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Esxample.  (Unitary operator)
‘What conditions must the parameter ¢ and the operator G satisfy so that the operator &7 = /G
is unitary?
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Solution
Clearly. if ¢ is real and G is Hermitian, the operator ¢°C would be unitary. Using the property

P = F-(j‘), we see that

(@01 = o116 (g6,

thatis, O = 01
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Eigenvalues and Eigenvectors of an Operator

Having studied the properties of operators and states, we are now ready to discuss how to find
the cigenvalues and eigenvectors of an operaor.

A state vector | y) is said to be an eigenvector (also called an cigenket or cigenstate) of an
operator A if the application of 4 to | ) gives

Aly)=alw),

where a is a complex number, called an eigenvalue of A. This equation is known as the eigen-
value eguation, or eigemvalue problem, of the operator A. s solutions yield the cigenvalues
and cigenvectors of A.

A simple examy... __ ae eigenvalue problem for the unity operator /-
Ty =1y
‘This means that all vectors are eigenvectors of / with one eigenvalue. 1. Note that

a"|y) ad F()|y)=FG@)|y)

dly)=aly) = "y
For instance, we have

dly =aly) = iy =diy
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Example
Show that if A~ exists, the eigenvalues of 4 are just the inverses of those of 4

Solution |
Since 4~ 4 = f we have on the one hand

s
4 dly) =1y,
and on the other hand
pep PN 1
A dly) =4 (dly) =ad |y

Combining the previous fwo equations, we obtain

1
ad ly) =ly),
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b 1 1
AT =21y
a

This means that | y) is also an cigenvector of A ' with cigenvalue 1/a. Thatis, if A " exists,
then

N e 1
dtw=aly = dMw=ziw
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Theorem  For a Hermitian operator; all of its eigemvalues are real and the eigemveciors
corresponding to different eigemvalues are orthogonal.

14T =4 A1 =l = an= real mumber,30d (6 | ) = .
Proof of Theorem 2.1
Note that R R
Algn) = anlgn) = (¢m|A|dn) = an(ém|¢n),
and

Gml AT =anipml = @n 1160 = aniom | 4.
Subtracting from . and using the fact that 4 is Hermitian, 4 =
(@n = a3) b | 60) = 0.

Two cases must be considered separately:

o Casem = n: since (¢ | ¢) > 0, we must have a, = aj; hence the eigenvalues a, must
e seal.

. we have

o Casem # n: since in general ay # 3. we must have (¢ | dn) = 0: that is. | ) and
| ¢hn) must be orthogonal
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Theorem  Iftwo Hermitian operators, A and B, commute and if A has no degenerate eigen-
value, then each eigemvecior of A is also an eigenvector of B. In addition, we can construct a
common orthonormal basis that is made of the joint eigenvectors of A and B.

Proof
Since A is Hermitian with no degenerate eigenvalue, to each eigenvalue of A there corresponds
only one cigenvector. Consider the equation

Algn) = anl éu).
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Since A commutes with B we can write
BAlgn) = AB 1w or A(B|¢n) =an(B | ¢m):

thatis. (B | ¢)) is an eigenvector of A with eigenvalue a,. But since this eigenvector is unique
(apart from an arbitrary phase constant), the ket | ¢b) nmust also be an eigenvector of 5

B 1 gn) = bul n)

Since each eigenvector of A is also an eigenvector of B (and vice versa), both of these operators
‘must have a common basis. This basis is unique; it is made of the joint eigenvectors of A and
B. This theorem also holds for any number of mutually commuting Hermitian operators.

Now. if a is a degenerate cigenvalue, we can only say that B | ¢) is an cigenvector of
A with eigenvalue ay: | ¢n) is not necessarily an eigenvector of B. If one of the operators is
degenerate. there exist an infinite number of orthonormal basis sets that are common to these
two operators; that is. the joint basis does exist and it is not unique.
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Theorem * The eigemvalues of a unitary operator are complex numbers of moduli equal to
one; the eigenvectors of a unitary operator that has no degenerate eigemvalues are mutually
orthogonal.

Proof
Let | ¢,) and | ¢y) be eigenvectors to the unitary operator U with eigenvalues @, and ay,.
respectively. We can write

(gm | TN@ | )

anidm | ¢n)-
Since &' &7 = 7 this equation can be rewritten as.

(atay — 1) (dm | dn!





image16.png
‘which in furn leads to the following two cases
o Casen = m: since (¢n | ¢n) > O then ajan = | an |2= 1. and hence | ay |= 1.

o Case n # m: the only possibility for this case is that | ¢) and | ¢) are orthogonal,
{¢hm | ) = 0.
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Infinitesimal and Finite Unitary Transformations

‘We want to study here how quantities such as kets, bras, operators, and scalars transform under
unitary transformations. A unitary transformation is the application of a unifary operator U/ to
one of these quantities.
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Unitary Transformations

Kets | y) and bras (y | transform as follows:

Wr=0ly,  Wi=with
Letus now find out how operators transform uader unitary transformations, Since the transform
of dly) =19 isd |v) =14), wecanrewsite d |y) =| $)as AT y) =T | ) =

Uil y) which, mmm,lmdsloAU &4 Multiplying both sides of 4T = U4 by I and

i=vaot,  i=0fiv

The results reached in | and ‘may be summarized as follows:

Wr=Uly., wi=wl0l, 4 =0l

Ly =0l1y),  wi=w 10,  4=014%
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‘Unitary Transformations

Kets | y) and bras (y | transform as follows:

Wr=0ly,  Wi=with
Letus now find out how operators transform uader unitary transformations, Since the transform
of dly) =19 isd |v) =14), wecanrewsite d |y) =| $)as AT y) =T | ) =

04| y) which, inum, leads to 4 D = U4 Multiplying both sides of 4T = 0.4 by UT and

i=vaot,  i=0fiv

The results reachedin( )and () may be summarized as follows:

Wi =0ly,  wi=wlith

oy, wi=wid

(K2)

Properties of unitary transformations
o If an operator A is Hermitian, its transformed 4’ is also Hermitian, since

vaut

At = .
o The eigenvalues of 4 and those of its transformed ' are the same:

Aty =anlyw = Alvi) = anl v
since
CATN@ ) = CATTT) 1 ym)
= Udlyn) = an(@ L ym) =an | v)

A1
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‘» Commutators that are equal to (complex) numbers remain unchanged under unitary trans-
formations, since the transformation of [, B] = a. where a is a complex number, is
given by

.51 = [avt, vsot @

014, 8101 = Dbt = atOt

= [4,B]
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‘o We can also verify the following general relations:
d=phiyé =

A=aBéD =

B

where 4. B'. ¢'. and D are the transforms of
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 Since the result () is valid for any complex number. we can state that complex
umbers, such as (y | 4 | 7). remain unchanged under nitary transformations, since

WA 1) = 1 EH@IEHE 1) = w1 ETOAG D) 10 = w1410
Taking A = ] we see that scalar products of the type

Wy =wln

are invariant under unitary transformations; notably. the norm of a state vector is con-
served:

Wiy =wlw.

o We can also verify that (izif/f)" Ot since
(flil"/'f)‘I = (!24"[7‘) (fl]iﬂ) (lﬁ"f):&i(l}"l}'}i(ﬁfﬁ) @ioniot

= @'oh.

o We can generalize the previous result to obtain the transformation of any operator func-
tion £(A)
ot = 7@a0h = 7),
or more generally

Of(4,B,¢,- )0 = p@A01, 0801, 0¢01, . = 74 B¢,
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A unitary transformation does not change the physics of a system: it merely transforms one
description of the system to another physically equivalent description.

In what follows we want to consider o types of unitary transformations: infinitesimal
transformations and finite transformations
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Properties of commutators
Using the commutator relation (2.79). we can establish the following properties:

o Antisymmetry:
[4, B1=-[5, 4]

o Linearity:
[4, B+C+ D+ 1=[4, B1+[4, €1+ [4, DI+

Hermitian conjugate of a commutator:
1, 81 =151,

o Distributivity:
[4. BC1=[4, BIC+ B4, €]

A[B, C1+ 14, C1B

C]
L4, €]
o Jacobi identity

4,18, EN+I1B, (€, AN+IC, [4, Bl =0

By repeated applications of (2.87). we can show that
R
4, 8" = B[4, 313" 7!
=
PRPUES PO P
B =Y A ad
=

Operators commute with scalars: an operator 4 commutes with any scalar b:

4, 5]=0
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Example
(a) Show that the commutator of fwo Hermitian operators is anti-Hermitian.
(b) Evaluate the commutator [4, [3, €1D]
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Solution
() If A and B are Hermitian, we can write

L. 81 = (dB - BT

that is, the commutator of A and B is anti-Hermitian: [, B]
(b) Using the distributivity relation we have
[4. [B. €1D] = [B. C]l4, D1+[4 [B. CID
(BC— CB)(AD - DA)+ ABC —
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Functions of Operators

Let F(4) be a function of an operator . If 4 is a linear operator, we can Taylor expand F(d)
in a power series of A

F(d)=) an
=}
where a, is just an expansion coefficient. As an illustration of an operator function, consider

¢4 where a is a scalar which can be complex or real. We can expand it as follows:

2 3
sos a3
Tads S04 540+ '

Commutators invelving function operators
If A commutes with another operator B. then B commutes with any operator function that
depends on i

[4, Bl=0 = [B, F(d]=0;

in particular, F(4) commutes with 4 and with any other function, G(4). of 4:

[4, P ', F(b) [F(), G(A)

‘Hermitian adjoint of function operators
‘The adjoint of F() is given by

tFeT = 7

Note that if 4 is Hermitian, F () is not necessarily Hermitian: () will be Hermitian only if
F is a real function and { is Hermitian_ An example is
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where @ is a complex number. So if A is Hermitian, an operator function which can be ex-
panded as F(A) = Y52 an A" will be Hermitian only if the expansion coefiicients ay are real
numbers. But in general, F(4) is not Hermitian even if 4 is Hermitian, since

Fh =Ygl
&

Relations involving function operators
Note that L. N N
[ B1#0 = [B FDI#0:

in particular, e?e? # e#+8 Using we can ascertain that

b = it 22,

Ahed=betd B+ gd (4 B0+ A [ 1 B+
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Inverse and Unitary Operators

1 .
Inverse of an operator: Assuming it exists’ the inverse 4 of a linear operator A is defined

by the relation
s I

‘where 7 is the unit operator. the operator that leaves any state | ) unchanged.

Quotient of two operators: Dividing an operator A by another operator B (provided that the
inverse B~ exists) is equivalent to multiplying A by B~

i

In general, we have AB~! # B~14. For an illustration of these ideas, see Problem 2.12. We
‘may mention here the following properties about the inverse of operators:

Ay

Unitary operators: A linear operator U is said to be unitary if its inverse U is equal to its
adjoint 71

ot =gt or oot =0to=1.
‘The product of fwo unifary operators is also unifary, since

@@t =@nateh =o@ithot = oo

or (7)1 = (Z77)!. This result can be generalized to any mumber of operators: the product
of a number of unitary operators s also unifary, since




