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Lecture (2) 

Checking the Numerical Stability 

2.1 Introduction 

The stability of numerical systems is closely related to numerical error. The finite 

difference scheme is stable if the errors made in a certain time step of the calculations 

do not cause an increasing growth in the errors as the calculations continue. A scheme 

with neutral stability is one in which errors are constant as the calculations go on. If 

the errors grow with time, then the numerical system is called unstable. For time-

dependent problems, stability is ensured such that the numerical method produces a 

bounded solution when the solution of the differential equation is bounded. Stability, 

in general, can be difficult to check, especially when the equation considered is 

nonlinear. 

The difference between a numerical solution and a true solution is 

                                             𝒖𝒊,𝒋 − 𝒖(𝒊∆𝒙, 𝒋∆𝒕)                                         … (2.1) 

which represents the error of the numerical solution.  

Because the exact solution  𝒖𝒊,𝒋 ≡ 𝒖(𝒙, 𝒕) is not normally obtained we often cannot 

determine this error. However, we can estimate the accuracy of this scheme in terms 

of ∆𝑥 𝑎𝑛𝑑 ∆𝑡. 

Definition: The solution 𝑢𝑖,𝑗 is stable as long as the error is bounded at increasing j. 

 There are three methods to determine the stability: (1) direct method (2) energy 

method. (3) Von Neumann's method 

 

2.2   Direct Method   
We know that the true solution is bounded and hence it is sufficient to test the numerical 

solution bound.  We can write the advection equation which is  

                                 
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
+ 𝑐

𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗

∆𝑥
= 0                         … (2.2) 

in this way 

                             𝑢𝑖,𝑗+1 = (1 − 𝜇)𝑢𝑖,𝑗 +  𝜇𝑢𝑖−1,𝑗                                  … (2.3)  

where                                    𝜇 =
𝑐∆𝑡

∆𝑥
                                                      … (2.4) 
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If  0 ≤ μ ≤ 1 which is considered as a necessary condition for convergence (c∆t ≤ ∆x) 

we have 

|𝑢𝑖,𝑗+1| ≤ (1 − 𝜇)|𝑢𝑖,𝑗| + 𝜇|𝑢𝑖−1,𝑗|          … . (2.5) 

We will apply this relationship at the point i at the level j+1 where |𝑢𝑖,𝑗+1| is maximum, 

i.e. 𝑀𝑎𝑥(𝑖)|𝑢𝑗+1|: 

𝑀𝑎𝑥(𝑖)|𝑢𝑖,𝑗+1| ≤ 𝑀𝑎𝑥(𝑖)(1 − 𝜇)|𝑢𝑖,𝑗| + 𝑀𝑎𝑥(𝑖)𝜇|𝑢𝑖−1,𝑗|          

If we assume that 𝑀𝑎𝑥(𝑖)|𝑢𝑖,𝑗−1| = 𝑀𝑎𝑥(𝑖)|𝑢𝑖,𝑗| then: 

𝑀𝑎𝑥(𝑖)|𝑢𝑖,𝑗+1| ≤ 𝑀𝑎𝑥(𝑖)|𝑢𝑖,𝑗| − 𝑀𝑎𝑥(𝑖)𝜇|𝑢𝑖,𝑗| + 𝑀𝑎𝑥(𝑖)𝜇|𝑢𝑖,𝑗| 

                                                  𝑀𝑎𝑥(𝑖)|𝑢𝑖,𝑗+1| ≤ 𝑀𝑎𝑥(𝑖)|𝑢𝑖,𝑗|                    ... (2.6) 

This proves the boundedness of the numerical solution 𝑢𝑖,𝑗 for all times and hence 0 ≤

𝜇 ≤ 1 is a sufficient condition for the stability of equation (2.2) for this system. The 

stability condition became the same as the convergence condition. In other words, if 

the scheme is convergent then it is stable, and vice versa. Although the direct method 

is a simple, it is successful for only a limited number of systems. 

2.3  Energy Method  

If we know that the true solution is bounded, we will test whether ∑ (𝑢𝑖,𝑗+1)2
𝑖  is 

bounded also and hence all 𝑢𝑖,𝑗 must be bounded and therefore one can proves the 

stability of the scheme. This method is called by energy because in physics u2 is mostly 

proportional to some formula of energy (kinetic energy  K.E.=1/2 mv2). 

By squaring equation (2.3) which is  (𝑢𝑖,𝑗+1 = (1 − 𝜇)𝑢𝑖,𝑗 +  𝜇𝑢𝑖−1,𝑗) and sum at i we 

get: 

∑(𝑢𝑖,𝑗+1)2

𝑖

= ∑[(1 − 𝜇)2(𝑢𝑖,𝑗)2 + 2𝜇(1 − 𝜇)𝑢𝑖,𝑗 𝑢𝑖−1,𝑗 + 𝜇2(𝑢𝑖−1,𝑗)2]

𝑖

    … (2.7) 

For simplicity, we consider u is periodic in x, and assume that the summation on a one 

complete cycle, then 

                                     ∑(𝑢𝑖−1,𝑗)2

𝑖

= ∑(𝑢𝑖,𝑗)2

𝑖

  ,                               … (2.8) 

Now we use Schwartz's inequality which states that: 

∑ 𝑎𝑏 ≤ √∑ 𝑎2 √∑ 𝑏2                          ...(2.9) 
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then: 

∑ 𝑢𝑖,𝑗

𝑖

𝑢𝑖−1,𝑗 ≤ √∑(𝑢𝑖,𝑗)2

𝑖

√∑(𝑢𝑖−1,𝑗)2

𝑖

= ∑(𝑢𝑖,𝑗)
2

𝑖

.         … (2.10) 

By using (2.8) and (2.10) and if 1 − 𝜇 ≥ 0 then (2.7) will give the following inequality:  

∑(𝑢𝑖,𝑗+1)2

𝑖

≤ [(1 − 𝜇)2 + 2𝜇(1 − 𝜇) + 𝜇2] ∑(𝑢𝑖,𝑗)
2

𝑖

,        …  (2.11) 

or    

∑(𝑢𝑖,𝑗+1)2

𝑖

≤ ∑(𝑢𝑖,𝑗)2

𝑖

  .          … (2.12) 

Because (1 − 𝜇)2 + 2𝜇(1 − 𝜇) + 𝜇2 is 1 (try it). Therefore, 1 ≥ 1 − 𝜇 ≥ 0, together 

with the periodic boundary condition, is a sufficient condition for stability (2.3) 

2.4   Von Neumann's Method 
Sometimes it is called Fourier series method which is the most used one. However, it 

is not used in the nonlinear equations but we can use it the equations that which were 

converted to linearized from nonlinear equations. The solution to a linear equation can 

be expressed as the Fourier series. The Fourier series can be formulated in terms of 

sine and cosine but is algebraically easier to replace with their equivalent in complex 

exponential form. We will replace our common notations 𝑢𝑖,𝑗 by 𝑢(𝑝ℎ, 𝑞𝑘) = 𝑢𝑝,𝑞 (in 

order not to confuse with complex number counter i) and that ℎ = ∆𝑥, 𝑘 = ∆𝑡.  

𝐴𝑛𝑒𝑖𝑛𝜋𝑥/𝑙 = 𝐴𝑛𝑒𝑖𝑛𝜋𝑝ℎ/𝑁ℎ = 𝐴𝑛𝑒𝑖𝛽𝑛𝑝ℎ ,   ...(2.13) 

where  𝛽𝑛 =
𝑛𝜋

𝑁ℎ
   𝑎𝑛𝑑     𝑁ℎ = 𝑙. 

To investigate the spread of error as t increases, we need to find a solution to the finite 

difference equation which is reduced to 𝑒𝑖𝛽𝑝ℎ when t=qk=0. We will assume that the 

error is: 

𝐸𝑝,𝑞 = 𝑒𝑖𝛽𝑥𝑒𝛼𝑡 = 𝑒𝑖𝛽𝑝ℎ𝑒𝛼𝑞𝑘 = 𝑒𝑖𝛽𝑝ℎ𝜆𝑞 ,       ...(2.14) 

where  𝜆 = 𝑒𝛼𝑘,     𝑎𝑛𝑑     𝛼,   in general, is a complex constant   

The upper expression can be reduced to 𝑒𝑖𝛽𝑝ℎ when q=0. The error will not increase 

by increasing of t provided that |𝜆| ≤ 1 . Therefore our condition of stability will be 

|𝜆| ≤ 1 in this method. 
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Ex (1). Investigate the stability of the fully-implicit finite –difference equation,  

(𝑢𝑝,𝑞+1 − 𝑢𝑝,𝑞)

𝑘
=

(𝑢𝑝−1,𝑞+1 − 2𝑢𝑝,𝑞+1 + 𝑢𝑝+1,𝑞+1)

 ℎ2
     … (2.15) 

approximating the parabolic equation 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
 .  

Solution: Since the error function 𝐸𝑝,𝑞 satisfies the same difference equations as with 

𝑢𝑝,𝑞  , so substituting 𝐸𝑝,𝑞 from equation (2.14) into equation (2.15) gives: 

𝑒𝑖𝛽𝑝ℎ𝜆𝑞+1 − 𝑒𝑖𝛽𝑝ℎ𝜆𝑞 = 𝑟{𝑒𝑖𝛽(𝑝−1)ℎ𝜆𝑞+1 − 2𝑒𝑖𝛽𝑝ℎ𝜆𝑞+1 + 𝑒𝑖𝛽(𝑝+1)ℎ𝜆𝑞+1}, 

where r=k/h2 . Division by 𝑒𝑖𝛽𝑝ℎ𝜆𝑞 leads to: 

𝜆 − 1 = 𝑟𝜆(𝑒−𝑖𝛽ℎ − 2 + 𝑒𝑖𝛽ℎ) 

            = 𝑟𝜆(2𝑐𝑜𝑠𝛽ℎ − 2) = −4𝑟𝜆 𝑠𝑖𝑛2(𝛽ℎ/2) 

Hence     𝜆 =
1

1+4𝑟 𝑠𝑖𝑛2(
𝛽ℎ

2
)
 

From the last equation it is clear that the equation is stable for all r positive values 

according to the condition |𝜆| ≤ 1  . 

Homework: write the above example in details. 

Ex (2). The hyperbolic equation 𝝏𝟐𝒖/𝝏𝒕𝟐 = 𝝏𝟐𝒖/𝝏𝒙𝟐 is approximated by the 

explicit scheme: 

(𝑢𝑝,𝑞+1 − 2𝑢𝑝,𝑞 + 𝑢𝑝,𝑞−1)/𝑘2 = (𝑢𝑝+1,𝑞 − 2𝑢𝑝,𝑞 + 𝑢𝑝−1,𝑞)/ℎ2       ... (*) 

  investigate its stability. 

Solution: It is easy to show by the method in Ex.1 that the equation for λ is: 

𝜆2 − 2𝐴𝜆 + 1 = 0   , 

where   𝐴 = 1 − 2𝑟2𝑠𝑖𝑛2 (
𝛽ℎ

2
) ,   𝑟 = 𝑘/ℎ      ... (**) 

Hence the values of  𝜆 are: 

𝜆1 = 𝐴 + (𝐴2 − 1)
1

2  and 𝜆2 = 𝐴 − (𝐴2 − 1)
1

2 

For stability     |𝜆| ≤ 1 

As  r, k, β are real,  𝐴 ≤ 1   by eq. (**) 

When 𝐴 < −1,    |𝜆2| > 1,  giving instability. 

When −1 ≤ 𝐴 ≤ 1,    𝐴2 ≤ 1,   𝜆1 = 𝐴 + 𝑖(1 − 𝐴2)
1

2,   𝜆2 = 𝐴 − 𝑖(1 − 𝐴2)
1

2. 

hence     |𝜆1| = |𝜆2| = {𝐴2 + (1 − 𝐴2)}
1

2 = 1  , 
proving that equation (*) is stable for  −1 ≤ 𝐴 ≤ 1    . By eq.(**), we then have: 

−1 ≤ 1 − 2𝑟2𝑠𝑖𝑛2 (
𝛽ℎ

2
) ≤ 1          , The only useful inequality is: 

−1 ≤ 1 − 2𝑟2𝑠𝑖𝑛2 (
𝛽ℎ

2
) 

giving     𝑟 ≤ 1  


