Applications of Group Theory

References:

- Introduction to Modern Abstract Algebra, by David M. Burton.
- Groups and Numbers, by R. M. Luther.
- A First Course in Abstract Algebra, by J. B. Fraleigh.
- Group Theory, by M. Suzuki.
- Abstract Algebra Theory and Applications, by Thomas W. Judson.
- Abstract Algebra, by I. N. Herstein.
- Basic Abstract Algebra, by P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul.

1. The Jordan-Holder Theorem and Related Concepts.

Definition(1-1):

By a chain for a group ($G, *$) is meant any finite sequence of subsets of
$G=H_{0} \supset H_{1} \supset \cdots \supset H_{n-1} \supset H_{n}=\{e\} \quad$ descending from G to $\{e\}$ with the property that all the pairs $\left(H_{i}, *\right)$ are subgroups of $(G, *)$.

Remark(1-2):

The integer n is called the length of the chain. When $n=$ 1 , then the chain in definition (1-1) will called the trivial.

Example(1-3):

Find all chains in a group $\left(\mathrm{Z}_{4},+_{4}\right)$.
Solution: The subgroups of a group $\left(\mathrm{Z}_{4},+_{4}\right)$ are :

- $H_{1}=\left(\mathrm{Z}_{4},+_{4}\right)$
- $H_{2}=\left(\{0\},+_{4}\right)$
- $H_{3}=\left(\langle 2\rangle,+_{4}\right)=\left(\{0,2\},+_{4}\right)$

The chains of a group $\left(\mathrm{Z}_{4},+_{4}\right)$ are

$$
\begin{gathered}
\mathrm{Z}_{4} \supset\{0\} \text { is a chain of length one } \\
\mathrm{Z}_{4} \supset\langle 2\rangle \supset\{0\} \text { is a chain of length two. }
\end{gathered}
$$

Example(1-4):

In the group $\left(\mathrm{Z}_{12},+_{12}\right)$ of integers modulo 12 , the following chains are normal chains:

$$
\begin{gathered}
\mathrm{Z}_{12} \supset\langle 6\rangle \supset\{0\}, \\
\mathrm{Z}_{12} \supset\langle 2\rangle \supset\langle 4\rangle \supset\{0\}, \\
\mathrm{Z}_{12} \supset\langle 3\rangle \supset\langle 6\rangle \supset\{0\}, \\
\mathrm{Z}_{12} \supset\langle 2\rangle \supset\langle 6\rangle \supset\{0\} .
\end{gathered}
$$

All subgroups are normal, since $\left(\mathrm{Z}_{12},+_{12}\right)$ is a commutative group.

Definition(1-5): (Normal Chain)

If $\left(H_{i}, *\right)$ is a normal subgroup of a group $(G, *)$ for all $i=$ $1, \ldots, n$, then the chain $G=H_{0} \supset H_{1} \supset \cdots \supset H_{n-1} \supset H_{n}=$ $\{e\}$ is called a normal chain.

Example(1-6):

Find all chains in the following groups and determine their length and type.

- $\left(\mathrm{Z}_{6},+_{6}\right)$;
- $\left(\mathrm{Z}_{8},+_{8}\right)$;
- $\left(\mathrm{Z}_{18},+_{18}\right)$ (Homework);
- $\left(\mathrm{Z}_{21},+_{21}\right)$ (Homework).

Solution: The subgroups of a group $\left(\mathrm{Z}_{6},+_{6}\right)$ are :
$H_{1}=\left(\mathrm{Z}_{6},+_{6}\right)$
$H_{2}=\left(\{0\},+_{6}\right)$
$H_{3}=\left(\langle 2\rangle,+_{6}\right)=\left(\{0,2,4\},+_{6}\right)$
$H_{4}=\left(\langle 3\rangle,+_{6}\right)=\left(\{0,3\},+_{6}\right)$
Then the chains in $\left(\mathrm{Z}_{6},+_{6}\right)$ are:
$\mathrm{Z}_{6} \supset\{0\}$ is a trivial chain of length one
$\mathrm{Z}_{6} \supset\langle 2\rangle \supset\{0\}$ is a normal chain of length two $\mathrm{Z}_{6} \supset\langle 3\rangle \supset\{0\}$ is a normal chain of length two.

The subgroups of a group $\left(\mathrm{Z}_{8},+_{8}\right)$ are :
$H_{1}=\left(\mathrm{Z}_{8},+_{8}\right)$
$H_{2}=\left(\{0\},+_{8}\right)$
$H_{3}=\left(\langle 2\rangle,+_{8}\right)=\left(\{0,2,4,6\},+_{8}\right)$
$H_{4}=\left(\langle 4\rangle,+_{6}\right)=\left(\{0,4\},+_{8}\right)$
Then the chains in $\left(\mathrm{Z}_{8},+_{8}\right)$ are:
$\mathrm{Z}_{8} \supset\{0\}$ is a trivial chain of length one
$\mathrm{Z}_{8} \supset\langle 2\rangle \supset\{0\}$ is a normal chain of length two
$\mathrm{Z}_{8} \supset\langle 4\rangle \supset\{0\}$ is a normal chain of length two
$\mathrm{Z}_{8} \supset\langle 2\rangle \supset\langle 4\rangle \supset\{0\}$ is a normal chain of length three.

Definition(1-7): (Composition Chain)

In the group $(G, *)$, the descending sequence of sets

$$
G=H_{0} \supset H_{1} \supset \cdots \supset H_{n-1} \supset H_{n}=\{e\}
$$

forms a composition chain for ($G, *$) provided

1. $\left(H_{i}, *\right)$ is a subgroup of $(G, *)$,
2. $\left(H_{i}, *\right)$ is a normal subgroup of $\left(H_{i-1}, *\right)$,
3. The inclusion $H_{i-1} \supseteq K \supseteq H_{i}$, where $(K, *)$ is a normal subgroup of $\left(H_{i-1}, *\right)$, implies either $K=H_{i-1}$ or $K=$ H_{i}.

Remark(1-8):

Every composition chain is a normal, but the converse is not true in general, the following example shows that.

Example(1-9):

In the group $\left(\mathrm{Z}_{24},+_{24}\right)$, the normal chain

$$
\mathrm{Z}_{24} \supset\langle 2\rangle \supset\langle 12\rangle \supset\{0\}
$$

is not a composition chain, since it may be further refined by inserting of the set $\langle 4\rangle$ or $\langle 6\rangle$. On other hand,

$$
\mathrm{Z}_{24} \supset\langle 2\rangle \supset\langle 4\rangle \supset\langle 8\rangle \supset\{0\}
$$

and

$$
\mathrm{Z}_{24} \supset\langle 3\rangle \supset\langle 6\rangle \supset\langle 12\rangle \supset\{0\}
$$

are both composition chains for $\left(\mathrm{Z}_{24},+_{24}\right)$.

Example(1-10):

Find all chains in the following groups and determine their length and type.

- $\left(\mathrm{Z}_{8},+_{8}\right)$;
- $\left(\mathrm{Z}_{12},+_{12}\right)$;
- $\left(\mathrm{Z}_{18},+_{18}\right)$ (Homework).

Solution: The subgroups of a group $\left(\mathrm{Z}_{8},+_{8}\right)$ are :
$H_{1}=\left(\mathrm{Z}_{8},+_{8}\right)$
$H_{2}=\left(\{0\},+_{8}\right)$
$H_{3}=\left(\langle 2\rangle,+_{8}\right)=\left(\{0,2,4,6\},+_{8}\right)$
$H_{4}=\left(\langle 4\rangle,+_{8}\right)=\left(\{0,4\},+_{8}\right)$
Then the chains in $\left(\mathrm{Z}_{8},+_{8}\right)$ are:
$\mathrm{Z}_{8} \supset\{0\}$ is a trivial chain of length one.
$\mathrm{Z}_{8} \supset\langle 2\rangle \supset\{0\}$ is a normal chain of length two, but it is not composition chain, since there is a normal subgroup $\langle 4\rangle$ in
Z_{8}, such that $\langle 2\rangle \supset\langle 4\rangle$.
$\mathrm{Z}_{8} \supset\langle 4\rangle \supset\{0\}$ is a normal chain of length two, but it is not composition chain, since there is a normal subgroup $\langle 2\rangle$ in Z_{8}, such that $\langle 2\rangle \supset\langle 4\rangle$.
$\mathrm{Z}_{8} \supset\langle 2\rangle \supset\langle 4\rangle \supset\{0\}$ is a composition chain of length three.

The subgroups of a group $\left(\mathrm{Z}_{12},+_{12}\right)$ are :
$H_{1}=\left(\mathrm{Z}_{12},+_{12}\right)$
$H_{2}=\left(\{0\},{ }_{12}\right)$
$H_{3}=\left(\langle 2\rangle,+_{12}\right)=\left(\{0,2,4,6,8,10\},+_{12}\right)$
$H_{4}=\left(\langle 3\rangle,+_{12}\right)=\left(\{0,3,6,9\},+_{12}\right)$
$H_{5}=\left(\langle 4\rangle,+_{12}\right)=\left(\{0,4,8\},+_{12}\right)$
$H_{6}=\left(\langle 6\rangle,+_{12}\right)=\left(\{0,6\},+_{12}\right)$
Then the chains in $\left(\mathrm{Z}_{12},+_{12}\right)$ are:
$\mathrm{Z}_{12} \supset\{0\}$ is a trivial chain of length one.
$\mathrm{Z}_{12} \supset\langle 2\rangle \supset\{0\}$ is a normal chain of length two.
$\mathrm{Z}_{12} \supset\langle 3\rangle \supset\{0\}$ is a normal chain of length two.
$\mathrm{Z}_{12} \supset\langle 4\rangle \supset\{0\}$ is a normal chain of length two.
$\mathrm{Z}_{12} \supset\langle 6\rangle \supset\{0\}$ is a normal chain of length two.
$\mathrm{Z}_{12} \supset\langle 2\rangle \supset\langle 4\rangle \supset\{0\}$ is a composition chain of length three.
$\mathrm{Z}_{12} \supset\langle 3\rangle \supset\langle 6\rangle \supset\{0\}$ is a composition chain of length three.

Example(1-11):

Let $(G, *)$ be the group of symmetries of the square.
A normal chain for $(G, *)$ which fails to be a composition chain is

$$
G \supset\left\{R_{180}, R_{360}\right\} \supset\left\{R_{360}\right\} .
$$

Example(1-12):(Homework)

Determine the following chain whether normal, composition:

$$
G \supset\left\{R_{90}, R_{180}, R_{270}, R_{360}\right\} \supset\left\{R_{180}, R_{360}\right\} \supset\left\{R_{360}\right\} .
$$

Example(1-13):

The group $(Z,+)$ has no a composition chain, since the normal subgroups of $(\mathrm{Z},+$) are the cyclic subgroups $(\langle\mathrm{n}\rangle),+$), n a nonnegative integer, Since the inclusion $\langle\mathrm{kn}\rangle \subseteq\langle n\rangle$ holds for all $\mathrm{k} \in \mathrm{Z}_{+}$, there always exists a proper subgroup of any given group.

Definition(1-14):

A normal subgroup $(H, *)$ is called a maximal normal subgroup of the group ($G, *$) if $H \neq G$ and there exists no normal subgroup $(K, *)$ of $(G, *)$ such that $H \subset K \subset G$.

Example(1-15):

In the group $\left(\mathrm{Z}_{24},+_{24}\right)$, the cyclic subgroups $\left(\langle 2\rangle,+_{24}\right)$ and $\left(\langle 3\rangle,+_{24}\right)$ are both maximal normal with orders 12 and 8 , respectively.

Example(1-16):

Determine the maximal normal subgroups in the group $\left(Z_{12},+_{12}\right)$.

Solution: The normal subgroups of $\left(\mathrm{Z}_{12},+_{12}\right)$ are:
$H_{1}=\left(\langle 2\rangle,+_{12}\right)=\left(\{0,2,4,6,8,10\},+_{12}\right)$
$H_{2}=\left(\langle 3\rangle,+_{12}\right)=\left(\{0,3,6,9\},+_{12}\right)$
$H_{3}=\left(\langle 4\rangle,+_{12}\right)=\left(\{0,4,8\},+_{12}\right)$
$H_{4}=\left(\langle 6\rangle,+_{12}\right)=\left(\{0,6\},+_{12}\right)$
The maximal normal subgroups of $\left(\mathrm{Z}_{12},+_{12}\right)$ are H_{1} and H_{2}, since there is no normal subgroup in Z_{12} containing H_{1} and H_{2}.

Remark(1-17):

A chain $G=H_{0} \supset H_{1} \supset \cdots \supset H_{n-1} \supset H_{n}=\{e\} \quad$ is a composition of a group $(G, *)$, if each normal subgroup $\left(H_{i}, *\right)$ is a maximal normal subgroup of $\left(H_{i-1}, *\right)$, for all $i=1, \ldots, n$.

Example(1-18);

In the group $\left(\mathrm{Z}_{12},+_{12}\right)$ the chains $\mathrm{Z}_{12} \supset\langle 2\rangle \supset\langle 4\rangle \supset\{0\}$ is a composition of Z_{12}, since
$\langle 2\rangle$ is a maximal normal subgroup of Z_{12},
$\langle 4\rangle$ is a maximal normal subgroup of $\langle 2\rangle$,
$\{0\}$ is a maximal normal subgroup of $\langle 4\rangle$, and
$\mathrm{Z}_{12} \supset\langle 3\rangle \supset\langle 6\rangle \supset\{0\}$ is a composition of Z_{12}, since
$\langle 3\rangle$ is a maximal normal subgroup of Z_{12},
$\langle 6\rangle$ is a maximal normal subgroup of $\langle 3\rangle$,
$\{0\}$ is a maximal normal subgroup of $\langle 6\rangle$.

Theorem(1-19):

A normal subgroup $(H, *)$ of the group $(G, *)$ is a maximal if and only if the quotient $(G / H, \otimes)$ is a simple.

Proof:

$\Rightarrow)$ Let K be a normal subgroup of G with $H \subseteq K$ there corresponds between $\left(G / /_{H}, \otimes\right)$ and $(K / H, \otimes)$ such that this correspondence is one-to-one. Hence, H is a maximal normal in $K \Rightarrow H$ is a maximal normal in G (by correspondence) $\Rightarrow G / H$ is a simple.
$\Leftarrow)$ let G / H be a simple
$\Rightarrow G / H$ has two normal subgroups which are $e * H$ and G / H, but $e * H=H$

Therefore H is a maximal ■

Corollary(1-20):

The group $(G / H, \otimes)$ is a simple, if $|G / H|$ is a prime number.

Examples(1-21);

1. Show that $\left(\langle 2\rangle,{ }_{12}\right)$ is a maximal normal subgroup of $\left(Z_{12},+_{12}\right)$.
2. Show that $\left(\langle 3\rangle,+_{15}\right)$ is a maximal normal subgroup of ($\mathrm{Z}_{15},+_{15}$). (Homework)

Solution(1): $\left(\langle 2\rangle,{ }_{12}\right)=\left(\{0,2,4,6,8,10\},{ }_{12}\right)$
$|G / H|=\frac{|G|}{|H|}=\frac{\left|Z_{12}\right|}{|22\rangle \mid}=\frac{12}{6}=2$ is a prime $\Rightarrow \frac{\mathrm{Z}_{12}}{\langle 2\rangle}$ is a simple
(by Corollary (1-20)). From Theorem (1-19), we get that
$\langle 2\rangle$ is a maximal normal subgroup of Z_{12}.

Corollary(1-22):

A normal chain $G=H_{0} \supset H_{1} \supset \cdots \supset H_{n-1} \supset H_{n}=\{e\}$ is a composition of a group $(G, *)$, if $\left({ }^{H_{i}} / H_{i-1}, \otimes\right)$ is a simple group for all $i=1, \ldots, n$.

Example(1-23);

Show that $\mathrm{Z}_{60} \supset\langle 3\rangle \supset\langle 6\rangle \supset\langle 12\rangle \supset\{0\}$ is a composition chain of a group $\left(\mathrm{Z}_{60},+_{60}\right)$.

Solution: $\frac{\left|\mathrm{Z}_{60}\right|}{|\langle 3\rangle|}=\frac{60}{20}=3$ is a prime $\Rightarrow \frac{\mathrm{Z}_{60}}{\langle 3\rangle}$ is a simple.
So, we get that $\langle 3\rangle$ is a maximal normal subgroup of Z_{60}.
$\frac{|\langle 3\rangle|}{|\langle 6\rangle|}=\frac{20}{10}=2$ is a prime $\Rightarrow \frac{\langle 3\rangle}{\langle 6\rangle}$ is a simple.
So, we get that $\langle 6\rangle$ is a maximal normal subgroup of $\langle 3\rangle$.
$\frac{|\langle 6\rangle|}{|\langle 12\rangle|}=\frac{10}{5}=2$ is a prime $\Rightarrow \frac{\langle 6\rangle}{\langle 12\rangle}$ is a simple.
So, we get that $\langle 12\rangle$ is a maximal normal subgroup of $\langle 6\rangle$.
$\frac{|\langle 12\rangle|}{|\{0\}|}=\frac{5}{1}=5$ is a prime $\Rightarrow \frac{\langle 12\rangle}{\{0\}}$ is a simple.
So, we get that $\{0\}$ is a maximal normal subgroup of $\langle 12\rangle$.

By corollaries (1-19) and (1-21), we have that $\mathrm{Z}_{60} \supset\langle 3\rangle \supset$ $\langle 6\rangle \supset\langle 12\rangle \supset\{0\}$ is a composition chain of a group $\left(\mathrm{Z}_{60},+_{60}\right)$.

Theorem(1-24):

Every finite group ($G, *$) with more than one element has a composition chain.

Theorem(1-25): (Jordan-Holder)

In a finite group $(G, *)$ with more than one element, any two composition chains are equivalent.

Example(1-26):

In a group $\left(\mathrm{Z}_{60},+_{60}\right)$, show that the two chains

$$
\begin{aligned}
& \mathrm{Z}_{60} \supset\langle 3\rangle \supset\langle 6\rangle \supset\langle 12\rangle \supset\{0\} \\
& \mathrm{Z}_{60} \supset\langle 2\rangle \supset\langle 6\rangle \supset\langle 30\rangle \supset\{0\},
\end{aligned}
$$

are compositions and equivalent.

Solution:

$\left({ }^{\mathrm{Z}_{60}} /\langle 3\rangle, \otimes\right) \cong\left({ }^{\langle 2\rangle} /\langle 6\rangle, \otimes\right)$, since $\left.\right|^{\mathrm{Z}_{60}} /\langle 3\rangle \left\lvert\,=\frac{60}{20}=3=\right.$
$|\langle 2\rangle /\langle 6\rangle|=\frac{30}{10}$,
$\left({ }^{\langle 3\rangle} /\langle 6\rangle, \otimes\right) \cong\left({ }^{\mathrm{Z}_{60}} /\langle 2\rangle, \otimes\right)$, since $|\langle 3\rangle /\langle 6\rangle|=\frac{20}{10}=2=$
$\left|\mathrm{Z}_{60} /\langle 2\rangle\right|=\frac{60}{30}$,
$\left({ }^{\langle 6\rangle} /\langle 12\rangle, \otimes\right) \cong\left({ }^{\langle 30\rangle} /\{0\}, \otimes\right)$, since $\left|{ }^{\langle 6\rangle} /\langle 12\rangle\right|=\frac{10}{5}=$ $2=|\langle 30\rangle /\{0\}|=\frac{2}{1}$,
$\left({ }^{\langle 12\rangle} /\{0\}, \otimes\right) \cong\left({ }^{\langle 6\rangle} /\langle 30\rangle, \otimes\right)$, since $|\langle 12\rangle /\{0\}|=\frac{5}{1}=$
$5=|\langle 6\rangle /\langle 30\rangle|=\frac{10}{2}$.
Therefore, by Jordan-Holder theorem the two chains

$$
\begin{aligned}
& \mathrm{Z}_{60} \supset\langle 3\rangle \supset\langle 6\rangle \supset\langle 12\rangle \supset\{0\} \\
& \mathrm{Z}_{60} \supset\langle 2\rangle \supset\langle 6\rangle \supset\langle 30\rangle \supset\{0\},
\end{aligned}
$$

are compositions and equivalent.
Exercises(1-27):

- Check that the following chains represent composition chains for the indicated group.
a. For $\left(\mathrm{Z}_{36},+_{36}\right)$, the group of integers modulo 36 :

$$
\mathrm{Z}_{36} \supset\langle 3\rangle \supset\langle 9\rangle \supset\langle 18\rangle \supset\{0\} .
$$

b. For $\left(G_{S}, *\right)$, the group of symmetries of the square:

$$
G \supset\left\{R_{180}, R_{360}, D_{1}, D_{2}\right\} \supset\left\{R_{360}, D_{1}\right\} \supset\left\{R_{360}\right\} .
$$

c. For $(\langle a\rangle, *)$, a cyclic group of order 30:

$$
\langle a\rangle \supset\left\langle a^{5}\right\rangle \supset\left\langle a^{10}\right\rangle \supset\{e\} .
$$

d. For $\left(S_{3}, \circ\right)$, the symmetric group on 3 symbols:

$$
S_{3} \supset\{i,(123),(132)\} \supset\{i\} .
$$

- Find a composition chain for the symmetric group $\left(S_{4}, \circ\right)$.
- Prove that the cyclic subgroup $(\langle n\rangle,+$) is a maximal normal subgroup of $(Z,+)$ if and only if n is a prime number.
- Establish that the following two composition chains for $\left(\mathrm{Z}_{36},+_{36}\right)$ are equivalent:

$$
\begin{aligned}
& \mathrm{Z}_{24} \supset\langle 3\rangle \supset\langle 6\rangle \supset\langle 12\rangle \supset\{0\}, \\
& \mathrm{Z}_{24} \supset\langle 2\rangle \supset\langle 4\rangle \supset\langle 12\rangle \supset\{0\} .
\end{aligned}
$$

- Find all composition chains for $\left(\mathrm{Z}_{36},+_{36}\right)$.
- Find all composition chains for $\left(G_{S}, *\right)$.

2. P- Groups and Related Concepts.

Definition(2-1): (p-Group)

A finite group $(G, *)$ is said to be p-group if and only if the order of each element of G is a power of fixed prime p.

Definition(2-2): (p-Group)

A finite group $(G, *)$ is said to be p-group if and only if $|G|=p^{k}, k \in \mathrm{Z}$, where p is a prime number.

Example(2-3):

Show that $\left(\mathrm{Z}_{4},+_{4}\right)$ is a p- group.
Solution: $Z_{4}=\{0,1,2,3\}$ and $\left|Z_{4}\right|=4=2^{2}$
$\Rightarrow \mathrm{Z}_{4}$ is a 2- group, with
$o(0)=1=2^{0}$,
$\mathrm{o}(1)=4=2^{2}$,
$o(2)=2=2^{1}$,
$o(3)=4=2^{2}$.

Example(2-4):
Determine whether $\left(\mathrm{Z}_{6},+_{6}\right)$ is a p- group.
Solution: $\mathrm{Z}_{6}=\{0,1,2,3,4,5\}$ and $\left|\mathrm{Z}_{6}\right|=6 \neq P^{k}$
$\Rightarrow \mathrm{Z}_{6}$ is not p - group.

Example(2-5):(Homework)

Determine whether $\left(\mathrm{G}_{s}, \circ\right)$ is a p-group.

Examples(2-6):

- $\left(\mathrm{Z}_{8},+_{8}\right)$ is a 2- group, since $\left|\mathrm{Z}_{8}\right|=8=2^{3}$,
- $\left(Z_{9},+_{9}\right)$ is a 3- group, since $\left|Z_{9}\right|=9=3^{2}$,
- $\left(\mathrm{Z}_{25},+_{25}\right)$ is a 5- group, since $\left|\mathrm{Z}_{25}\right|=25=5^{2}$.

Theorem(2-7):

Let $H \Delta G$, then G is a p-group if and only if H and G / H are p- groups.

Proof: (\Longrightarrow) Assume that G is a p-group, to prove that H and G / H are p - groups.

Since G is a p- group $\Rightarrow \mathrm{o}(\mathrm{a})=\mathrm{p}^{x}$, for some $\mathrm{x} \in \mathrm{Z}^{+}, \forall a \in$ G.

Since $\mathrm{H} \subseteq \mathrm{G} \Rightarrow \forall a \in H$ group $\Rightarrow \mathrm{o}(\mathrm{a})=\mathrm{p}^{x}$, for some $\mathrm{x} \in \mathrm{Z}^{+}$.

So, H is a p- group.
To prove G / H is a p-group.

Let $a * H \in \mathrm{G} / H$, to prove $o(a * H)$ is a power of p .
$(a * H)^{\mathrm{p}^{x}}=a^{\mathrm{p}^{x}} * H=e * H=H,\left(a^{\mathrm{p}^{x}}=e\right.$ since G is a
p - group $\left.\Rightarrow \mathrm{o}(\mathrm{a})=\mathrm{p}^{x}\right)$
(\Longleftarrow) Suppose that H and G / H are p - groups, to prove G is a p- group.

Let $a \in H$, to prove $o(a)$ is a power of p .

$$
\begin{aligned}
& (a * H)^{\mathrm{p}^{x}}=H \ldots(1)(\mathrm{G} / H \text { is a p- group }) \\
& (a * H)^{\mathrm{p}^{x}}=a^{\mathrm{p}^{x}} * H \ldots(2)
\end{aligned}
$$

From (1) and (2), we have $a^{\mathrm{p}^{x}} * H=H \Rightarrow a^{\mathrm{p}^{x}} \in H$ and H is a p - group,
$\Rightarrow o\left(a^{\mathrm{p}^{x}}\right)=\mathrm{p}^{r}, r \in \mathrm{Z}^{+}$
$\Rightarrow\left(a^{\mathrm{p}^{x}}\right)^{\mathrm{p}^{r}}=e \Rightarrow a^{\mathrm{p}^{x+r}}=e, x+r \in \mathrm{Z}^{+}$,
$\Rightarrow o(a)=\mathrm{p}^{x+r}$
Therefore, G is a p-group

Examples(2-8):

Apply theorem (2-7) on $\left(\mathrm{Z}_{32},+_{32}\right)$.

Solution:

$\left|Z_{32}\right|=32=2^{5}$ is a 2 - group.
By theorem (2-7), H and $\mathrm{G} / H^{\text {are } 2 \text { - groups. }}$
$\mathrm{o}(\mathrm{G}) / o(H) \Rightarrow o(H)=2^{x}, 0 \leq x \leq 5$.
$o(H)=2^{0}$ or 2^{1} or 2^{2} or 2^{3} or 2^{4} or 2^{5},
$o(H)=2^{0}$ is a 2- group $\Rightarrow o(\mathrm{G} / H)=o(\mathrm{G}) / o(H)=\frac{2^{5}}{2^{0}}=$ 2^{5} is a 2 - group.
$o(H)=2^{1}$ is a 2-group $\Rightarrow o(G) / o(H)=2^{4}$
$o(H)=2^{2}$ is a 2 - group $\Rightarrow o(\mathrm{G}) / o(H)=2^{3}$
$o(H)=2^{3}$ is a 2 - group $\Rightarrow o(\mathrm{G}) / o(H)=2^{2}$
$o(H)=2^{4}$ is a 2-group $\Rightarrow \mathrm{o}(\mathrm{G}) / o(H)=2$
$o(H)=2^{5}$ is a 2-group $\Rightarrow \mathrm{o}(\mathrm{G}) / o(H)=1$.

Remark(2-9);

If G is a non-trivial p - group, then $\operatorname{Cent}(\mathrm{G}) \neq e$.

Theorem(2-10):

Every group of order p^{2} is an abelian.
Proof: Let G be a group of order p^{2}, to prove G is an abelian.

Let $\operatorname{Cent}(\mathrm{G})$ is a subgroup of G.
By Lagrange Theorem ${ }^{\mathrm{o}(\mathrm{G}) / o(\operatorname{Cent}(\mathrm{G}))}$,
$\Rightarrow \mathrm{p}^{2} / o(\operatorname{Cent}(\mathrm{G}))$
$\Rightarrow o(\operatorname{Cent}(\mathrm{G}))=\mathrm{p}^{0}$ or p^{1} or p^{2}
If $o(\operatorname{Cent}(\mathrm{G}))=\mathrm{p}^{0} \Rightarrow o(\operatorname{Cent}(\mathrm{G}))=\{e\}$, but this is contradiction with remark(2-9), so $o(\operatorname{Cent}(G)) \neq \mathrm{p}^{0}$.

If $o(\operatorname{Cent}(\mathrm{G}))=\mathrm{p}^{2}=o(G) \Rightarrow \operatorname{Cent}(\mathrm{G})=G$
$\Rightarrow G$ is an abelian.

If $o(\operatorname{Cent}(\mathrm{G}))=\mathrm{p}^{1} \Rightarrow o(G / \operatorname{Cent}(\mathrm{G}))=\frac{\mathrm{p}^{2}}{\mathrm{p}^{1}}=\mathrm{p}$
$G / \operatorname{Cent}(\mathrm{G})$ is a cyclic.
Therefore, G is an abelian ■

Remark(2-11):

The converse of theorem(2-10) is not true in general, for example $\left(\mathrm{Z}_{8},+_{8}\right)$ is an abelian, but $o\left(\left(\mathrm{Z}_{8}\right)=2^{3} \neq p^{2}\right.$.

Exercises(2-12):

- Let P and Q be two normal p-subgroups of a finite group G. Show that $P Q$ is a normal p-subgroup of G.
- Determine whether $\left(\mathrm{Z}_{125},+_{125}\right)$ is a p-group.
- Determine whether $\left(\mathrm{Z}_{121},+_{121}\right)$ is a p-group.
- Determine whether $\left(\mathrm{Z}_{41},+_{41}\right)$ is a p-group.
- Determine whether $\left(\mathrm{Z}_{16},+_{16}\right)$ is a p-group.
- Determine whether $\left(\mathrm{Z}_{625},+_{625}\right)$ is a p-group.
- Determine whether $\left(\mathrm{Z}_{185},+_{185}\right)$ is a p-group.
- Determine whether $\left(\mathrm{Z}_{128},+_{128}\right)$ is a p-group.
- Determine whether $\left(\mathrm{Z}_{256},+_{256}\right)$ is a p-group.
- Determine whether $\left(\mathrm{Z}_{100},+_{100}\right)$ is a p-group.
- Show that $\left.\mathrm{G}_{\ell}=\{ \pm 1, \pm i, \pm j, \pm k\}, \cdot\right)$ is a p-group.

3. Sylow Theorem

Definition(3-1): (Sylow p-Subgroup)

Let $(G, *)$ be a finite group and p is a prime number, a subgroup $(H, *)$ of a group G is called sylow p - subgroup if

1. $(H, *)$ is a p-group,
2. $(H, *)$ is not contained in any other p - subgroup of G for the same prime number p .

Example(3-2);

Find sylow 2- subgroups and sylow 3- subgroup of the group $\left(Z_{24},+_{24}\right)$.

Solution: The proper subgroups of the group $\left(\mathrm{Z}_{24},+_{24}\right)$ are

1. $\left(\langle 2\rangle,+_{24}\right) \Rightarrow o(\langle 2\rangle)=12 \neq P^{k} \Rightarrow\langle 2\rangle$ is not $\mathrm{p}-$ subgroup.
2. $\left(\langle 3\rangle,+{ }_{24}\right) \Rightarrow o(\langle 3\rangle)=8=2^{3} \Rightarrow\langle 3\rangle \quad$ is \quad a $\quad 2-$ subgroup.
3. $\left(\langle 4\rangle,+_{24}\right) \Rightarrow o(\langle 4\rangle)=6 \neq P^{k} \Rightarrow\langle 4\rangle$ is not p subgroup.
4.

$\left(\langle 6\rangle,{ }_{24}\right) \Rightarrow o$ $(\langle 6\rangle)=4=2^{2} \Rightarrow$
is a 2- subgroup.
5. $\left(\langle 8\rangle,+_{24}\right) \Rightarrow o(\langle 8\rangle)=3=3^{1} \Rightarrow\langle 8\rangle \quad$ is a $3-$ subgroup.
6. $\left(\langle 12\rangle,+_{24}\right) \Rightarrow o(\langle 12\rangle)=2=2^{1} \Rightarrow\langle 12\rangle \quad$ is a $2-$ subgroup.

Theorem(3-3): (First Sylow Theorem)

Let $(G, *)$ be a finite group of order $\mathrm{p}^{k} q$, where p is a prime number is not dividing q , then G has sylow p - subgroup of order p^{k}.

Example(3-4):

Find sylow 2- subgroup of the group $\left(\mathrm{Z}_{12},+_{12}\right)$.

Solution: $o\left(\mathrm{Z}_{12}\right)=12=(4)(3)=\left(2^{2}\right)(3)$, and $2 \nmid 3$
\Rightarrow by first sylow theorem, the group $\left(\mathrm{Z}_{12},+_{12}\right)$ has sylow 2 - subgroup of order 2^{2}.
$\Rightarrow\left(\langle 3\rangle,+_{12}\right)$ is a sylow 2 - subgroup.

Example(3-5):

Find sylow 7- subgroup of the group $\left(\mathrm{Z}_{42},+_{42}\right)$.
Solution: $o\left(\mathrm{Z}_{42}\right)=42=(7)(6)$, and $7 \nmid 6$
\Rightarrow by first sylow theorem, the group $\left(\mathrm{Z}_{42},+_{42}\right)$ has sylow 7 - subgroup of order 7^{1}.
$\Rightarrow\left(\langle 6\rangle,+_{42}\right)$ is a sylow 7- subgroup.

Example(3-6):

Find sylow 3- subgroup of the group $\left(\mathrm{Z}_{24},+_{24}\right)$.
Solution: $o\left(\mathrm{Z}_{24}\right)=24=(3)(8)=\left(3^{1}\right)(8)$, and $3 \nmid 8$
\Rightarrow by first sylow theorem, the group $\left(\mathrm{Z}_{24},+_{24}\right)$ has sylow 3 - subgroup of order 3^{1}.
$\Rightarrow\left(\langle 8\rangle,+_{24}\right)$ is a sylow 3 - Subgroup.

Theorem(3-7):

Let p a prime number and G be a finite group such that $\mathrm{p}^{x} \backslash \mathrm{o}(G), x \geq 1$, then G has a subgroup of order p^{x} which is called sylow p - subgroup of G .

Example(3-8):

Are the following groups $\left(\mathrm{S}_{3}, \mathrm{o}\right)$ and $\left(\mathrm{G}_{5}, \mathrm{o}\right)$ have sylow psubgroups.

Solution:

$$
\left(\mathrm{S}_{3}, \circ\right), O\left(\mathrm{~S}_{3}\right)=6=(2)(3),
$$

$2 \backslash 6 \Rightarrow \exists$ a subgroup H such that $o(H)=2$ which is called sylow 2-subgroup.

Also, $3 \backslash 6 \Rightarrow \exists$ a subgroup K such that $o(K)=3$ which is called sylow 3 - subgroup.

$$
\left(\mathrm{G}_{s}, \mathrm{o}\right), o\left(\mathrm{G}_{s}\right)=2^{3} \text { is 2- subgroup. }
$$

Every subgroup of G_{s} is 2 - subgroup, $o(H)=2^{0}$ or 2^{1} or 2^{2} or 2^{3}.

Theorem(3-9): (Second Sylow Theorem)

The number of distinct sylow p-subgroups is $k=1+$ $t p, t=0,1, \ldots$ which is divide the order of G.

Example(3-10):

Find the distinct sylow p-subgroups of $\left(\mathrm{S}_{3}, \circ\right)$.

Solution:

$o\left(\mathrm{~S}_{3}\right)=6=(2)(3)$,
$2 \backslash 6 \Rightarrow \exists$ a subgroup H such that $o(H)=2$.
The number of sylow 2 -subgroups is $k_{1}=1+2 t, t=$ $0,1, \ldots$ and $k_{1} \backslash 6$
if $t=0 \Rightarrow k_{1}=1$ and $1 \backslash 6$
if $t=1 \Rightarrow k_{1}=3$ and $3 \backslash 6$
if $t=2 \Rightarrow k_{1}=5$ and $5 \nmid 6$
if $t=3 \Rightarrow k_{1}=7$ and $7 \nmid 6$
so, there are two sylow 2 -subgroups.
$3 \backslash 6 \Rightarrow \exists$ a subgroup K such that $o(K)=3$.

The number of sylow 3 -subgroups is $k_{2}=1+3 t, t=$ $0,1, \ldots$ and $k_{2} \backslash 6$
if $t=0 \Rightarrow k_{2}=1$ and $1 \backslash 6$
if $t=1 \Rightarrow k_{2}=4$ and $4 \nmid 6$
if $t=2 \Rightarrow k_{2}=7$ and $7 \nmid 6$
So, there is one sylow 3-subgroup.

Example(3-11):

Find the number of sylow p-subgroups of G such that $\mathrm{o}(\mathrm{G})=12$.

Solution: $\mathrm{o}(\mathrm{G})=12=(3)\left(2^{2}\right)$
$3 \backslash 12 \Rightarrow \exists$ a subgroup H such that $o(H)=3$.
The number of sylow 3 -subgroups is $k_{1}=1+3 t, t=$ $0,1, \ldots$ and $k_{1} \backslash 12$
if $t=0 \Rightarrow k_{1}=1$ and $1 \backslash 12$
if $t=1 \Rightarrow k_{1}=4$ and $4 \backslash 12$
if $t=2 \Rightarrow k_{1}=7$ and $7 \nmid 12$
if $t=3 \Rightarrow k_{1}=10$ and $10 \nmid 12$
So, there are two sylow 3-subgroups of G.
The number of sylow 2 -subgroups is $k_{2}=1+2 t, t=$ $0,1, \ldots$ and $k_{2} \backslash 12$
if $t=0 \Rightarrow k_{2}=1$ and $1 \backslash 12$
if $t=1 \Rightarrow k_{2}=3$ and $3 \backslash 12$
if $t=2 \Rightarrow k_{2}=5$ and $5 \nmid 12$
if $t=3 \Rightarrow k_{2}=7$ and $7 \nmid 12$
So, there are two sylow 2 -subgroups of G.

Remark(3-12):

The group G has exactly one sylow p-subgroup H if and only if $\mathrm{H} \Delta G$.

Example(3-13):

$\left(\mathrm{S}_{3}, \circ\right), \mathrm{H}=\left\{f_{1}=i, f_{2}=(123), f_{3}=(132)\right\}$
$\mathrm{H} \Delta G \Rightarrow \mathrm{H}$ is a sylow 3-subgroup of S_{3},
So, there is one sylow 3-subgroup of S_{3}.

Exercises(3-14);

- Show that there is no simple group of order 200.
- Show that there is no simple group of order 56.
- Show that there is no simple group of order 20.
- Show that whether $\left(\mathrm{G}_{\ell}, \cdot\right)$ is a sylow.

4. Solvable Groups and Their Applications

Definition(4-1):

A group $(G, *)$ is called a solvable group if and only if, there is a finite collection of subgroups of $(G, *)$, $H_{0}, H_{1}, \ldots, H_{n}$ such that

1. $G=H_{0} \supset H_{1} \supset \cdots \supset H_{n-1} \supset H_{n}=\{e\}$,
2. $H_{i+1} \Delta H_{i} \quad \forall i=0, \ldots, n-1$,
3. ${ }^{H} / H_{i+1}$ is a commutative group $\forall i=0, \ldots, n-1$.

Example(4-2):

Show that, every commutative group is a solvable group.

Solution:

Suppose that $(G, *)$ is a commutative, to show that $(G, *)$ is a solvable.

Let $G=H_{0}$ and $H_{1}=\{e\}$

1. $G=H_{0} \supset H_{1}=\{e\}$
2. $H_{1} \Delta H_{0}$ satisfies, since $\{e\} \Delta G$, or (every subgroup of commutative group is a normal)
3. ${ }^{G} /\{e\} \cong G$ is a commutative group, or (the quotient of commutative group is a commutative)

So, $(G, *)$ is a solvable group,

Example(4-3):

Show that $\left(\mathrm{S}_{3}, \circ\right)$ is a solvable group.
Solution: let $H_{0}=\mathrm{S}_{3}, \mathrm{H}_{1}=\left\{f_{1}=i, f_{2}=(123), f_{3}=\right.$ (132) $\}, H_{2}=\left\{f_{1}\right\}$

1. $\mathrm{S}_{3}=\mathrm{H}_{0} \supset \mathrm{H}_{1} \supset \mathrm{H}_{2}=\{e\}$
2. $H_{2} \Delta H_{1}$ satisfies, since $\left\{f_{1}\right\} \Delta\left\{f_{1}, f_{2}, f_{3}\right\}, H_{1} \Delta H_{0}$ is true, since $\left[\mathrm{S}_{3}: H_{1}\right]=2 \Longrightarrow H_{1} \Delta \mathrm{~S}_{3}$
3. To prove ${ }^{H} /_{H_{i+1}}$ is a commutative group $\forall i=0,1$

$$
o\left(H_{1} / H_{2}\right)=\frac{o\left(\mathrm{H}_{1}\right)}{o\left(\mathrm{H}_{2}\right)}=\frac{3}{1}=3<6 \Rightarrow H_{1} / H_{2} \quad \text { is }
$$

commutative group

$$
o\left(H_{0} / H_{1}\right)=\frac{o\left(\mathrm{H}_{0}\right)}{o\left(\mathrm{H}_{1}\right)}=\frac{6}{3}=2<6 \Rightarrow H_{0} / H_{1} \quad \text { is } \quad \text { a }
$$

commutative group
Therefore, $\left(\mathrm{S}_{3}, \mathrm{o}\right)$ is a solvable group.

Example(4-4):(Homework)

Show that $\left(\mathrm{G}_{S}, \circ\right)$ is a solvable group.

Theorem(4-5):

Every subgroup of a solvable group is a solvable.
Proof: let $(H, *)$ be a subgroup of $(G, *)$ and $(G, *)$ is a solvable group.

To prove $(H, *)$ is a solvable.
Since G is a solvable \Rightarrow
there is a finite collection of subgroups of $(G, *)$, $G_{0}, G_{1}, \ldots, G_{n}$ such that

$$
\text { 1. } G=G_{0} \supset G_{1} \supset \cdots \supset G_{n-1} \supset G_{n}=\{e\}
$$

2. $G_{i+1} \Delta G_{i} \quad \forall i=0, \ldots, n-1$,
3. ${ }_{i} / G_{i+1}$ is a commutative group $\forall i=0, \ldots, n-1$.

Let $H_{i}=H \cap G_{i}, i=0, \ldots, n$
$H_{0}=H \cap G_{0}, H_{1}=H \cap G_{1}, \ldots, H_{n}=H \cap G_{n}=\{e\}$
Each H_{i} is a subgroup of ($G, *$).

1. $G=H_{0} \supset H_{1} \supset \cdots \supset H_{n-1} \supset H_{n}=\{e\}$ is hold
2. $H_{i+1} \Delta H_{i} \quad \forall i=0, \ldots, n-1, \quad H_{i}=H \cap G_{i}, H_{i+1}=$ $H \cap G_{i+1}$, since $G_{i+1} \Delta G_{i} \Rightarrow H_{i+1} \Delta H_{i}$
3. To prove H_{i} / H_{i+1} is a commutative group $\forall i=$ $0, \ldots, n-1$.

Let $f_{i}: H_{i} \rightarrow{ }^{G} / G_{i+1}, i=0, \ldots, n-1$ such that $f_{i}(x)=$ $x * G_{i+1} \forall x \in H_{i} \subseteq G_{i}$.

To prove f_{i} is a homomorphism,
$f_{i}(x * y)=f_{i}(x) \otimes f_{i}(y) ?$
$f_{i}(x * y)=x * y * G_{i+1}=\left(x * G_{i+1}\right) \otimes\left(y * G_{i+1}\right)=$ $f_{i}(x) \otimes f_{i}(y)$

So, f_{i} is a homomorphism
f_{i} is onto ?

$$
\begin{aligned}
& R_{f_{i}}=\left\{f_{i}(x): x \in H_{i}\right\}=\left\{x * G_{i+1}: x \in H_{i}\right\}=f_{i}\left(H_{i}\right) \\
& \quad \neq G_{i} / G_{i+1}
\end{aligned}
$$

$f_{i}\left(H_{i}\right) \subseteq{ }^{G_{i}} / G_{i+1} \Rightarrow f_{i}$ is not onto
$H_{i} / \operatorname{ker}_{i} \cong f_{i}\left(H_{i}\right) \quad$ (by theorem of homomorphism)

$$
\begin{aligned}
\operatorname{ker} f_{i}= & \left\{x \in H_{i}: f_{i}(x)=e^{\prime}\right\}=\left\{x \in H_{i}: x * G_{i+1}=G_{i+1}\right\} \\
& =\left\{x \in H_{i}: x \in G_{i+1}\right\}=\left\{x \in H_{i}: x \in H \cap G_{i+1}\right\} \\
& =H_{i+1}
\end{aligned}
$$

so, $\left(H_{i} / H_{i+1}, \otimes\right) \cong\left(f_{i}\left(H_{i}\right), \otimes\right)$
$f_{i}\left(H_{i}\right) \subseteq G_{i} / G_{i+1}$ and G_{i} / G_{i+1} is a commutative
Hence, $f_{i}\left(H_{i}\right)$ is a commutative
Therefore, ${ }^{H} /_{H_{i+1}}$ is a commutative
So, $(H, *)$ is a solvable

Theorem(4-6):

Let $H \Delta G$ and G is a solvable, then G / H is a solvable.

Theorem(4-7):

Let $H \Delta G$ and both $H, G / H$ are solvable, then $(G, *)$ is a solvable.

Proof: since $(H, *)$ is a solvable \Rightarrow there is a finite collection of subgroups of ($G, *$), $H_{0}, H_{1}, \ldots, H_{n}$ such that

1. $G=H_{0} \supset H_{1} \supset \cdots \supset H_{n-1} \supset H_{n}=\{e\}$,
2. $H_{i+1} \Delta H_{i} \quad \forall i=0, \ldots, n-1$,
3. H_{i} / H_{i+1} is a commutative group $\forall i=0, \ldots, n-1$.

Since $(G / H, \otimes)$ is a solvable \Rightarrow
there is a finite collection of subgroups of ($G, *$), $\frac{G_{0}}{H}, \frac{G_{1}}{H}, \ldots, \frac{G_{r}}{H}$ such that

1. $\frac{G}{H}=\frac{G_{0}}{H} \supset \frac{G_{1}}{H} \supset \cdots \supset \frac{G_{r}}{H}=\{e\}=H$,
2. $\frac{G_{i+1}}{H} \Delta \frac{G_{i}}{H} \quad \forall i=0, \ldots, r-1$,
3. $\frac{G_{i}}{H} / \frac{G_{i+1}}{H}$ is a commutative group $\forall i=0, \ldots, r-1$.

To prove ($G, *$) is a solvable group.
$\frac{G}{H}=\frac{G_{0}}{H} \Rightarrow G=G_{0}$
$\frac{G_{r}}{H}=H \Rightarrow G_{r}=\{e\}$ or $G_{r}=H$
$H \Delta G_{r} \Rightarrow H \subseteq G_{r} \Rightarrow G_{r}=H$
So, there is a finite collection $G_{0}, G_{1}, \ldots, G_{r}=$ $H_{0}, H_{1}, \ldots, H_{n}$ such that

$$
\text { 1. } \begin{aligned}
& =G_{0} \supset G_{1} \supset \cdots \supset G_{r}=H=H_{0} \supset H_{1} \supset \cdots \supset \\
H_{n} & =\{e\} .
\end{aligned}
$$

2. To prove $G_{i+1} \Delta G_{i} \quad \forall i=0, \ldots, r-1$

Let $x \in G_{i}$ and $a \in G_{i+1}$ to prove $x * a * x^{-1} \in G_{i+1}$ $x \in G_{i} \Rightarrow x * H \in \frac{G_{i}}{H}$
$a \in G_{i+1} \Rightarrow a * H \in \frac{G_{i+1}}{H}$
$\frac{G_{i+1}}{H} \Delta \frac{G_{i}}{H} \Rightarrow(x * H) \otimes(a * H) \otimes(x * H)^{-1} \in \frac{G_{i+1}}{H}$
$\Rightarrow\left(x * a * x^{-1}\right) * H \in \frac{G_{i+1}}{H} \Rightarrow x * a * x^{-1} \in G_{i+1}$
$\Rightarrow G_{i+1} \Delta G_{i}$
3. To prove $\frac{G_{i}}{G_{i+1}}$ is a commutative group $\forall i=0, \ldots, r-$ 1
$\frac{\frac{G_{i}}{H}}{\frac{G_{i+1}}{H}}$ is a commutative group and $\frac{\frac{G_{i}}{H}}{\frac{G_{i+1}}{H}} \cong \frac{G_{i}}{G_{i+1}}\left(\frac{\frac{G}{H}}{\frac{K}{H}} \cong \frac{G}{K}\right)$
$\Rightarrow \frac{G_{i}}{G_{i+1}}$ is a commutative group
Therefore, $(G, *)$ is a solvable group ■

Exercises(4-8);

- Show that every p-group is a solvable group.
- Show that $\left(\mathrm{S}_{4}, \circ\right)$ is a solvable group.
- Show that $\left(\mathrm{Z}_{4},+_{4}\right)$ is a solvable group.
- Show that $\left(\mathrm{Z}_{8},+_{8}\right)$ is a solvable group.
- Show that $\left(\mathrm{Z}_{5},+_{5}\right)$ is a solvable group.
- Show that $\left(\mathrm{Z}_{6},+_{6}\right)$ is a solvable group.
- Show that $\left(\mathrm{Z}_{12},+_{12}\right)$ is a solvable group.
- Show that $\left(\mathrm{Z}_{24},+_{24}\right)$ is a solvable group.

5 Some Applications of Group Theory

5.1 Cayley Theorem

Theorem(5-1-1): (Cayley Theorem)

Every group is an isomorphic to a group of permutations.
This means if $(G, *)$ is any group, then $(G, *) \cong\left(F_{G}, \circ\right)$, where $F_{G}=\left\{f_{a}: a \in G\right\}, f_{a}: G \longrightarrow G \ni f_{a}(x)=a * x, \forall x \in$ G.

Proof: define $g: G \rightarrow F_{G}$ by $g(a)=f_{a}, \forall a \in G$
To prove g is a homomorphism, one to one and onto.

1. g is a homomorphism, let $a, b \in G$
$g(a * b)=f_{a * b}=f_{a} \circ f_{b}=g(a) \circ g(b) \Rightarrow g \quad$ is $\quad a$ homomorphism.
$2 . g$ is a one to one, $\operatorname{let} g(a)=g(b), \forall a, b \in G$
$\Rightarrow f_{a}=f_{b} \Rightarrow f_{a}(x)=f_{b}(x) \Rightarrow a * x=b * x \Rightarrow a=b$
$\Rightarrow g$ is a one to one.
2. g is a onto, $g(G)=\{g(a): a \in G\}=\left\{f_{a}: a \in G\right\}=F_{G}$

Therefore, $G \cong F_{G}$ ■

Corollary(5-1-2):

Every finite group $(G, *)$ of order n is an isomorphic to $\left(S_{n}, \circ\right)$.

Example(5-1-3):

Consider the following Cayley table of a group ($G=$ $\{e, a, b, c\}, *)$

$*$	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

Show that $(G, *)$ is an isomorphic to a subgroup of $\left(\mathrm{S}_{4}, \circ\right)$.

Solution:

$f_{e}=\left(\begin{array}{llll}e & a & b & c \\ e & a & b & c\end{array}\right)$,
$f_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right)=$
$(1)(2)(3)(4)=(1)$

$$
\begin{aligned}
f_{a} & =\left(\begin{array}{llll}
e & a & b & c \\
a & e & c & b
\end{array}\right), & f_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)=(12)(34) \\
f_{b} & =\left(\begin{array}{llll}
e & a & b & c \\
b & c & e & a
\end{array}\right), & f_{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right)=(13)(24) \\
f_{c} & =\left(\begin{array}{llll}
e & a & b & c \\
c & b & a & e
\end{array}\right), & f_{4}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right)=(14)(23)
\end{aligned}
$$

Hence, $(G, *)$ is an isomorphic to the subgroup of $\left(\mathrm{S}_{4}, \circ\right)$:
$\{(1),(12)(34),(13)(24),(14)(23)\}$.
Example(5-1-4): (Homework)
Let $(G=\{1,-1, i,-i\}, \cdot)$ be a group, apply Cayley
Theorem on G.

Example(5-1-5): (Homework)

Show that $\left(\mathrm{Z}_{3}, \mathrm{H}_{3}\right)$ is an isomorphic to a subgroup of $\left(S_{3}, \circ\right)$.

Exercises(5-1-6):

- Apply Cayley Theorem on $\left(\mathrm{Z}_{4},+_{4}\right)$.
- Apply Cayley Theorem on ($\mathrm{G}=\{ \pm 1, \pm \mathrm{i}, \pm \mathrm{j}, \pm \mathrm{k}\}$, $)$.
- Apply Cayley Theorem on ($\mathrm{G}=\{1,-1\}$, $)$.
- Apply Cayley Theorem on ($\mathrm{G}=\left\{\mathrm{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), B=\right.$ $\left.\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), C=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right), D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right), \cdot\right)$.

5.2 Direct Product

Definition(5-2-1):

Let ($H, *$) and ($K, *$) be two normal subgroups of ($G, *$), then $(G, *)$ is called an internal direct product of H and $K(G$ is a decomposition by H and K) if and only if $G=H * K$ and $H \cap K=\{e\}$.

Example(5-2-2):

Consider the following Cayley table of a group ($G=$ $\{e, a, b, c\}, *), a^{2}=b^{2}=c^{2}=e$

$*$	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

Let $H=\{e, a\}$ and $K=\{e, b\}$, show that $G=H \otimes K$ is a decomposition by H and K.

Solution: $H, K \Delta G$ since G is a commutative group
$H * K=\{e, a, b, c\}$ and $H \cap K=\{e\}$
Hence, $G=H \otimes K$ is decomposition by H and K.

Example(5-2-3):

$\operatorname{Let}(G, *)$ be any group with $H=G$ and $K=\{e\}$, show that
$G=H \otimes K$ is a decomposition by H and K.
Solution: $H, K \Delta G$
$H * K=G *\{e\}=G$
$H \cap K=G \cap\{e\}=\{e\}$
Therefore, $G=H \otimes K$ is a decomposition by H and K.
Example(5-2-4):
Let $\left(\mathrm{Z}_{4},+_{4}\right)$ be a group. Is Z_{4} has a proper decomposition.
Solution: the subgroups of Z_{4} are $\mathrm{Z}_{4},\{0,2\},\{0\}$
Let $\mathrm{H}=\mathrm{Z}_{4}$ and $\mathrm{K}=\{0,2\}$
$\mathrm{H} \otimes_{4} K=\mathrm{Z}_{4} \otimes_{4}\{0,2\}=\mathrm{Z}_{4}$
$H \cap K=\mathrm{Z}_{4} \cap\{0,2\}=\{0,2\}$

So, $\mathrm{Z}_{4} \neq \mathrm{Z}_{4} \otimes\{0,2\}$
Let $\mathrm{H}=\{0\}$ and $\mathrm{K}=\{0,2\}$
$H \otimes_{4} K=K \neq \mathrm{Z}_{4}$
Therefore, Z_{4} has no proper decomposition.

Theorem (5-2-5):

Let H and K be two subgroups of G and $\mathrm{G}=\mathrm{H} \otimes \mathrm{K}$, then $\mathrm{G} /{ }_{H} \cong K$ and $\mathrm{G} /{ }_{K} \cong H$.

Proof:

Since $\mathrm{G}=\mathrm{H} \otimes \mathrm{K} \Rightarrow \mathrm{H} * \mathrm{~K}=\mathrm{G}$ and $\mathrm{H} \cap K=\{e\}$
$\mathrm{G} / H=\mathrm{H} * \mathrm{~K} / H \quad$ and $\quad \mathrm{H} * \mathrm{~K} / H \cong \mathrm{~K} / H \cap K$ (by second theorem of isomorphic)
$\mathrm{G} / H_{H} \cong \mathrm{~K} /\{e\} \Rightarrow \mathrm{G} / H \cong K$ and
$\mathrm{G} / K_{K}=\mathrm{H} * \mathrm{~K} / K_{K} \quad$ and $\quad \mathrm{H} * \mathrm{~K} / K \cong \mathrm{H} / H \cap K$
$\mathrm{G} / K_{K} \cong \mathrm{H} /\{e\} \Rightarrow \mathrm{G} /{ }_{K} \cong H ■$
Definition(5-2-6):

Let $\left(G_{1}, *\right)$ and $\left(G_{2}, \circ\right)$ be two groups, define $G_{1} \times G_{2}=$ $\left\{(a, b): a \in G_{1}, b \in G_{2}\right\} \quad$ such that $\quad(a, b) \odot(c, d)=$ $(a * c, b \circ d) \ni a, c \in G_{1}, b, d \in G_{2}$. Then $\left(G_{1} \times G_{2}, \odot\right)$ is a group which is called an external direct product of G_{1} and G_{2}.

Example(5-2-7): (Homework)

Show that $\left(G_{1} \times G_{2}, \odot\right)$ is a group.
Example(5-2-8):
Let $G_{1}=\left(\mathrm{Z}_{3},+_{3}\right)$ and $G_{2}=\left(\mathrm{Z}_{2},+_{2}\right)$. Find $G_{1} \times G_{2}$.

Solution:

$G_{1} \times G_{2}=\mathrm{Z}_{3} \times \mathrm{Z}_{2}$

$$
=\{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)\}
$$

$(1,1) \odot(2,1)=(0,0)$
$o\left(\mathrm{Z}_{3} \times \mathrm{Z}_{2}\right)=o\left(\mathrm{Z}_{3}\right) . o\left(\mathrm{Z}_{2}\right)=6$.

Theorem(5-2-9):

Let $\left(G_{1}, *\right)$ and $\left(G_{2}, \circ\right)$ be two groups, then

1. $\left(G_{1} \times G_{2}, \odot\right)$ is an abelian if and only if both G_{1} and G_{2} are abelian.
2. $G_{1} \times\left\{e_{2}\right\} \Delta G_{1} \times G_{2}$.
3. $\left\{e_{1}\right\} \times G_{2} \Delta G_{1} \times G_{2}$.
4. $G_{1} \cong G_{1} \times\left\{e_{2}\right\}$.
5. $G_{2} \cong\left\{e_{2}\right\} \times G_{2}$.

Proof:

1. (\Rightarrow) suppose that $G_{1} \times G_{2}$ is an abelian, to prove G_{1} and G_{2} are abelian.

Let $\left(a, e_{2}\right),\left(b, e_{2}\right) \in G_{1} \times G_{2} \ni a, b \in G_{1}, e_{2} \in G_{2}$
Since $G_{1} \times G_{2}$ is an abelian, then
$\left(a, e_{2}\right) \odot\left(b, e_{2}\right)=\left(b, e_{2}\right) \odot\left(a, e_{2}\right)$
$\left(a * b, e_{2}\right)=\left(b * a, e_{2}\right) \Rightarrow a * b=b * a$
Hence, $\left(G_{1}, *\right)$ is an abelian.
Similarly that $\left(G_{2}, *\right)$ is an abelian.
(\Longleftarrow) suppose that $\left(G_{1}, *\right)$ and $\left(G_{2}, \circ\right)$ are abelian, to prove $G_{1} \times G_{2}$ is an abelian.

Let $(a, b),(c, d) \in G_{1} \times G_{2}$, to prove $(a, b) \odot(c, d)=$ $(c, d) \odot(a, b)$
$(a, b) \odot(c, d)=(a * c, b * d)$
$(c, d) \odot(a, b)=(c * a, d * b)$
$a * c=c * a\left(G_{1}\right.$ is an abelian $)$
$b * d=d * b\left(G_{2}\right.$ is an abelian $)$
$\Rightarrow(a, b) \odot(c, d)=(c, d) \odot(a, b)$
Therefore, $G_{1} \times G_{2}$ is an abelian.
2. To prove $G_{1} \times\left\{e_{2}\right\} \Delta G_{1} \times G_{2}$
$G_{1} \times\left\{e_{2}\right\}=\left\{\left(a, e_{2}\right): a \in G_{1}\right\} \neq \emptyset$
To prove $\left(G_{1} \times\left\{e_{2}\right\}, \odot\right)$ is a subgroup of $G_{1} \times G_{2}$
Let $\left(a, e_{2}\right),\left(b, e_{2}\right) \in G_{1} \times\left\{e_{2}\right\}$
$\left(a, e_{2}\right) \odot\left(b, e_{2}\right)^{-1}=\left(a, e_{2}\right) \odot\left(b^{-1}, e_{2}^{-1}\right)=\left(a * b^{-1}, e_{2}\right)$
So, $\left(G_{1} \times\left\{e_{2}\right\}, \odot\right)$ is a subgroup of $G_{1} \times G_{2}$.

To prove $G_{1} \times\left\{e_{2}\right\} \Delta G_{1} \times G_{2}$
Let $(x, y) \in G_{1} \times G_{2}$ and $\left(a, e_{2}\right) \in G_{1} \times\left\{e_{2}\right\}$
To prove $(x, y) \odot\left(a, e_{2}\right) \odot(x, y)^{-1} \in G_{1} \times\left\{e_{2}\right\}$
$\left(x * a * x^{-1}, y * e_{2} * y^{-1}\right)=\left(x * a * x^{-1}, e_{2}\right) \in G_{1} \times\left\{e_{2}\right\}$
Hence, $G_{1} \times\left\{e_{2}\right\} \Delta G_{1} \times G_{2}$.

3. (Homework).

4. To prove $G_{1} \cong G_{1} \times\left\{e_{2}\right\}$.

Proof:

Define $f:\left(G_{1}, *\right) \longrightarrow\left(G_{1} \times\left\{e_{2}\right\}, \odot\right) \ni f(a)=\left(a, e_{2}\right)$
f is a map ? let $a_{1}, a_{2} \in G_{1}$ and $a_{1}=a_{2} \Rightarrow\left(a_{1}, e_{2}\right)=$ $\left(a_{2}, e_{2}\right) \Rightarrow f\left(a_{1}\right)=f\left(a_{2}\right)$, so f is a map
f is an one to one ? let $f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow\left(a_{1}, e_{2}\right)=$ $\left(a_{2}, e_{2}\right) \Rightarrow a_{1}=a_{2}$, so f is a one to one.
f is a homomorphism ? $f(a * b)=\left(a * b, e_{2}\right)=$ $\left(a, e_{2}\right) \odot\left(b, e_{2}\right)=f(a) \odot f(b)$, so f is a homomorphism
f is an onto? $R_{f}=\left\{f(a): a \in G_{1}\right\}=\left\{\left(a, e_{2}\right): a \in G_{1}\right\}=$ $G_{1} \times\left\{e_{2}\right\}$ so f is an onto.

Therefore, $\left(G_{1}, *\right) \cong\left(G_{1} \times\left\{e_{2}\right\}, \odot\right) ■$

5. (Homework)

Theorem(5-2-10):

Let $\left(G_{1}, *\right)$ and $\left(G_{2}, \circ\right)$ be two p-groups, then $\left(G_{1} \times G_{2}, \odot\right)$ is a p-group.

Proof:

Since G_{1} is p-group $\Rightarrow o\left(G_{1}\right)=p^{k_{1}}, k_{1} \in Z^{+}$
Since G_{2} is p-group $\Rightarrow o\left(G_{2}\right)=p^{k_{2}}, k_{2} \in Z^{+}$

$$
\begin{gathered}
o\left(G_{1} \times G_{2}\right)=o\left(G_{2}\right) \times o\left(G_{1}\right)=p^{k_{1}} \times p^{k_{2}} \\
=p^{k_{1}+k_{2}, k_{1}+k_{2} \in Z^{+}}
\end{gathered}
$$

Therefore, $G_{1} \times G_{2}$ is a p-group $■$

Exercises(5-2-11):

- Let $H=\{0,2,4\}$ and $K=\{0,3\}$ are subgroups of
$\left(\mathrm{Z}_{6},+_{6}\right)$, show that $\mathrm{Z}_{6}=H \otimes K$ is a decomposition.
- Let $H=\{0\}$, show that $\mathrm{Z}_{7}=H \otimes \mathrm{Z}_{7}$ is a decomposition.
- Find $\mathrm{Z}_{3} \times \mathrm{Z}_{7}$.
- Is $\mathrm{S}_{3} \times \mathrm{Z}_{2}$ an abelian?
- Is $\mathrm{G}_{s} \times \mathrm{Z}_{2}$ an abelian?
- Is $\mathrm{S}_{3} \times \mathrm{G}_{S}$ an abelian?
- Is $\{ \pm 1, \pm \mathrm{i}\} \times \mathrm{Z}_{2}$ an abelian?
- Is $\mathrm{Z}_{4} \times \mathrm{Z}_{8}$ a p-group?
- Is $\mathrm{Z}_{5} \times \mathrm{Z}_{25}$ a p-group?
- Is $\mathrm{Z}_{11} \times \mathrm{Z}_{121}$ a p-group?
- Is $\mathrm{Z}_{7} \times \mathrm{Z}_{49}$ a p-group?
- Is $\mathrm{Z}_{27} \times \mathrm{Z}_{3}$ a p-group?
- Is $\mathrm{Z}_{5} \times \mathrm{Z}_{125}$ a p-group?
- Is $\mathrm{Z}_{2} \times \mathrm{Z}_{64}$ a p-group?
- Is $\mathrm{Z}_{4} \times \mathrm{Z}_{128}$ a p-group?
- Is $\mathrm{Z}_{9} \times \mathrm{Z}_{81}$ a p-group?
- Is $\mathrm{Z}_{27} \times \mathrm{Z}_{81}$ a p-group?
- Is $\mathrm{Z}_{128} \times \mathrm{Z}_{8}$ a p-group?
- Is $\mathrm{Z}_{2} \times \mathrm{Z}_{256}$ a p-group?

