Lesson 1 - Math Review

Partial Derivatives and Differentials

- The differential of a function of two variables, $f(x, y)$, is

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \tag{1}
\end{equation*}
$$

0 Eq. (1) is true regardless of whether x and y are independent, or if they are both composite functions depending on a third variable, such as t.

- The terms like $\partial f / \partial x$ and $\partial f / \partial y$ are called partial derivatives, because they are taken assuming that all other variables besides that in the denominator are constant.
o For example, $\partial f / \partial x$ describes how f changes as x changes (holding y constant), and $\partial f / \partial y$ describes how f changes as y changes (holding x constant).
- If f is a function of three variables, x, y, and z, then the differential of f is

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z \tag{2}
\end{equation*}
$$

- We often write the partial derivatives with subscripts indicating which variables are held constant,

$$
d f=\left(\frac{\partial f}{\partial x}\right)_{y, z} d x+\left(\frac{\partial f}{\partial y}\right)_{x, z} d y+\left(\frac{\partial f}{\partial z}\right)_{x, y} d z
$$

though it is not absolutely necessary to do so.

- That partial and full derivatives are different can be illustrated by dividing Eq. (1) by the differential of x to get

$$
\begin{equation*}
\frac{d f}{d x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \frac{d y}{d x} \tag{3}
\end{equation*}
$$

- From Eq. (3) we see that the full derivative and the partial derivative are equivalent only if x and y are independent, so that $d y / d x$ is zero.
- WARNING! Partial derivatives are not like fractions. The numerators and denominators cannot be pulled apart or separated arbitrarily. Partial derivatives must be treated as a complete entity. So, you should NEVER pull them apart as shown below

$$
\frac{\partial f}{\partial t}=a x t^{2} \Rightarrow \partial f=a x t^{2} \partial t . \underline{\text { NEVER DO THIS! }}
$$

With a full derivative this is permissible, because is it composed of the ratio of two differentials. But there is no such thing as a partial differential, ∂f.

THE CHAIN RULE

- If x and y are not independent, but depend on a third variable such as s [i.e., $x(s)$ and $y(s)]$, then the chain rule is

$$
\begin{equation*}
\frac{d f}{d s}=\frac{\partial f}{\partial x} \frac{d x}{d s}+\frac{\partial f}{\partial y} \frac{d y}{d s} . \tag{4}
\end{equation*}
$$

- If x and y depend on multiple variables such as s and t [i.e., $x(s, t)$ and $y(s, t)$], then the chain rule is

$$
\begin{align*}
& \frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \tag{5}
\end{align*}
$$

THE PRODUCT RULE AND THE QUOTIENT RULE

- The product and quotient rules also apply to partial derivatives:
o The product rule

$$
\begin{equation*}
\frac{\partial}{\partial x}(u v) \equiv u \frac{\partial v}{\partial x}+v \frac{\partial u}{\partial x} . \tag{6}
\end{equation*}
$$

o The quotient rule

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{u}{v}\right) \equiv \frac{1}{v^{2}}\left(v \frac{\partial u}{\partial x}-u \frac{\partial v}{\partial x}\right) . \tag{7}
\end{equation*}
$$

PARTIAL DIFFERENTIATION IS COMMUTATIVE

- Another important property of partial derivatives is that it doesn't matter in which order you take them. In other words

$$
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) \equiv \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) \equiv \frac{\partial^{2} f}{\partial x \partial y} \equiv \frac{\partial^{2} f}{\partial y \partial x} .
$$

- Multiple partial derivatives taken with respect to different variables are known as mixed partial derivative.

OTHER IMPORTANT IDENTITIES

- The reciprocals of partial derivatives are:

$$
\left(\frac{\partial f}{\partial x}\right)_{y}=\frac{1}{\left(\frac{\partial x}{\partial f}\right)_{y}} ; \quad\left(\frac{\partial f}{\partial y}\right)_{x}=\frac{1}{\left(\frac{\partial y}{\partial f}\right)_{x}}
$$

- If a function of two variables is constant, such as $f(x, y)=c$, then its differential is equal to zero,

$$
\begin{equation*}
d f=\left(\frac{\partial f}{\partial x}\right)_{y} d x+\left(\frac{\partial f}{\partial y}\right)_{x} d y=0 \tag{8}
\end{equation*}
$$

o In this case, x and y must be dependent on each other, because in order for f to be a constant, as x change y must also change. For example, think of the function

$$
\begin{equation*}
f(x, y)=x^{2}+y=c . \tag{9}
\end{equation*}
$$

o Eq. (8) can be rearranged to

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x}\right)_{y} \frac{d x}{d y}+\left(\frac{\partial f}{\partial y}\right)_{x}=0 . \tag{10}
\end{equation*}
$$

The derivative $d x / d y$ in Eq. (10) is actually a partial derivative with f held constant, so we can write

$$
\left(\frac{\partial f}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial y}\right)_{f}+\left(\frac{\partial f}{\partial y}\right)_{x}=0
$$

which when rearranged leads to the identity

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x}\right)_{y}\left(\frac{\partial y}{\partial f}\right)_{x}\left(\frac{\partial x}{\partial y}\right)_{f}=-1 \tag{11}
\end{equation*}
$$

o Eq. (11) is only true if the function f is constant, so that $d f=0$.

INTEGRATION OF PARTIAL DERIVATIVES

- Integration is the opposite or inverse operation of differentiation.

$$
\begin{align*}
& \int_{a}^{b} \frac{\partial f(s, t)}{\partial s} d s=f(b, t)-f(a, t) \\
& \int_{a}^{b} \frac{\partial f(s, t)}{\partial t} d t=f(s, b)-f(s, a) \tag{12}
\end{align*}
$$

DIFFERENTIATING AN INTEGRAL $\bar{\rightleftharpoons}$

- If an integration with respect to one variable is then differentiated with respect to a separate variable, such as

$$
\frac{\partial}{\partial t} \int_{a}^{b} f(s, t, u) d s
$$

the result depends on whether or not the limits of integration, a and b, depend on t.

- In general, if both a and b, depend on t, the result is

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{a(t, u)}^{b(t, u)} f(s, t, u) d s=\int_{a(t, u)}^{b(t, u)} \frac{\partial f(s, t, u)}{\partial t} d s+f(b, t, u) \frac{\partial b}{\partial t}-f(a, t, u) \frac{\partial a}{\partial t} . \tag{13}
\end{equation*}
$$

o If a does not depend on t then the term in Eq. (13) that involves $\partial a / \partial t$ will disappear. Likewise, if b does not depend on t, then the term containing $\partial b / \partial t$ will be zero.

