_{i}=0 \forall i \in I
$$

$\therefore\left\{\widehat{C}_{i}\right\}$ is linear independant over R.

Recall the class equation of a finite group G. Let $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ be a complete set of conjugacy class representatives of G. Let $c\left(x_{i}\right)=$ conjugacy class containing x_{i}. Let $n_{i}=\left|C\left(x_{i}\right)\right|=\left[G: C_{G}\left(x_{i}\right)\right]$. Then $|G|=\sum_{i=1}^{t} n_{i}$ $=\sum_{i=1}^{t}\left|C\left(x_{i}\right)\right|=\sum_{i=1}^{t}\left[G: C_{G}\left(x_{i}\right)\right]=|Z(G)|+\sum_{n_{i}>1} n_{i}$. (Note : $n_{i}=1 \Longleftrightarrow x_{i} \in$ $Z(G))$.

Lemma 4.38 Let G be a finite group and \mathbb{C} the complex numbers. Then

$$
\mathbb{C} G \cong \oplus_{i=1}^{t} M_{n_{i}}(\mathbb{C})
$$

where $t=$ the number of conjugacy classes of G.
Proof. $\operatorname{dim}_{\mathbb{C}} \mathbb{C} G=\sharp$ of conjugacy classes of $G . \therefore \operatorname{dim}_{\mathbb{C}} Z\left(\oplus_{i=1}^{t} M_{n_{i}}(\mathbb{C})\right)$ $=\sum_{i=1}^{t} \operatorname{dim}_{\mathbb{C}} Z\left(M_{n_{i}}(\mathbb{C})\right)=\sum_{i=1}^{t} 1=t$.

Example 4.39 $\mathbb{F}_{5} C_{2} \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5}$. Here $Z\left(\mathbb{F}_{5} C_{2}\right)=\mathbb{F}_{5} C_{2}$ so dim $\mathbb{F}_{5} Z\left(\mathbb{F}_{5} C_{2}\right)=$ $\operatorname{dim}_{\mathbb{F}_{5}}\left(\mathbb{F}_{5} C_{2}\right)=2=\sharp$ of conjugacy classes of $C_{2} .\left(C_{2}=\{1, x\} \Longrightarrow\{1\}\right.$ and $\{x\}$ are the only conjugacy classes of C_{2}).

Example $4.40 \mathbb{F}_{5} S_{3} \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus M_{2}\left(\mathbb{F}_{5}\right) . S_{3}=<x, y \mid x^{n}=y^{2}=1$, $y x y=$ $x^{-1}>. S_{3}{ }^{\prime}=<x^{2}>\cong C_{3} . \therefore S_{3} S_{3}{ }^{\prime} \cong C_{2}$

$$
\begin{aligned}
\therefore \mathbb{F}_{5} S_{3} & \cong \mathbb{F}_{5} C_{2} \oplus N C P \\
& \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus N C P \\
& \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus M_{2}\left(\mathbb{F}_{5}\right) . \\
\therefore Z\left(\mathbb{F}_{5} S_{3}\right) & \cong Z\left(\mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus M_{2}\left(\mathbb{F}_{5}\right)\right) \\
& \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus Z\left(M_{2}\left(\mathbb{F}_{5}\right)\right) \\
& \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus I_{2 \times 2} . \mathbb{F}_{5} \\
& \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus \mathbb{F}_{5} .
\end{aligned}
$$

This is a 3 -dimensional vector space over \mathbb{F}_{5} (with basis $\left.\{(1,0,0),(0,1,0),(0,0,1)\}\right)$. $\therefore S_{3}$ has 3 conjugacy classes. We proved this group theory result using group rings.

Now using group theory, find the 3 conjugacy classes of S_{3}.
Theorem 4.41 Let R be a commutative ring and let G and H be groups. Then

$$
R(G \times H) \cong(R G) H
$$

Proof. Homework 2.

Corollary 4.42

$$
R(G \times H) \cong(R G) H \cong(R H) G
$$

Proof. $R(G \times H) \cong R(H \times G)$ and now use the theorem. Note $G \times H \cong H \times G$ by $(g, h) \mapsto(h, g)$.

Corollary 4.43

$$
R\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right) \cong\left(\left(\left(R G_{1}\right) G_{2}\right) \ldots\right) G_{n}
$$

Theorem 4.44 Let $\left\{R_{i}\right\}_{i \in I}$ be a set of rings and let $R=\oplus_{i \in I} R_{i}$. Let G be a group. Then

$$
R G \cong\left(\oplus_{i \in I} R_{i}\right) G \cong \oplus_{i \in I}\left(R_{i} G\right)
$$

Proof. Homework 2.

Example $4.45 \mathbb{F}_{5} C_{6}$. $\mathbb{F}_{5} C_{6} \cong \mathbb{F}_{5}\left(C_{2} \times C_{3}\right) \cong\left(\mathbb{F}_{5} C_{2}\right) C_{3} \cong\left(\mathbb{F}_{5} \oplus \mathbb{F}_{5}\right) C_{3} \cong$ $\mathbb{F}_{5} C_{3} \oplus \mathbb{F}_{5} C_{3}$.

Now $\mathbb{F}_{5} C_{3} \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus \mathbb{F}_{5}$ or $\mathbb{F}_{5} C_{3} \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5^{2}} . \therefore \mathcal{U}\left(\mathbb{F}_{5} C_{3}\right) \cong C_{4} \times C_{4} \times C_{4}$ or $C_{4} \times C_{24}$. But $C_{3}<\mathcal{U}\left(\mathbb{F}_{5} C_{3}\right)$, so by lagrange's theorem, $3 \mid \mathcal{U}\left(\mathbb{F}_{5} C_{3}\right)$. However $3 \nmid\left|C_{4} \times C_{4} \times C_{4}\right|$ and $3\left|\left|C_{4} \times C_{24}\right|\right.$ so $\mathcal{U}\left(\mathbb{F}_{5} C_{3}\right) \cong C_{4} \times C_{24}$ and $\mathbb{F}_{5} C_{3} \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5^{2}}$.

$$
\begin{aligned}
\therefore \mathbb{F}_{5} C_{6} & \cong \mathcal{U}\left(\mathbb{F}_{5} C_{3}\right) \oplus \mathcal{U}\left(\mathbb{F}_{5} C_{3}\right) \\
& \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5^{2}} \oplus \mathbb{F}_{5} \oplus \mathbb{F}_{5^{2}} \\
& \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus \mathbb{F}_{5^{2}} \oplus \mathbb{F}_{5^{2}}
\end{aligned}
$$

Theorem 4.46 (Fundamental Theorem of Finite Abelian Groups) Let A be a finite abelian group. Then

$$
A \cong G_{1} \times G_{2} \times \cdots \times G_{n}
$$

, where G_{i} is a cyclic group of order $p_{i}{ }^{m_{i}}$, where p_{i} is some prime.
Example 4.47 Let A be an abelian group of order $30=2^{1} .3^{1} .5^{1}$. Then

$$
\begin{aligned}
A & \cong C_{30} \\
& \cong C_{5} \times C_{6} \\
& \cong C_{5} \times C_{3} \times C_{2} \\
& \cong C_{15} \times C_{2} \\
& \cong C_{10} \times C_{3}
\end{aligned}
$$

These are all the same because 2,3 and 5 are all relatively prime.

$$
\therefore A \cong C_{2} \times C_{3} \times C_{5} .
$$

Example $4.48 C_{24} \cong C_{2^{3} .3} \cong C_{2^{3}} \times C_{3} \nsubseteq C_{6} \times C_{4} \cong C_{2} \times C_{3} \times C_{4} \cong$ $C_{2} \times C_{2^{2}} \times C_{3}$.

Example 4.49

$$
\begin{aligned}
\mathbb{F}_{7} C_{30} & \cong \mathbb{F}_{7}\left(C_{2} \times C_{3} \times C_{5}\right) \\
& \cong\left(\mathbb{F}_{7} C_{2}\right)\left(C_{3} \times C_{5}\right) \\
& \cong\left(\mathbb{F}_{7} \oplus \mathbb{F}_{7}\right)\left(C_{3} \times C_{5}\right) \\
& \left.\left.\cong\left(\mathbb{F}_{7} \oplus \mathbb{F}_{7}\right) C_{3}\right) C_{5}\right) \\
& \left.\cong\left(\mathbb{F}_{7} C_{3} \oplus \mathbb{F}_{7} C_{3}\right) C_{5}\right) \\
& \cong\left(\mathbb{F}_{7} C_{3}\right) C_{5} \oplus\left(\mathbb{F}_{7} C_{3}\right) C_{5} \\
& \cong ?
\end{aligned}
$$

It is not obvious what $\mathbb{F}_{7} C_{3}$ is! (Lagrange's theorem doesn't help).

Hey Leo i thought I'd help you out here !!!

$\mathbb{F}_{7} C_{3} \cong \mathbb{F}_{7} \oplus \mathbb{F}_{7} \oplus \mathbb{F}_{7}\left(\right.$ since $\left|\mathcal{U}\left(\mathbb{F}_{7} C_{3}\right)\right|=216=6^{3}$ and $\left.\mathcal{U}\left(\mathbb{F}_{7} C_{3}\right) \cong C_{6} \times C_{6} \times C_{6}\right)$. So $\mathbb{F}_{7} C_{30} \cong\left(\mathbb{F}_{7} \oplus \mathbb{F}_{7} \oplus \mathbb{F}_{7}\right) C_{5} \oplus\left(\mathbb{F}_{7} \oplus \mathbb{F}_{7} \oplus \mathbb{F}_{7}\right) C_{5} \cong\left\{\oplus_{i=1}^{3} \mathbb{F}_{7}\right\} C_{5} \oplus\left\{\oplus_{i=1}^{3} \mathbb{F}_{7}\right\} C_{5}$ $\cong\left\{\oplus_{i=1}^{6} \mathbb{F}_{7}\right\} C_{5} \cong \oplus_{i=1}^{6}\left\{\mathbb{F}_{7} C_{5}\right\}$. Also $\mathbb{F}_{7} C_{5} \cong \mathbb{F}_{7} \oplus \mathbb{F}_{7^{4}}$ (since $\left|\mathcal{U}\left(\mathbb{F}_{7} C_{5}\right)\right|=$ $14400=(7-1)\left(7^{4}-1\right)$ and $\left.\mathcal{U}\left(\mathbb{F}_{7} C_{5}\right) \cong C_{6} \times C_{2400}\right)$ so $\mathbb{F}_{7} C_{30} \cong \oplus_{i=1}^{6}\left\{\mathbb{F}_{7} \oplus \mathbb{F}_{7^{4}}\right\}$.

$$
\therefore \mathbb{F}_{7} C_{30} \cong \oplus_{i=1}^{6} \mathbb{F}_{7} \oplus_{i=1}^{6} \mathbb{F}_{7^{4}}
$$

Example $4.50 \mathbb{F}_{5} D_{12} \cong \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus M_{2}\left(\mathbb{F}_{5}\right) \oplus M_{2}\left(\mathbb{F}_{5}\right)$ or $\mathbb{F}_{5} D_{12} \cong$ $\mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus M_{2}\left(\mathbb{F}_{5^{2}}\right)$.

We mentioned before that $D_{12} \cong D_{6} \times C_{2} . \therefore \mathbb{F}_{5} D_{12} \cong \mathbb{F}_{5}\left(C_{2} \times D_{6}\right) \cong$ $\left(\mathbb{F}_{5} C_{2}\right) D_{6} \cong\left(\mathbb{F}_{5} \oplus \mathbb{F}_{5}\right) D_{6} \cong \mathbb{F}_{5} D_{6} \oplus \mathbb{F}_{5} D_{6}$.
$\therefore \mathbb{F}_{5} D_{12} \cong\left(\mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus M_{2}\left(\mathbb{F}_{5}\right)\right) \oplus\left(\mathbb{F}_{5} \oplus \mathbb{F}_{5} \oplus M_{2}\left(\mathbb{F}_{5}\right)\right) \cong \oplus_{i=1}^{4} \mathbb{F}_{5} \oplus \oplus_{j=1}^{2} M_{2}\left(\mathbb{F}_{5}\right)$.
Note : $\mathbb{C} S_{3} \cong \mathbb{C} \oplus \mathbb{C} \oplus M_{2}(\mathbb{C})$ but $\mathbb{Q} S_{3} \cong \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{H}$ where \mathbb{H} is the division ring of quaternions over \mathbb{Q}.

The End

Appendix A

Extra's

A. 1 Homework $1+$ Solutions

Homework 1

Q1 For the following group rings, (i) find the group of units and show what abstract group it is isomorphic to, (ii) find the augmentation ideal and (iii) fing the set of zero-divisors.
(a) $\mathbb{Z}_{2} C_{2}$.
(b) $\mathbb{Z}_{11} C_{1}$.
(c) $\mathbb{Z}_{2} C_{3}$.
(d) $\mathbb{Z}_{3} C_{3}$.
(e) $\mathbb{Z}_{2} C_{4}$.
(f) $\mathbb{Z}_{2} C_{2} \times C_{2}$.
(g) $\mathbb{Z}_{2} S_{3}$.

What conjectures can you come up with after doing these examples ?
(g) $\mathcal{U}\left(\mathbb{Z}_{2} S_{3}\right)$ contains 12 elements. Find these 12 elements and find the abstract group of order 12 which $\mathcal{U}\left(\mathbb{Z}_{2} S_{3}\right)$ is isomorphic to. (Hint : use $x+\widehat{S_{3}}+y+\widehat{S_{3}}$ where $\widehat{S}_{3}=1+x+x^{2}+y+x y+x^{2} y$). (ignore the zero-divisors for (g)).

Note : Bonus question (optional).
(h) Find the zero-divisors of $\mathbb{Z}_{2} S_{3}$.

Solutions

A. 2 Homework $2+$ Solutions

Homework 2

Q1 Find the abstract group structure of $\mathcal{U}\left(\mathbb{F}_{2} D_{12}\right)$. Hints :
1 Note that Maschke's theorem does not apply.
$2 D_{12} \cong C_{2} \times D_{6}$.
$3 \mathcal{U}\left(\mathbb{F}_{2} D_{6}\right) \cong D_{12}$
Q2 Find the size of the group $\mathcal{U}\left(\mathbb{F}_{2} D_{12}\right)$. Hint: $\left|\mathcal{U}\left(\mathbb{F}_{3} D_{6}\right)\right|=324$.
Q3 (a) Show that $D_{8}{ }^{\prime} \cong C_{2}$.
(b) Show that $D_{8} / D_{8}{ }^{\prime} \cong C_{2} \times C_{2}$.
(c) Conclude that $\mathbb{F}_{p} D_{8} \cong\left(\oplus_{i=1}^{4} \mathbb{F}_{p}\right) \oplus M_{2}\left(\mathbb{F}_{p}\right)$. (where $\left.p \neq 2\right)$.

Q4 (a) Find all the conjugacy classes of D_{8} (there are 5).
(b) What is $\operatorname{dim}_{\mathbb{F}_{p}} Z\left(\mathbb{F}_{p} D_{8}\right)$.
(c) Conclude that $\mathbb{F}_{p} D_{8} \cong\left(\oplus_{i=1}^{4} \mathbb{F}_{p}\right) \oplus M_{2}\left(\mathbb{F}_{p}\right)$. (where $\left.p \neq 2\right)$.

Q5 Let R be a commutative ring and let G and H be groups. Prove that

$$
R(G \times H) \cong(R G) H
$$

Q6 Let $\left\{R_{i}\right\}_{i \in I}$ be a set of rings and let G be a group. Let $R=\oplus_{i \in I}$. Show that $R G \cong \oplus_{i \in I} R_{i} G$.

Q7 The quaternion group of 8 elements has the following presentation:

$$
\mathbb{H}=<a, b \mid a^{4}=1, a^{2}=b^{2}, b a b^{-1}=a^{-1}>
$$

(a) Show that $\mathbb{H}^{\prime}=<a^{2}>$
(b) Show that $\mathbb{H} / \mathbb{H}^{\prime} \cong C_{2} \times C_{2}$.
(c) Conclude that $\mathbb{F}_{p} D_{8} \cong\left(\oplus_{i=1}^{4} \mathbb{F}_{p}\right) \oplus M_{2}\left(\mathbb{F}_{p}\right)$. $($ where $p \neq 2)$.

Q8 We showed in class that either

$$
\mathbb{F}_{3} D_{10} \cong \mathbb{F}_{3} \oplus \mathbb{F}_{3} \oplus M_{2}\left(\mathbb{F}_{3}\right) \oplus M_{2}\left(\mathbb{F}_{3}\right)
$$

or

$$
\mathbb{F}_{3} D_{10} \cong \mathbb{F}_{3} \oplus \mathbb{F}_{3} \oplus M_{2}\left(\mathbb{F}_{3^{2}}\right)
$$

Use lagranges theorem to determine which one of the two isomorphisms above applies.

Q9 Using the presentation of \mathbb{H} given in Q7, show that $<\widehat{a}\rangle$ is a central idempotent of $\mathbb{F}_{3} \mathbb{H}$. List all the elements of $a_{n n_{r}} \Delta(\mathbb{H},<a>)$ in the group ring $\mathbb{F}_{3} \mathbb{H}$.

Q10 Find $\left|G L_{3}\left(\mathbb{F}_{p^{n}}\right)\right|$.
Solutions

A. 3 Autumn Exam + Solutions

