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Example
Are the following sets of vectors (in the three-dimensional Euclidean space) linearly indepen-
dent or dependent?

(3)4=(3,0,0). B =(0,-2,0).C = (0,0,~1)

(o 0,-5)

Solution N N N
(3) The three vectors 4 = (3,0,0). B = (0, 2,0). € = (0,0, ~1) are linearly indepen-
dent. since

a1d + @B + a3C = 0 = 3a1i — 2a2] — ask
leads to

3a;

which yields a; = ay = a3 = 0.
(b) The vectors 4 = (6,~9,0), B = (2,3, 0) are linearly dependent, since the solution
to

-2y=0, —a3=

aid+mB=0 = (6a1—2m)i +(~9%a1 +3a)j

is a1 = a1/3. The first vector is equal to —3 times the second one: 4 = —35
(©) The vectors 4 = (2,3,~1), B = (0,1,2), C = (0,0, —5) are linearly independent,

since

a1+ @B+ a3C = 0 == 2a1i + (a1 + @) + (—a1 + 2@ — Sa3)f
leads to
2a1 =0, 3a1 4+ a2 —a1+2ay— 5a3 = 0. .

‘The only solution of this system is a1 = a2 = a3 = 0.
(d) The vectors 4 = (1,-2,3), B = (—4,1,7). C = (0,10, 11). and D = (14,3, —4) are
not linearly independent, because D can be expressed in terms of the other vectors:

D=24-3B+C.
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Schwarz inequality
For any two states | ) and | ) of the Hilbert space, we can show that
w19 < w1vigl e

If | y) and | ¢) are linearly dependent (i.e.. proportional: | y) = a | ¢), where a is a
scalar). this relation becomes an equality. The Schwarz inequality (2.34) is analogous to
the following relation of the real Euclidean space

14-BP <1471 B
Triangle inequality
Vv FeTv+d < Vv + Vo1

If| y) and | ¢) are linearly dependent. | y) = a | #). and if the proportionality scalar a
is real and positive. the triangle inequality becomes an equality. The counterpart of this
inequality in Euclidean space is given by |4 + B| < |4] + |B|.

Orthogonal states
Two kets. | ) and | ). are said to be orthogonal if they have  vanishing scalar product:

wi¢) =0
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Operators
General Definitions

Definition of an operator: An operator! A is a mathematical rule that when applied to a ket
| ) transforms it into another ket | y’) of the same space and when it acts on a bra (¢ |
transforms it into another bra (¢ |-

Aty =1y, @1d=1
A similar definition applies to wave functions:
Ay@) = y'E), pd = ¢'6)

‘Examples of operators
Here are some of the operators that we will use in this text:

o Unity operator: it leaves any ket unchanged. 7 | y) =| y)
o The gradient operator: Vy/(7) = (2y/(7)/0x)i + @y #)/03)] + @y )/ )k
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‘o The linear momentum operator: Py/(7) = —1hV y/ (7).
o The Laplacian operator: V2y () = 82y (7)/0x2 + 82y () /6y + 2y (7) /02,
o The parity operator: Py (7) = y/(~7).
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Products of operators
The product of two operators is generally not commutative:

AB# B
The product of operators is, however, associative:

ABC = A(BC) = (4B)C.
We may also write 4" 4" = 4"*". When the product . operates on a ket | ) (the order
of application is important), the operator B acts first on | ) and then A acts on the new ket
(B1y) L. P

ABy) = AB1y)
Similarly, when ABCD operates ona ket | ). D acts first, then C. then 5. and then 4.

‘When an operator  is sandwiched between a bra (¢ | and a ket | y), it yields in general
a complex number: (¢ | 4 | ) = complex number. The quantity (¢ | 4 | y) can also be a
‘purely real or a purely imaginary number. Note: In evaluating (¢ | 4 | y) it does not matter if

one first applies A to the ket and then takes the bra-ket or one first applies A to the bra and then
takes the bra-ket: thatis (¢ | 4) | ) = (¢ 1 (41 ).

Linear operators
An operator A is said to be linear if it obeys the distributive law and. like all operators, it
commutes with constants. That is. an operator  is linear if. for any vectors | y1) and| y2) and
any complex aumbers a1 and a). we have

Aalyy) + @y =aid |y1) + @4 | pa),

and
(y1lar + alapd=aiyr |4+ axya| 4

o The expectation ot mean value (A) of an operator 4 with respect to a state | y) is defined
by
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Hermitian Adjoint
The Hermitian adjoint or conjugate, ' of a complex number a is the complex conjugate of

this number: ! — a*. The Hermitian adjoiat, or simply the adjoint, 4 . of an operator A is
defined by this relation:
T

wid 1 =141y
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Properties of the Hermitian conjugate rule
To obtain the Hermitian adjoint of any expression, we must cyclically reverse the order of the
factors and make three replacements:

o Replace constants by their complex conjugates: '
‘o Replace kets (bras) by the corresponding bras (kets): (| )T = (y |and ((y T =1 y)
o Replace operators by their adjoints.

ar.

Following these rules, we can write
aht = 4
@t = ad,
ayto=
Asbresdyl = ilssteetynt
dsenyt = pletstal,

(dBéb 1wyt = wipfcislal
‘The Hermitian adjoint of the operator | ) (¢ | is given by

I =19)w1.
Operators act inside kets and bras, respectively, as follows:

lady)=ad|y), (@dyi=a(y 4l

U

Notealsothat (a4 y | = a*(y | (A1) = a*(y | 4. Hence. we can also write:

widig=dlyio = wiie.
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‘Hermitian and skew-Hermitian operators

An operator A is said to be Hermitian ifit is equal to its adjoint 4 -

o widlg) =@ldiy”
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On the other hand, an opesator B is said to be skew-Hermitian ot anti-Hermitian if

Bl=-B o wiBlp=-6181"
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Example
(a) Discuss the hermiticity of the operators (A + j‘)‘.(,i + j‘)‘mdx((l j‘)
(b) Find the Hermitian adjoint of £ () = (14 i + 34%)(1 — 24— 9.4/ + 74)
(c) Show that the expectation value of a Hermitian operator is real and that of an anti-
Hermitian operator is imaginary.

Solution

(a) The operator B = A+ A4
since

U

is Hermitian regardless of whether or not { is Hermitian,

T i

) is also Hermitian; but i(4 + A

Similarly, the operator i(A —
B+ Dt = i+ 2

(b) Since the Hermitian adjoint of an operator function f(d) is given by fT(4) = /~(,1‘),
we can write

) is anti-Hemmitiar ice

2
‘+3,1f)

5+74 se74l

(c) From (2.70) we immediately infer that the expectation value of a Hermitian operator is
seal, for it satisfies the following property:

Wwidly) = widiys

2
((1 yidesia-2id —9(12))‘ _a il —odt )1—id

thatis, if A' = Athen (y | 4 | y) is real. Similarly. for an anti-Hermitian operator, 1 = — 3.
we have R A
(WIBly) =—(y|Bly)S,

which means that (y | B | ) is a purely imaginary number.
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Projection Operators
An operator P is said to be a projection operator if it is Hermitian and equal to its own square:

b P=5

The unit operator 7 is a simple example of a projection operator, since 71
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Properties of projection operators
» The product of two commuting projection operators, 2| and P». is also a projection
operator, since

(Bibyl = B{B{ = Brpr = iy and (BiBy? = PiBsPLR = BYR} = BBy

‘» The sum of fwo projection operators is generally not a projection operator.
‘+ Two projection operators are said to be orthogonal if their product is zero.

 For a sum of projection operators Py + By + P5 + --- to be a projection operator. it is
necessary and sufficient that these projection operators be mutually orthogonal (i.. the
cross-product terms must vanish).
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Example
Show that the operator | ) (y | is a projection operator only when | ) is normalized.

Solution

Itis easy to ascertaia that the operator | ) (y | is Hermitian, siace (| y) (v D! =1 y)( |. As
for the square of this operator. it is given by

A D= DAy D=1ww v

Thus, if | y) is normalized. we have (| y)(y )2 =| w)(y |. In sum. if the state | y) is
‘normalized. the product of the ket | y) with the bra (y | is a projection operator.
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Commutator Algebra

‘The commutator of two operators A and B, denoted by [4, B]. is defined by

1= 4B - BA,

and the anticommutator (A, B) is defined by

Two operators are said to commute if their commutator is equal to zero and hence .
Any operator commutes with ifself

[4, 4]=0.
Note that if two operators are Hermitian and their product is also Hermifian, these operators
commute:

and since (4B)"
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The Hilbert Space

A Hilbert space H consists of a set of vectors . 6. 1. ... and a set of scalars a, b. c, ... which
satisfy the following four properties:

(@) His a linear space

(b) H has a defined scalar product that is strictly positive

The scalar product of an element y ith another clement ¢ is in general a complex
‘number, denoted by (y, ¢). where (y/, ) = complex number. Note: Watch out for the
order! Since the scalar product is a complex number, the quantity (v, ¢) is generally not
equal to (¢, y): (v, ¢) = y"¢ while ($,y) = ¢"y. The scalar product satisfies the
following properties

‘s The scalar product of y with  is equal to the complex conjugate of the scalar
product of ¢ with y:
W, 9) =%, 9)"
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‘o The scalar product of ¢ with  is linear with respect to the second factor if y =
ay1+byn:
(¢, ay1+byn) = a($, y1) + b(g, v2),

and antilinear with respect to the first factor if ¢ = agh1 + b2
(ag1+bn,y) = a @1, y) + 5" (62, v).
o The scalar product of a vector y with itself is a positive real number:
W =lvizo
where the equality holds only for y = O.

(c) H is separable

There exists a Cauchy sequence yy € H (n = 1,2, ...) such that for every y of { and
& > 0, there exists at least one i of the sequence for which

Iv=val<e

(@ * is complete
‘Every Cauchy sequence y, & H converges to an element of 1 . Thatis, for any . the
relation

Lim Al ym—ym =

P =8

defines a unique limit y of #{ such that

Jim v =y 1=
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Dimension and Basis of a Vector Space

A set of N nonzero vectors ¢1. 2. ... ¢ is said to be limearly independent if and only if the
solution of the equation

N

Zn,q} 0

=

isai=a) = = ay = 0. But if there exists a set of scalars, which are not all zero, so that
one of the vectors (say ¢) can be expressed as a linear combination of the others,

-1 N

b= @i+ > @b
=

S
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the set () is said to be linearly dependent.

Dimension: The dimension of a vector space is given by the maximum mumber of lincarly
independent vectors the space can have. For instance, if the maximum number of linearly inde-
‘pendent vectors a space has is N (i.c.. g1, ¢2. .. .. ¢), this space is said to be N-dimensional
In this N-dimensional vector space, any vector y can be expanded as a linear combination:

§
V= aih
=

Basis: The basis of a vector space consists of a set of the maximum possible number of linearly
independent vectors belonging to that space. This set of vectors, @1. 2. ... ¢ to be denoted
in short by (¢y). s called the basis of the vector space, while the vectors g1, ¢. ... pN are
called the base vectors. Although the set of these linearly independent vectors is arbitrary.
it is convenient to choose them orthonormal; that is, their scalar products satisfy the relation
($1. ¢;) = 0y (we may recall that d; = 1 whenever i =  and zero otherwise). The basis is
said to be orthonormal if it consists of a set of orthonormal vectors. Moreover, the basis is said
1o be complete if it spans the entite space; that is, there is no need to introduce any addiional
base vector. The expansion coefficients aj in  are called the components of the vector y/
in the basis. Each component is given by the scalar product of y with the corresponding base
vector. aj = (¢, ).
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Example
Check whether the following sefs of functions are lincarly independent or dependent on the real
x-axis.
@ fx)
®) f(x
© fix; 8
@ fx)= 2422 L g() = 3—x+4x1 h(x) =2x +3x% - 83

Solution
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(@) The fist set s clearly linearly independent since a1 /(x) + axg(x) +ash(x) = da1 +
axx? +aze®™ = 0 implies that aj = a = a3 = 0 for any value of x.

(b) The functions f(x) = x, g(x) = x% h(x) = x° are also linearly independent since
aix + ax? + a3x® = 0 implies that a1 = @) = a3 = 0 no matter what the value of x. For
instance. taking x = —1, 1, 3, the following system of three equations

—a+@-a3=0, ai+m+a=0  3a1+9m+27a3=0

yields aj = ay = a3 = 0.

(©) The functions f(x) = x, g(x) = 5x, h(x) = x* are not linearly independent, since
2(x) = 57(x) + 0 x h(x).

(d) The functions f(x) = 2+ x% g(x) = 3 — x + 4x°, h(x) = 2x + 3x? — 8x> are not
linearly independent since i(x) = 3/(x) — 2¢(x).




