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Lecture 2: Precipitation (Part 1) 

2.1 Introduction 

Water may take a number of different forms in the atmosphere. These forms are 

collectively termed ‘precipitation’, which includes rain, drizzle, sleet (partly melted 

snowflakes, or rain and snow falling together), snow and hail. The intensity and 

duration of precipitation are extremely variable in most areas of the world. The source 

of precipitation is water vapor, which is always present in the atmosphere in varying 

amounts, although it makes up less than 1% by volume. However, the water vapor in 

the air must be cooled to allow water to be condensed into cloud droplets. These 

droplets then grow to form precipitation particles. The mass of water in the atmosphere 

in both liquid and vapor forms is around 1.3×1016 kg, compared with the mass of water 

in the oceans of around 1.3×1021kg. Nevertheless this water is distributed very 

unevenly, and is transported by the circulation of the atmosphere. We will consider the 

basic thermodynamic processes which lead to the formation of precipitation, and 

describe the atmospheric systems within which these processes occur. 

2.2 Equation of state for a perfect gas 

A perfect gas (ideal gas) obeys the physical laws of Boyle and Charles. The gas 

equation (or equation of state) is: 

𝑝 =  𝜌𝑅𝑇                                    (2.1) 

where 𝑅 = 287 𝐽 𝑘𝑔−1𝐾−1 is known as the universal gas constant.  

Boyle’s law:              𝑝1𝑉1 = 𝑝2𝑉2          𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  𝑇   
              

Charles’law:              
𝑝1

𝑇1
=

𝑝2

𝑇2
            at constant  𝑉 

  where V is volume. Combining the two laws we get: 

𝑝1𝑉1

𝑇1
=

𝑝2𝑉2

𝑇2
= 𝐶 

C is constant depends on the mass of gas (=287 𝐽 𝑘𝑔−1𝐾−1 specific gas constant). 

These laws, are true for a perfect gas, and are nearly true for atmospheric gases. 

Dalton’s law states that in a mixture of gases, the total pressure is equal to the sum of 

the pressures which would be exerted by each gas if it filled the volume under 

consideration at the same temperature. Hence a mixture of gases, such as the 

atmosphere, behaves like a single gas provided the mixture gas constant R is given by: 

𝑅 =
∑ 𝑚𝑖𝑅𝑖

∑ 𝑚𝑖
                   (2.2) 

where mi and Ri is the molecular weight and gas constant of the ith gas. 
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2.3 First law of thermodynamics 

The first law of thermodynamics is derived from two facts: (i) heat is a form of energy; 

and (ii) energy is conserved. Conservation of energy Q may be expressed by 

𝑑𝑄 =  𝑑𝑈 + 𝑑𝑊               (2.3) 

where U is the internal energy and W is the work done by the gas in moving from one 

state to another. Generally, terms of unit mass of gas: 

𝑑𝑞 =  𝑑𝑢 + 𝑑𝑤               (2.4) 

𝑑𝑞 = 𝐶𝑣 𝑑𝑇 + 𝑝 𝑑𝛼          (2.5) 

𝛼 =
1

𝜌
 is specific volume. Differentiation of the equation of state (𝑝𝛼 = 𝑅𝑇) gives: 

𝑝 𝑑𝛼 + 𝛼 𝑑𝑝 = 𝑅 𝑑𝑇 

𝑝 𝑑𝛼 = 𝑅 𝑑𝑇 − 𝛼 𝑑𝑝         (2.6) 
Substitute (2.6) in (2.5) we get: 

𝑑𝑞 = 𝐶𝑣 𝑑𝑇 + 𝑅 𝑑𝑇 − 𝛼 𝑑𝑝   

𝑑𝑞 = (𝐶𝑣 + 𝑅) 𝑑𝑇 − 𝛼 𝑑𝑝 

𝑑𝑞 = 𝐶𝑝 𝑑𝑇 − 𝛼 𝑑𝑝             (2.7) 

where   𝐶𝑝 = 𝑅 + 𝐶𝑣 = 1004 𝐽𝑘𝑔−1𝐾−1     and     𝐶𝑣 = 717 𝐽𝑘𝑔−1𝐾−1  are the 

specific heat at constants pressure and volume, respectively.  
Both of equations (2.5) and (2.7) represent the first law of thermodynamics. 

2.4 Atmospheric processes: dry adiabatic lapse rate 

It is assumed that  dq=0  for most air parcel movements. This assumption can be made 

whenever the motion is fast so that the heat exchange between the parcel and the 

surroundings is negligible. (Why?) 

For adiabatic motion, equations of first law of thermodynamics become: 

𝐶𝑣 𝑑𝑇 + 𝑝 𝑑𝛼 = 0              (2.8) 

𝐶𝑝 𝑑𝑇 − 𝛼 𝑑𝑝 = 0             (2.9) 

Solving for p in equation (2.9) from the equation of state (𝑝 =
1

𝛼
𝑅 𝑇) 

𝐶𝑣 𝑑𝑇 +
1

𝛼
𝑅 𝑇 𝑑𝛼 = 0 

𝐶𝑣 𝑑𝑇 = −𝑅 𝑇
𝑑𝛼

𝛼
 

𝐶𝑣  
𝑑𝑇

𝑇
= −𝑅 

𝑑𝛼

𝛼
 

∫
𝑑𝑇

𝑇

𝑇

𝑇1

= −
𝑅

𝐶𝑣
∫

𝑑𝛼

𝛼

𝛼

𝛼1

  

ln  (𝑇 − 𝑇1) = −
𝑅

𝐶𝑣
(ln(𝛼 − 𝛼1)) 

Now, by taking the exponential (e) for the two sides: 



(3 - 8) 

 

𝑇

𝑇1
= (

𝛼

𝛼1
)

−
𝑅
𝐶𝑣              (2.10) 

If T increases, 𝛼 will decrease and vice versa. 

From equation of state:                       𝛼 =
𝑅 𝑇

𝑝
           (2.11) 

Substitute (2.11) in (2.10) and using (2.9) we get: 

𝐶𝑝 𝑑𝑇 −
𝑅 𝑇

𝑝
𝑑𝑝 

∫
𝑑𝑇

𝑇

𝑇

𝑇1

= −
𝑅

𝐶𝑣
∫

𝑑𝑝

𝑝

𝑝

𝑝1

 

ln
𝑇

𝑇1
=

𝑅

𝐶𝑃
ln

𝑝

𝑝1
           

𝑇

𝑇1
= (

𝑝

𝑝1
)

𝑅
𝐶𝑃              (2.12) 

If T increases P will increases and vice versa. 

From equation (2.10) an equation (2.11) we get: 

(
𝛼

𝛼1
)

−
𝑅
𝐶𝑣   =  (

𝑝

𝑝1
)

𝑅
𝐶𝑃           

𝛼

𝛼1
= (

𝑝

𝑝1
)

−
𝐶𝑣
𝐶𝑃 

An increase in p corresponds to a decrease in 𝛼 and vice versa 

From equation 2.12 and taking a reference pressure of 1000 millibars, we may define 

potential temperature θ as follows: 

𝜃 = 𝑇 (
1000

𝑝
)

𝐾

                    (2.13) 

Where  𝐾 = 𝑅/𝐶𝑝 . Therefore, 𝜃 is a constant for a dry adiabatic process, that is, one 

with no condensation or evaporation. Knowing that the hydrostatic equation is: 
𝜕𝑝

𝜕𝑧
=

−g

𝛼
           (2.14) 

From equation (2.9), and differentiating with respect to height z, and using (2.14):  

𝐶𝑝

𝑑𝑇

𝑑𝑧
− 𝛼

𝑑𝑝

𝑑𝑧
= 0 

𝐶𝑝

𝑑𝑇

𝑑𝑧
= −g 

𝑑𝑇

𝑑𝑧
= −g/𝐶𝑝 = 𝛾𝑑 = −9.76 𝑜𝐶 𝑘𝑚−1                 (2.15) 

Therefore if a parcel of air rises dry adiabatically, its temperature will fall at the rate of 

about 10°C km– 1. The quantity 𝛾𝑑 is the dry adiabatic lapse rate (DALR). 
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2.5 The Clausius-Clapeyron Equation 

 Clausius-Clapeyron equation calculates the change of the saturation vapor pressure 

with temperature (des/dT) during a phase change.  
𝑑𝑒𝑠

𝑑𝑇
=

𝐿12

𝑇(𝛼2 − 𝛼1)
                   (2.16) 

If 𝐿12, 𝛼1 and 𝛼2 are known functions of T, then (2.16) can be integrated to obtain a 

relation between saturation vapor pressure and T. 

Since 𝛼2 ≫ 𝛼1 (specific volume of water vapor is much greater than specific volume of 

liquid water or ice), equation 2.16 becomes: 
𝑑𝑒𝑠

𝑑𝑇
=

𝐿12

𝑇𝛼2
                       (2.17) 

From the equation of state (𝛼2 = 𝑅𝑣𝑇/𝑒𝑠) we get: 

𝑑𝑒𝑠

𝑒𝑠
=

𝐿12

𝑅𝑣

𝑑𝑇

𝑇2
                       (2.18) 

Therefore,  

ln (
𝑒𝑠

𝑒𝑠0
) =

𝐿12

𝑅𝑣
(

1

𝑇0
−

1

𝑇
)      (2.19) 

Where 𝑒𝑠0 is the saturation vapor pressure at 𝑇0. 

For evaporation, 𝑒𝑠0 = 6.11 mb and 𝑇0 = 273 𝐾 , which implies mb and To=273 K, 

which implies 

ln (
𝑒𝑠

6.11 𝑚𝑏
) =

𝐿𝑒𝑣𝑎𝑝

𝑅𝑣
(

1

273
−

1

𝑇
)             (2.20) 

or          𝑒𝑠 = 6.11 𝑚𝑏 exp [
𝐿𝑒𝑣𝑎𝑝

𝑅𝑣
(

1

273
−

1

𝑇
)]         (2.21) 

For sublimation,  

ln (
𝑒𝑠

6.11 𝑚𝑏
) =

𝐿𝑠𝑢𝑏

𝑅𝑣
(

1

273
−

1

𝑇
)            (2.22) 

 or          𝑒𝑠 = 6.11 𝑚𝑏 exp [
𝐿𝑠𝑢𝑏

𝑅𝑣
(

1

273
−

1

𝑇
)]         (2.23) 

Ex: Calculate the change in the melting point of ice if the pressure is increased from 1 

to 2 atm, given that: 𝛼𝑖 = 1.0908 × 10−3  𝑚3𝑘𝑔−1, 𝛼𝑤 = 1.001 × 10−3  𝑚3𝑘𝑔−1
 

𝐿𝑚𝑒𝑙𝑡 = 3.34 × 105  𝐽𝑘𝑔−1     𝑎𝑡 0𝑜𝐶 

Solution: Using Clausius-Clapeyron equation, 

𝑑𝑇 = 𝑇(𝛼𝑤 − 𝛼𝑖)
𝑑𝑝

𝐿𝑚𝑒𝑙𝑡
 

= 273 × (1.001 − 1.0908) × 1.013 × 105/3.34 × 105   = −0.00744 𝑑𝑒𝑔 

Therefore, an increase in pressure of 1 atm decreases the melting point of ice by about 

0.007 deg. Usually, the melting point increases with increasing pressure. But ice is 

unusual because 𝛼𝑤 < 𝛼𝑖. 
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Equations (2.20) and (2.22) plus a similar equation for melting allow us to plot the curves 

of saturation pressure versus temperature. These curves describe the T-e relations during 

phase changes (e=es). 

 

Figure 2.1  T, e phase diagram for water substance. 
 

All curves begin at the triple point. 

(a) Evaporation curve a: curves upward exponentially to the right according to Eq. (2.20) 

(T > 273 K, and es > 6.11 mb). Along this curve, water and vapor are in equilibrium until 

it reaches the critical point (T = 374 K) where only vapor can exist. At some point along 

this curve, water starts to boil. That is the point when es=patm. 

(b) Sublimation curve b: curves downward exponentially to the left of the triple point (T 

< 273 K, es < 6.11 mb). This curve is steeper than the evaporation curve because Lsub 

>Levap. 

(c) Melting curve c: since 𝛼𝑤 − 𝛼𝑖 is almost zero (a very small negative number), des/dT 

is almost -∞, based on the Clausius-Clapyeron equation. Thus the curve is almost 

vertical, but tilts very slightly to the left. 

(d) Supercooled water d: When water which does not freeze below 273 K (0oC), it is 

called supercooled water. For supercooled water, within a certain temperature range of 

T < 0oC, esw > esi (curve d). 

Therefore, in a cloud with mixture of ice crystals and supercooled water (cloud) droplets, 

water vapor will first condense on the ice because esi is smaller than esw.  

In other words, in the competition for water vapor, ice will win over supercooled water. 

This leads to the well-known Bergeron-Findeison process. That is, ice crystal in a cloud 

of supercooled water droplets will grow faster than the water droplets. 
 

2.6 Atmospheric processes: saturated adiabatic lapse rate 

For a sample of moist air in which no evaporation or condensation occurs, equation 2.16 

may be used. However, when condensation occurs and the resulting water falls out of 

the sample, the mass of the sample changes and heat is lost with the fallout of the water. 

This is known as a pseudo‐adiabatic process. If all the condensed water remains in the 
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sample, then the process is of course reversible. In the atmosphere conditions are usually 

such that some, but not all, of the condensed water falls out of any sample of moist air. 

Using Eqs 2.1, 2.9 and 2.16, it may be shown that for saturated air which is lifted slightly, 

𝜕𝑇

𝜕𝑍
= 𝛾𝑠 =

𝛾𝑑 (1 +
𝐿 𝑥𝑠

𝑅𝑑𝑇)

1 +
𝐿2𝑥𝑠

𝑅′𝐶𝑝𝑇2

                  (2.17) 

where γs is the saturated adiabatic lapse rate (SALR) and xs is the saturated humidity 

mixing ratio, that is, the mass of water vapor present in the moist air measured per gram 

of dry air when the moist air is saturated. Although γs varies with temperature and 

pressure, a typical value in the atmosphere is –5.0 °C km– 1. 

2.7 Stability and convection in the atmosphere 

Moist air can become saturated, and hence produce precipitation, by movement upwards 

in the atmosphere. Consider a parcel of moist air, for which the pressure in the parcel is 

the same as that of its environment. Assuming that the parcel can move vertically 

without disturbing the environment and does not mix with its environment, it can be 

shown from the equations of motion for the atmosphere that 

𝑑𝑤

𝑑𝑡
= −

𝜕𝑝

𝜕𝑍
− g =

(𝑇 − 𝑇′)g

𝑇′
            (2.18) 

where w is the vertical velocity of the parcel, t is time, T is the temperature of the parcel, 

and T′ is the temperature of the environment. Making the further assumption that the 

movement is adiabatic, 

𝑑𝑤

𝑑𝑡
=

(𝑇0 − 𝑇0
′)g

𝑇0′
+

(𝛾 − 𝛾𝑎)g 𝑧

𝑇0
′                 (2.19) 

where 𝑇0 and 𝑇0
′ are the initial temperature of the parcel and the environment 

respectively, γ is the environmental lapse rate, z is the vertical coordinate, and γa is the 

appropriate adiabatic lapse rate, being γd if the parcel is unsaturated and γs if the parcel 

is saturated. If the temperature is constant in the horizontal then 𝑇0 = 𝑇0
′ and 

𝑑𝑤

𝑑𝑡
=

(𝛾 − 𝛾𝑎)g 𝑧

𝑇0
′                (2.20) 

The atmosphere is regarded as stable, neutral or unstable when dw/dt is <0, 0 or >0, 

respectively. If 𝛾𝑠 < 𝛾 < 𝛾𝑎 then the atmosphere is conditionally unstable, whereas if 

𝛾 < 𝛾𝑠 the atmosphere is absolutely stable and if 𝛾 > 𝛾𝑑 the atmosphere is absolutely 

unstable. Hence if moist air is lifted by some means it may become saturated and hence 

unstable, and may then continue to rise without any external force being applied. 

2.8 The growth of precipitation particles and Bergeron Process 

 The condensation of water vapor in the atmosphere, brought about by the 

movement of air upwards, provides water droplets or ice crystals in clouds. Such 

precipitation particles are denser than the air surrounding them, and therefore they 

begin to fall at a rate of a few centimeters per second. However, these particles 

will either evaporate in unsaturated air below the cloud, or be held suspended by 
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vertical currents within the cloud. They will only be able to reach the ground as 

precipitation if they become large enough to stand evaporative losses and 

overcome upward air motions. 

 In order for cloud droplets, which are very small, to become rain drops, they have 

to increase in size almost a million times. Indeed, for even a cloud droplet to form, 

complicated processes must take place allowing for the conversion of water vapor 

to liquid water.  

 Often times in the atmosphere this process would be virtually impossible without 

the presence of aerosols. Before we look at this process involving CCN, or cloud 

condensation nuclei, let us first examine the case without them, known as 

homogeneous nucleation. 

 We have said before that the process of the change of state from vapor to liquid 

is called condensation. Also, this will occur when the relative humidity reaches 

100%, or when the vapor pressure equals the saturation vapor pressure.  

 In the microphysics of clouds condensation, however, pure water will condense 

only when levels of saturation reach upwards of 120% (20% supersaturation). The 

reason being that the spherical shape a water droplet forms is a very unstable 

structure, hence resisting formation of the droplet. It is not until these high levels 

of saturation are reached that the forcing will overcome this resistance known as 

surface tension. 

 The process known as heterogeneous nucleation involves "polluting" the pure 

water with aerosols, or CCN. By adding CCN, water is allowed to condense with 

much lower values of supersaturation, on the order of a few tenths of a percent. 

 Now that cloud droplets have formed, we will try to understand how they can 

grow to the size of a raindrop.  

 One such way (although, as we will soon see, not the most important) is through 

collision and coalescence. Cloud droplets will be carried by air currents within 

the cloud, and if they bump into each other, it is called a collision.  

 However, if they collide then stick together, that is called coalescence. Although 

this process is important, especially in the tropics and in increasing the size of 

raindrops, it falls short of being the primary mechanism for the formation of 

raindrops. The process needed was serendipitously discovered by a man named 

Tor Bergeron while taking a mountain walk. 

 The Bergeron process relies primarily on the fact that the saturation vapor 

pressure with respect to ice is less than the saturation vapor pressure with respect 

to water.  

 Another important fact is that pure water droplets do not freeze at 0°C! Again, 

because of surface tension and the structure of water, to get a pure water droplet 

to freeze requires a temperature of -40°C. 

 Liquid water that is cooler than 0°C is called supercooled. In the atmosphere, 

similar to CCN, there exist freezing nuclei. In contrast to CCN, freezing nuclei 

are not plentiful in the atmosphere because there structure must be similar to the 

structure of an ice crystal. Most of the naturally occurring freezing nuclei 
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"activate" at about -10°C. These freezing nuclei allow for the cloud droplets to 

freeze around them.  

 Because of the relative sparseness of the freezing nuclei, ice crystals and 

supercooled water droplets can coexist at the same time. This is where the 

Bergeron's primary fact becomes important. 

 The following chart illustrates the differences in saturation vapor pressures of 

water. 

 

 

Note that since RH= e/es, if es is made smaller, RH increases. 

 The Bergeron process can be summarized as such: The air reaches saturation and 

some of the resulting droplets will come in contact with freezing nuclei (assuming 

they have reached the activation temperature).  

 We will now have a combination of ice crystals and supercooled water droplets. 

From the perspective of the supercooled droplets, the air is in equilibrium at 

saturation, but from the perspective of the ice crystals, the air is supersaturated. 

  Therefore, water vapor will sublimate on the ice crystals. Since the amount of 

water vapor in the air has decreased, and from the perspective of the supercooled 

water droplet, the air is subsaturated, the supercooled water will evaporate until 

the air once again reaches saturation. The process then continues.  

 In short summary, the ice crystal grows through sublimation at the expense of the 

supercooled water droplet. 

 


