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1. The Jordan-Holder Theorem and Related Concepts. 

Definition(1-1): 

By a chain for a group (𝐺,∗) is meant any finite sequence 

of subsets of  

𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒}  descending 

from  𝐺 to {𝑒} with the property that all the pairs (𝐻𝑖 ,∗) 

are  subgroups of (𝐺,∗). 

    Remark(1-2): 

    The integer 𝑛 is called the length of the chain. When 𝑛 =

1, then the         chain in  definition (1-1) will called the 

trivial. 

    Example(1-3): 

    Find all chains in a group (Ζ4, +4). 

 Solution: The subgroups of a group (Ζ4, +4) are : 

 𝐻1 = (Ζ4, +4) 

 𝐻2 = ({0}, +4) 

 𝐻3 = (〈2〉, +4) = ({0,2}, +4) 
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The chains of a group (Ζ4, +4) are 

Ζ4 ⊃ {0} is a chain of length one 

Ζ4 ⊃ 〈2〉 ⊃ {0} is a chain of length two. 

    Example(1-4): 

    In the group (Ζ12, +12) of integers modulo 12, the 

following chains are              normal chains: 

Ζ12 ⊃ 〈6〉 ⊃ {0}, 

Ζ12 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ {0}, 

Ζ12 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ {0}, 

Ζ12 ⊃ 〈2〉 ⊃ 〈6〉 ⊃ {0}. 

    All subgroups are normal, since (Ζ12, +12) is a 

commutative group. 

Definition(1-5): (Normal Chain) 

If (𝐻𝑖 ,∗) is a normal subgroup of a group (𝐺,∗) for all 𝑖 =

1, … , 𝑛, then the chain 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 =

{𝑒} is called a normal chain. 
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Example(1-6): 

Find all chains in the following groups and determine their 

length and type. 

 (Ζ6, +6); 

 (Ζ8, +8); 

 (Ζ18, +18) (Homework); 

 (Ζ21, +21) (Homework). 

Solution: The subgroups of a group (Ζ6, +6) are : 

𝐻1 = (Ζ6, +6) 

𝐻2 = ({0}, +6) 

𝐻3 = (〈2〉, +6) = ({0,2,4}, +6) 

𝐻4 = (〈3〉, +6) = ({0,3}, +6) 

Then the chains in (Ζ6, +6) are: 

Ζ6 ⊃ {0} is a trivial chain of length one 

Ζ6 ⊃ 〈2〉 ⊃ {0} is a normal chain of length two 

Ζ6 ⊃ 〈3〉 ⊃ {0} is a normal chain of length two. 
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The subgroups of a group (Ζ8, +8) are : 

𝐻1 = (Ζ8, +8) 

𝐻2 = ({0}, +8) 

𝐻3 = (〈2〉, +8) = ({0,2,4,6}, +8) 

𝐻4 = (〈4〉, +6) = ({0,4}, +8) 

Then the chains in (Ζ8, +8) are: 

Ζ8 ⊃ {0} is a trivial chain of length one 

Ζ8 ⊃ 〈2〉 ⊃ {0} is a normal chain of length two 

Ζ8 ⊃ 〈4〉 ⊃ {0} is a normal chain of length two 

Ζ8 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ {0} is a normal chain of length three. 

    Definition(1-7): (Composition Chain) 

    In the group (𝐺,∗), the descending sequence of sets  

𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒} 

   forms a composition chain for  (𝐺,∗) provided 

1. (𝐻𝑖 ,∗) is a  subgroup of (𝐺,∗), 

2. (𝐻𝑖 ,∗) is a normal  subgroup of (𝐻𝑖−1,∗), 
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3. The inclusion 𝐻𝑖−1 ⊇ 𝐾 ⊇ 𝐻𝑖 , where (𝐾,∗) is a normal 

subgroup of (𝐻𝑖−1,∗), implies either  𝐾 = 𝐻𝑖−1 or 𝐾 =

𝐻𝑖. 

Remark(1-8): 

Every composition chain is a normal, but the converse is 

not true in general, the following example shows that. 

Example(1-9): 

In the group (Ζ24, +24), the normal chain  

Ζ24 ⊃ 〈2〉 ⊃ 〈12〉 ⊃ {0} 

is not a composition chain, since it may be further refined 

by inserting of the set〈4〉 or 〈6〉. On other hand, 

Ζ24 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ 〈8〉 ⊃ {0} 

and  

Ζ24 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ 〈12〉 ⊃ {0} 

are both composition chains for  (Ζ24, +24). 

Example(1-10): 
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Find all chains in the following groups and determine their 

length and type. 

 (Ζ8, +8); 

 (Ζ12, +12); 

 (Ζ18, +18) (Homework). 

Solution: The subgroups of a group (Ζ8, +8) are : 

𝐻1 = (Ζ8, +8) 

𝐻2 = ({0}, +8) 

𝐻3 = (〈2〉, +8) = ({0,2,4,6}, +8) 

𝐻4 = (〈4〉, +8) = ({0,4}, +8) 

Then the chains in (Ζ8, +8) are: 

Ζ8 ⊃ {0} is a trivial chain of length one. 

Ζ8 ⊃ 〈2〉 ⊃ {0} is a normal chain of length two, but it is not 

composition chain, since there is a normal subgroup 〈4〉 in 

Ζ8, such that 〈2〉 ⊃ 〈4〉. 
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Ζ8 ⊃ 〈4〉 ⊃ {0} is a normal chain of length two, but it is not 

composition chain, since there is a normal subgroup 〈2〉 in 

Ζ8, such that 〈2〉 ⊃ 〈4〉. 

Ζ8 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ {0} is a composition chain of length 

three.  

The subgroups of a group (Ζ12, +12) are : 

𝐻1 = (Ζ12, +12) 

𝐻2 = ({0}, +12) 

𝐻3 = (〈2〉, +12) = ({0,2,4,6,8,10}, +12) 

𝐻4 = (〈3〉, +12) = ({0,3,6,9}, +12) 

𝐻5 = (〈4〉, +12) = ({0,4,8}, +12) 

𝐻6 = (〈6〉, +12) = ({0,6}, +12) 

Then the chains in (Ζ12, +12) are: 

Ζ12 ⊃ {0} is a trivial chain of length one. 

Ζ12 ⊃ 〈2〉 ⊃ {0} is a normal chain of length two. 

Ζ12 ⊃ 〈3〉 ⊃ {0} is a normal chain of length two. 
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Ζ12 ⊃ 〈4〉 ⊃ {0} is a normal chain of length two. 

Ζ12 ⊃ 〈6〉 ⊃ {0} is a normal chain of length two. 

Ζ12 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ {0} is a composition chain of length 

three. 

Ζ12 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ {0} is a composition chain of length 

three. 

Example(1-11): 

Let (𝐺,∗) be the group of symmetries of the square.  

A normal chain for (𝐺,∗) which fails to be a composition 

chain is  

𝐺 ⊃ {𝑅180, 𝑅360} ⊃ {𝑅360}. 

Example(1-12): (Homework) 

Determine the following chain whether normal, 

composition:  

𝐺 ⊃ {𝑅90, 𝑅180, 𝑅270, 𝑅360} ⊃ {𝑅180, 𝑅360} ⊃ {𝑅360}. 
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Example(1-13): 

  The group  (Ζ, +) has no a composition chain, since the 

normal subgroups of (Ζ, +) are the cyclic subgroups  

(〈n〉), +), n a nonnegative integer, Since the inclusion  

〈kn〉 ⊆ 〈𝑛〉 holds for all k ∈ Ζ+, there always exists a 

proper subgroup of any given group. 

Definition(1-14): 

A normal subgroup  (𝐻,∗) is called a maximal normal 

subgroup of the group (𝐺,∗) if 𝐻 ≠ 𝐺 and there exists no 

normal subgroup (𝐾,∗) of (𝐺,∗) such that 𝐻 ⊂ 𝐾 ⊂ 𝐺. 

Example(1-15): 

In the group (Ζ24, +24), the cyclic subgroups (〈2〉, +24) 

and (〈3〉, +24) are both maximal normal with orders 12 and 

8, respectively. 

Example(1-16):  

Determine the maximal normal subgroups in the group 

(Ζ12, +12). 
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Solution: The normal subgroups of (Ζ12, +12) are: 

𝐻1 = (〈2〉, +12) = ({0,2,4,6,8,10}, +12) 

𝐻2 = (〈3〉, +12) = ({0,3,6,9}, +12) 

𝐻3 = (〈4〉, +12) = ({0,4,8}, +12) 

𝐻4 = (〈6〉, +12) = ({0,6}, +12) 

The maximal normal subgroups of (Ζ12, +12) are 𝐻1 and 

𝐻2, since there is no normal subgroup in Ζ12 containing 𝐻1 

and 𝐻2. 

Remark(1-17): 

A chain 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒} is a 

composition of a group (𝐺,∗), if each normal subgroup 

(𝐻𝑖 ,∗) is a maximal normal subgroup of (𝐻𝑖−1,∗), for all 

𝑖 = 1, … , 𝑛. 

Example(1-18); 

In the group (Ζ12, +12) the chains Ζ12 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ {0} is 

a composition of  Ζ12 , since 

 〈2〉 is a maximal normal subgroup of Ζ12,  
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 〈4〉 is a maximal normal subgroup of 〈2〉, 

{0} is a maximal normal subgroup of 〈4〉, and 

Ζ12 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ {0} is a composition of Ζ12, since 

〈3〉 is a maximal normal subgroup of Ζ12,  

 〈6〉 is a maximal normal subgroup of 〈3〉, 

{0} is a maximal normal subgroup of  〈6〉. 

Theorem(1-19): 

A normal subgroup (𝐻,∗) of the group (𝐺,∗) is a maximal 

if and only if the quotient (𝐺
𝐻⁄ ,⊗) is a simple. 

Proof: 

⇒) Let   𝐾 be a normal subgroup  of 𝐺 with 𝐻 ⊆ 𝐾 there 

corresponds between  (𝐺
𝐻⁄ ,⊗) and (𝐾

𝐻⁄ ,⊗) such that 

this correspondence is one-to-one. Hence, 𝐻 is a maximal 

normal in  𝐾 ⇒ 𝐻 is a maximal normal in 𝐺 ( by 

correspondence) ⇒ 𝐺 𝐻⁄  is a simple. 

⇐) let 𝐺 𝐻⁄   be a simple 
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 ⇒ 𝐺 𝐻⁄  has two normal subgroups which are 𝑒 ∗ 𝐻 and 

𝐺
𝐻⁄ , but 𝑒 ∗ 𝐻 = 𝐻 

Therefore 𝐻 is a maximal ∎ 

Corollary(1-20): 

The group (𝐺
𝐻⁄ ,⊗) is a simple,  if  |𝐺 𝐻⁄ | is a prime 

number. 

Examples(1-21); 

1. Show that (〈2〉, +12) is a maximal normal subgroup of 

(Ζ12, +12). 

2. Show that (〈3〉, +15) is a maximal normal subgroup of 

(Ζ15, +15). (Homework) 

Solution(1): (〈2〉, +12) = ({0,2,4,6,8,10}, +12) 

|𝐺 𝐻⁄ | =
|𝐺|

|𝐻|
=

|Ζ12|

|〈2〉|
=

12

6
= 2 is a prime ⇒

Ζ12

〈2〉
 is a simple 

(by Corollary (1-20)). From Theorem (1-19), we get that 

〈2〉 is a maximal normal subgroup of   Ζ12. 

Corollary(1-22): 
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A normal chain 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒} is 

a composition of a group (𝐺,∗), if (
𝐻𝑖

𝐻𝑖−1
⁄ ,⊗) is a simple 

group for all 𝑖 = 1, … , 𝑛. 

Example(1-23); 

Show that Ζ60 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ 〈12〉 ⊃ {0} is a composition 

chain of a group (Ζ60, +60). 

Solution: 
|Ζ60|

|〈3〉|
=

60

20
= 3 is a prime ⇒

Ζ60

〈3〉
 is a simple.  

So, we get that 〈3〉 is a maximal normal subgroup of   Ζ60. 

|〈3〉|

|〈6〉|
=

20

10
= 2 is a prime ⇒

〈3〉

〈6〉
 is a simple.  

So, we get that 〈6〉 is a maximal normal subgroup of 〈3〉. 

|〈6〉|

|〈12〉|
=

10

5
= 2 is a prime ⇒

〈6〉

〈12〉
 is a simple.  

So, we get that 〈12〉 is a maximal normal subgroup of 〈6〉. 

|〈12〉|

|{0}|
=

5

1
= 5 is a prime ⇒

〈12〉

{0}
 is a simple.  

So, we get that {0} is a maximal normal subgroup of 〈12〉. 
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By corollaries (1-19) and (1-21), we have that Ζ60 ⊃ 〈3〉 ⊃

〈6〉 ⊃ 〈12〉 ⊃ {0} is a composition chain of a group 

(Ζ60, +60). 

Theorem(1-24):  

Every finite group (𝐺,∗) with more than one element has a 

composition chain. 

Theorem(1-25): (Jordan-Holder) 

In a finite group (𝐺,∗) with more than one element, any two 

composition chains are equivalent. 

Example(1-26):  

In a group (Ζ60, +60), show that the two chains 

Ζ60 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ 〈12〉 ⊃ {0} 

Ζ60 ⊃ 〈2〉 ⊃ 〈6〉 ⊃ 〈30〉 ⊃ {0}, 

are compositions and equivalent. 

Solution:  
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(
Ζ60

〈3〉⁄ ,⊗) ≅ (
〈2〉

〈6〉⁄ ,⊗), since |
Ζ60

〈3〉⁄ | =
60

20
= 3 =

|
〈2〉

〈6〉⁄ | =
30

10
, 

(
〈3〉

〈6〉⁄ ,⊗) ≅ (
Ζ60

〈2〉⁄ ,⊗), since |
〈3〉

〈6〉⁄ | =
20

10
= 2 =

|
Ζ60

〈2〉⁄ | =
60

30
, 

(
〈6〉

〈12〉⁄ ,⊗) ≅ (
〈30〉

{0}⁄ ,⊗), since |
〈6〉

〈12〉⁄ | =
10

5
=

2 = |
〈30〉

{0}⁄ | =
2

1
, 

(
〈12〉

{0}⁄ ,⊗) ≅ (
〈6〉

〈30〉⁄ ,⊗), since |
〈12〉

{0}⁄ | =
5

1
=

5 = |
〈6〉

〈30〉⁄ | =
10

2
. 

Therefore, by Jordan-Holder theorem the two chains  

Ζ60 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ 〈12〉 ⊃ {0} 

Ζ60 ⊃ 〈2〉 ⊃ 〈6〉 ⊃ 〈30〉 ⊃ {0}, 

are compositions and equivalent. 

Exercises(1-27): 
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 Check that the following chains represent composition 

chains for the indicated group. 

a. For (Ζ36, +36), the group of integers modulo 36: 

Ζ36 ⊃ 〈3〉 ⊃ 〈9〉 ⊃ 〈18〉 ⊃ {0}. 

b. For (𝐺𝑠 ,∗), the group of symmetries of the square: 

𝐺 ⊃ {𝑅180, 𝑅360, 𝐷1, 𝐷2} ⊃ {𝑅360, 𝐷1} ⊃ {𝑅360}. 

c. For (〈𝑎〉,∗), a cyclic group of order 30: 

〈𝑎〉 ⊃ 〈𝑎5〉 ⊃ 〈𝑎10〉 ⊃ {𝑒}. 

d. For (𝑆3,∘), the symmetric group on 3 symbols: 

𝑆3 ⊃ {𝑖, (123), (132)} ⊃ {𝑖}. 

 Find a composition chain for the symmetric group  

(𝑆4,∘). 

 Prove that the cyclic subgroup (〈𝑛〉, +) is a maximal 

normal subgroup of (Ζ, +) if and only if 𝑛 is a prime 

number. 

 Establish that the following two composition chains for 

(Ζ36, +36) are equivalent: 
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Ζ24 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ 〈12〉 ⊃ {0}, 

Ζ24 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ 〈12〉 ⊃ {0}. 

 Find all composition chains for (Ζ36, +36). 

 Find all composition chains for (𝐺𝑠 ,∗). 

 

 

 

 

 

 

2. 𝐏- Groups and Related Concepts. 

Definition(2-1): (𝐩- Group) 

A finite group (𝐺,∗) is said to be 𝑝- group  if and only if the 

order of each element of  𝐺 is a power of fixed prime 𝑝. 

Definition(2-2): (𝐩- Group) 
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 A finite group (𝐺,∗) is said to be 𝑝- group  if and only if  

|𝐺| = 𝑝𝑘 , 𝑘 ∈ Ζ, where 𝑝 is a prime number. 

Example(2-3):  

Show that (Ζ4, +4) is a p- group. 

Solution:  Ζ4 = {0,1,2,3} and |  Ζ4| = 4 = 22  

⇒  Ζ4 is a 2- group, with 

o(0) = 1 = 20, 

o(1) = 4 = 22, 

o(2) = 2 = 21, 

o(3) = 4 = 22. 

 

Example(2-4):  

Determine whether (Ζ6, +6) is a p- group. 

Solution:  Ζ6 = {0,1,2,3,4,5} and |  Ζ6| = 6 ≠ 𝑃𝑘  

⇒  Ζ6 is not p- group. 

Example(2-5): (Homework) 
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Determine whether (G𝑠,∘) is a p- group. 

Examples(2-6): 

 (Ζ8, +8) is a 2- group, since |Ζ8| = 8 = 23, 

 (Ζ9, +9) is a 3- group, since |Ζ9| = 9 = 32, 

 (Ζ25, +25) is a 5- group, since |Ζ25| = 25 = 52. 

Theorem(2-7):  

Let H∆G, then G is a p- group if and only if  H and G 𝐻⁄  are 

p- groups. 

Proof:   (⟹)  Assume that G is a p- group, to prove that H 

and G 𝐻⁄  are p- groups. 

Since G is a p- group ⟹ o(a) = p𝑥, for some x ∈ Ζ+, ∀𝑎 ∈

𝐺. 

Since H ⊆ G ⟹ ∀𝑎 ∈ 𝐻 group ⟹ o(a) = p𝑥, for some 

x ∈ Ζ+. 

So, H is a p- group. 

To prove G 𝐻⁄  is a p- group. 
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Let  𝑎 ∗ 𝐻 ∈ G
𝐻⁄ , to prove 𝑜(𝑎 ∗ 𝐻) is a power of p. 

(𝑎 ∗ 𝐻)p𝑥
= 𝑎p𝑥

∗ 𝐻 = 𝑒 ∗ 𝐻 = 𝐻, (𝑎p𝑥
= 𝑒 since G is a 

p- group⟹ o(a) = p𝑥 ) 

(⟸) Suppose that H and G 𝐻⁄  are p- groups, to prove G is a 

p- group. 

Let 𝑎 ∈ 𝐻, to prove 𝑜(𝑎) is a power of p. 

(𝑎 ∗ 𝐻)p𝑥
= 𝐻 … (1)  (G 𝐻⁄  is a p- group) 

(𝑎 ∗ 𝐻)p𝑥
= 𝑎p𝑥

∗ 𝐻 … (2) 

From (1) and (2), we have 𝑎p𝑥
∗ 𝐻 = 𝐻 ⟹ 𝑎p𝑥

∈ 𝐻 and 𝐻 

is a p- group, 

⟹ 𝑜(𝑎p𝑥
) = p𝑟 , 𝑟 ∈ Ζ+ 

⟹ (𝑎p𝑥
)

p𝑟

= 𝑒 ⟹ 𝑎p𝑥+𝑟
= 𝑒, 𝑥 + 𝑟 ∈ Ζ+, 

⟹ 𝑜(𝑎) = p𝑥+𝑟  

Therefore, G is a p- group ∎  

Examples(2-8):  
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Apply theorem(2-7) on (Ζ32, +32). 

Solution:  

|Ζ32| = 32 = 25 is a 2- group. 

By theorem (2-7), H and G 𝐻⁄  are 2- groups. 

o(G)
𝑜(𝐻)⁄    ⟹ 𝑜(𝐻) = 2𝑥 , 0 ≤  𝑥 ≤ 5. 

𝑜(𝐻) = 20 or    21  or  22  or   23   or   24   or   25, 

𝑜(𝐻) = 20 is a 2- group ⟹ 𝑜(G
𝐻⁄ ) = o(G)

𝑜(𝐻)⁄ =
25

20 =

25 is a 2- group. 

𝑜(𝐻) = 21 is a 2- group ⟹ o(G)
𝑜(𝐻)⁄ = 24 

𝑜(𝐻) = 22 is a 2- group ⟹ o(G)
𝑜(𝐻)⁄ = 23 

𝑜(𝐻) = 23 is a 2- group ⟹ o(G)
𝑜(𝐻)⁄ = 22 

𝑜(𝐻) = 24 is a 2- group ⟹ o(G)
𝑜(𝐻)⁄ = 2 

𝑜(𝐻) = 25 is a 2- group ⟹ o(G)
𝑜(𝐻)⁄ = 1. 
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Remark(2-9);  

If G is a non-trivial  p- group, then Cent(G) ≠ 𝑒. 

Theorem(2-10):  

Every group of order p2 is an abelian. 

Proof: Let G be a group of order p2, to prove G is an 

abelian. 

Let Cent(G) is a subgroup of G. 

By Lagrange Theorem 
o(G)

𝑜(Cent(G) )⁄  , 

⟹
p2

𝑜(Cent(G) )
⁄  

⟹ 𝑜(Cent(G)) = p0   or   p1   or    p2 

If  𝑜(Cent(G)) = p0 ⟹ 𝑜(Cent(G)) = {𝑒}, but this is 

contradiction with remark(2-9), so 𝑜(Cent(G)) ≠ p0. 

If 𝑜(Cent(G)) = p2 = 𝑜(𝐺) ⟹ Cent(G) = 𝐺 

⟹ 𝐺 is an abelian. 
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If 𝑜(Cent(G)) = p1 ⟹ 𝑜 (𝐺
Cent(G)⁄ ) =

p2

p1 = p  

𝐺
Cent(G)⁄  is a cyclic. 

Therefore, 𝐺 is an abelian ∎ 

Remark(2-11):  

The converse of theorem(2-10) is not true in general, for 

example  (Ζ8, +8) is an abelian, but 𝑜((Ζ8) = 23 ≠ 𝑝2. 

Exercises(2-12): 

 Let 𝑃 and 𝑄 be two normal p-subgroups of a finite 

group 𝐺. Show that 𝑃𝑄 is a normal p-subgroup of 𝐺. 

 Determine whether (Ζ125, +125) is a p-group. 

 Determine whether (Ζ121, +121) is a p-group. 

 Determine whether (Ζ41, +41) is a p-group. 

 Determine whether (Ζ16, +16) is a p-group. 

 Determine whether (Ζ625, +625) is a p-group. 

 Determine whether (Ζ185, +185) is a p-group. 

 Determine whether (Ζ128, +128) is a p-group. 

 Determine whether (Ζ256, +256) is a p-group. 
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 Determine whether (Ζ100, +100) is a p-group. 

 Show that Gℓ = {±1, ±𝑖, ±𝑗, ±𝑘},∙) is a p-group. 

 

 

3. Sylow Theorem 

Definition(3-1): (Sylow 𝒑- Subgroup) 

Let (𝐺,∗) be a finite group and p is a prime number, a 

subgroup (𝐻,∗) of a group 𝐺 is called sylow 𝑝- subgroup if  

1. (𝐻,∗) is a p- group, 

2. (𝐻,∗) is not contained in any other p- subgroup of 𝐺 

for the same prime number p. 

Example(3-2);  

Find sylow 2- subgroups and sylow 3- subgroup of the 

group (Ζ24, +24). 

Solution: The proper subgroups of  the group (Ζ24, +24) 

are 
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1. (〈2〉, +24) ⟹ 𝑜(〈2〉) = 12 ≠ 𝑃𝑘 ⟹ 〈2〉 is not p- 

subgroup. 

2. (〈3〉, +24) ⟹ 𝑜(〈3〉) = 8 = 23 ⟹ 〈3〉 is a 2- 

subgroup. 

3. (〈4〉, +24) ⟹ 𝑜(〈4〉) = 6 ≠ 𝑃𝑘 ⟹ 〈4〉 is not p- 

subgroup. 

4. (〈6〉, +24) ⟹ 𝑜(〈6〉) = 4 = 22 ⟹ 〈6〉 is a 2- 

subgroup. 

5. (〈8〉, +24) ⟹ 𝑜(〈8〉) = 3 = 31 ⟹ 〈8〉 is a 3- 

subgroup. 

6. (〈12〉, +24) ⟹ 𝑜(〈12〉) = 2 = 21 ⟹ 〈12〉 is a 2- 

subgroup. 

Theorem(3-3): (First Sylow Theorem) 

Let (𝐺,∗) be a finite group of order p𝑘𝑞, where p is a prime 

number is not dividing q, then 𝐺 has sylow p- subgroup of 

order p𝑘. 

Example(3-4): 

Find sylow 2- subgroup of the group (Ζ12, +12). 
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Solution: 𝑜(Ζ12) = 12 = (4)(3) = (22)(3), and 2 ∤ 3 

⟹ by first sylow theorem, the group (Ζ12, +12) has sylow 

2- subgroup of order  22. 

⟹ (〈3〉, +12) is a sylow 2- subgroup. 

 

Example(3-5): 

Find sylow 7- subgroup of the group (Ζ42, +42). 

Solution: 𝑜(Ζ42) = 42 = (7)(6), and 7 ∤ 6 

⟹ by first sylow theorem, the group (Ζ42, +42) has sylow 

7- subgroup of order  71. 

⟹ (〈6〉, +42) is a sylow 7- subgroup. 

Example(3-6): 

Find sylow 3- subgroup of the group (Ζ24, +24). 

Solution: 𝑜(Ζ24) = 24 = (3)(8) = (31)(8), and 3 ∤ 8 

⟹ by first sylow theorem, the group (Ζ24, +24) has sylow 

3- subgroup of order  31. 
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⟹ (〈8〉, +24) is a sylow 3- Subgroup. 

Theorem(3-7): 

Let p a prime number and G be a finite group such that 

p𝑥\o(𝐺), 𝑥 ≥ 1, then G has a subgroup of order p𝑥 which is 

called sylow p- subgroup of G. 

Example(3-8): 

Are the following groups (S3,∘) and (G𝑠,∘) have sylow p- 

subgroups. 

Solution: 

 (S3,∘), 𝑂(S3) = 6 = (2)(3),  

2 ∖ 6 ⟹ ∃ a subgroup 𝐻 such that 𝑜(𝐻) = 2 which is 

called sylow 2- subgroup. 

Also, 3 ∖ 6 ⟹ ∃ a subgroup 𝐾 such that 𝑜(𝐾) = 3 which 

is called sylow 3- subgroup. 

(G𝑠,∘), 𝑜(G𝑠) = 23 is 2- subgroup. 

Every subgroup of G𝑠 is 2- subgroup, 𝑜(𝐻) = 20  or   21   

or   22  or  23 . 
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Theorem(3-9): (Second Sylow Theorem) 

The number of distinct sylow p-subgroups is  𝑘 = 1 +

𝑡𝑝, 𝑡 = 0,1, … which is divide the order of 𝐺. 

Example(3-10): 

Find the distinct sylow  p-subgroups of (S3,∘). 

Solution:  

𝑜(S3) = 6 = (2)(3),  

2 ∖ 6 ⟹ ∃ a subgroup 𝐻 such that 𝑜(𝐻) = 2. 

The number of sylow  2-subgroups is 𝑘1 = 1 + 2𝑡, 𝑡 =

0,1, … and 𝑘1 ∖ 6 

if 𝑡 = 0 ⟹ 𝑘1 = 1 and  1 ∖ 6 

if 𝑡 = 1 ⟹ 𝑘1 = 3 and  3 ∖ 6 

if 𝑡 = 2 ⟹ 𝑘1 = 5 and  5 ∤ 6 

if 𝑡 = 3 ⟹ 𝑘1 = 7 and  7 ∤ 6 

so, there are  two sylow 2-subgroups. 

3 ∖ 6 ⟹ ∃ a subgroup 𝐾 such that 𝑜(𝐾) = 3. 
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The number of sylow  3-subgroups is 𝑘2 = 1 + 3𝑡, 𝑡 =

0,1, … and 𝑘2 ∖ 6 

if 𝑡 = 0 ⟹ 𝑘2 = 1 and  1 ∖ 6 

if 𝑡 = 1 ⟹ 𝑘2 = 4 and  4 ∤ 6 

if 𝑡 = 2 ⟹ 𝑘2 = 7 and  7 ∤ 6 

So, there is  one sylow 3-subgroup. 

Example(3-11): 

Find the number of sylow p-subgroups of G such that 

o(G) = 12. 

Solution: o(G) = 12 = (3)(22) 

3 ∖ 12 ⟹ ∃ a subgroup 𝐻 such that 𝑜(𝐻) = 3. 

The number of sylow  3-subgroups is 𝑘1 = 1 + 3𝑡, 𝑡 =

0,1, … and 𝑘1 ∖ 12 

if 𝑡 = 0 ⟹ 𝑘1 = 1 and  1 ∖ 12 

if 𝑡 = 1 ⟹ 𝑘1 = 4 and  4 ∖ 12 

if 𝑡 = 2 ⟹ 𝑘1 = 7 and  7 ∤ 12 
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if 𝑡 = 3 ⟹ 𝑘1 = 10 and 10 ∤ 12 

So, there are two sylow 3-subgroups of G. 

The number of sylow  2-subgroups is 𝑘2 = 1 + 2𝑡, 𝑡 =

0,1, … and 𝑘2 ∖ 12 

if 𝑡 = 0 ⟹ 𝑘2 = 1 and  1 ∖ 12 

if 𝑡 = 1 ⟹ 𝑘2 = 3 and 3 ∖ 12 

if 𝑡 = 2 ⟹ 𝑘2 = 5 and  5 ∤ 12 

if 𝑡 = 3 ⟹ 𝑘2 = 7 and 7 ∤ 12 

So, there are  two sylow 2-subgroups of G. 

Remark(3-12): 

The group G has exactly one sylow p-subgroup  H if and 

only if H∆𝐺. 

Example(3-13): 

(S3,∘), H = {𝑓1 = 𝑖, 𝑓2 = (123), 𝑓3 = (132)} 

H∆𝐺 ⟹ H is a sylow 3-subgroup of S3, 

So, there is  one sylow 3-subgroup of S3. 
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Exercises(3-14); 

 Show that there is no simple group of order 200. 

 Show that there is no simple group of order 56. 

 Show that there is no simple group of order 20. 

 Show that whether (Gℓ,∙) is a sylow. 

4. Solvable Groups and Their Applications 

Definition(4-1):  

A group (𝐺,∗) is called a solvable group if and only if, 

there is a finite collection of subgroups of (𝐺,∗), 

𝐻0, 𝐻1, … , 𝐻𝑛  such that 

1. 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒}, 

2. 𝐻𝑖+1∆𝐻𝑖    ∀𝑖 = 0, … , 𝑛 − 1, 

3. 
𝐻𝑖

𝐻𝑖+1
⁄  is a commutative group ∀𝑖 = 0, … , 𝑛 − 1. 

Example(4-2): 

Show that, every commutative group is a solvable group.  

Solution:  
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Suppose that (𝐺,∗) is a commutative, to show that (𝐺,∗) is 

a solvable. 

Let 𝐺 = 𝐻0 and 𝐻1 = {𝑒} 

1. 𝐺 = 𝐻0 ⊃ 𝐻1 = {𝑒} 

2. 𝐻1∆𝐻0 satisfies, since {𝑒}∆𝐺, or ( every subgroup of 

commutative group is a normal) 

3. 𝐺 {𝑒}⁄ ≅ 𝐺 is a commutative group, or (the quotient of 

commutative group is a commutative) 

So, (𝐺,∗) is a solvable group, 

Example(4-3): 

Show that (S3,∘) is a solvable group. 

Solution: let 𝐻0 = S3, H1 = {𝑓1 = 𝑖, 𝑓2 = (123), 𝑓3 =

(132)}, 𝐻2 = {𝑓1} 

1. S3 = 𝐻0 ⊃ H1 ⊃ H2 = {𝑒} 

2. 𝐻2∆𝐻1 satisfies, since { 𝑓1}∆{𝑓1, 𝑓2, 𝑓3}, 𝐻1∆𝐻0 is true, 

since [S3: 𝐻1] = 2 ⟹ 𝐻1∆S3 

3. To prove 
𝐻𝑖

𝐻𝑖+1
⁄  is a commutative group ∀𝑖 = 0,1 
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    𝑜 (
𝐻1

𝐻2
⁄ ) =

𝑜(H1)

𝑜(H2)
=

3

1
= 3 < 6 ⟹

𝐻1
𝐻2

⁄  is a 

commutative group 

    𝑜 (
𝐻0

𝐻1
⁄ ) =

𝑜(H0)

𝑜(H1)
=

6

3
= 2 < 6 ⟹

𝐻0
𝐻1

⁄  is a 

commutative group 

Therefore, (S3,∘) is a solvable group. 

Example(4-4): (Homework) 

Show that (G𝑠,∘) is a solvable group. 

Theorem(4-5): 

Every subgroup of a solvable group is a solvable. 

Proof: let (𝐻,∗) be a subgroup of (𝐺,∗) and (𝐺,∗) is a 

solvable group. 

To prove (𝐻,∗) is a solvable. 

Since 𝐺 is a solvable ⟹  

there is a finite collection of subgroups of (𝐺,∗), 

𝐺0, 𝐺1, … , 𝐺𝑛   such that 

1. 𝐺 = 𝐺0 ⊃ 𝐺1 ⊃ ⋯ ⊃ 𝐺𝑛−1 ⊃ 𝐺𝑛 = {𝑒}, 
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2. 𝐺𝑖+1∆𝐺𝑖    ∀𝑖 = 0, … , 𝑛 − 1, 

3. 
𝐺𝑖

𝐺𝑖+1
⁄  is a commutative group ∀𝑖 = 0, … , 𝑛 − 1. 

Let 𝐻𝑖 = 𝐻 ∩ 𝐺𝑖 ,   𝑖 = 0, … , 𝑛 

𝐻0 = 𝐻 ∩ 𝐺0, 𝐻1 = 𝐻 ∩ 𝐺1, … , 𝐻𝑛 = 𝐻 ∩ 𝐺𝑛 = {𝑒}  

Each 𝐻𝑖 is a subgroup of (𝐺,∗). 

1. 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒} is hold 

2. 𝐻𝑖+1∆𝐻𝑖    ∀𝑖 = 0, … , 𝑛 − 1,   𝐻𝑖 = 𝐻 ∩  𝐺𝑖, 𝐻𝑖+1 =

𝐻 ∩  𝐺𝑖+1 , since 𝐺𝑖+1∆𝐺𝑖 ⟹ 𝐻𝑖+1∆𝐻𝑖 

3. To prove 
𝐻𝑖

𝐻𝑖+1
⁄  is a commutative group ∀𝑖 =

0, … , 𝑛 − 1. 

Let 𝑓𝑖: 𝐻𝑖 ⟶
𝐺𝑖

𝐺𝑖+1
⁄ , 𝑖 = 0, … , 𝑛 − 1 such that 𝑓𝑖(𝑥) =

𝑥 ∗ 𝐺𝑖+1∀𝑥 ∈ 𝐻𝑖 ⊆ 𝐺𝑖. 

To prove 𝑓𝑖 is a homomorphism, 

𝑓𝑖(𝑥 ∗ 𝑦) = 𝑓𝑖(𝑥) ⊗ 𝑓𝑖(𝑦) ? 

𝑓𝑖(𝑥 ∗ 𝑦) = 𝑥 ∗ 𝑦 ∗ 𝐺𝑖+1 = (𝑥 ∗ 𝐺𝑖+1) ⊗ (𝑦 ∗ 𝐺𝑖+1) =

𝑓𝑖(𝑥) ⊗ 𝑓𝑖(𝑦)  
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So, 𝑓𝑖 is a homomorphism 

𝑓𝑖 is onto ? 

𝑅𝑓𝑖
= {𝑓𝑖(𝑥): 𝑥 ∈ 𝐻𝑖} = {𝑥 ∗ 𝐺𝑖+1: 𝑥 ∈ 𝐻𝑖} = 𝑓𝑖(𝐻𝑖)

≠
𝐺𝑖

𝐺𝑖+1
⁄   

𝑓𝑖(𝐻𝑖) ⊆
𝐺𝑖

𝐺𝑖+1
⁄ ⟹ 𝑓𝑖 is not onto 

𝐻𝑖
ker𝑓𝑖 

⁄ ≅ 𝑓𝑖(𝐻𝑖)  ( by theorem of homomorphism) 

ker𝑓𝑖 = {𝑥 ∈ 𝐻𝑖 : 𝑓𝑖(𝑥) = 𝑒′} = {𝑥 ∈ 𝐻𝑖: 𝑥 ∗ 𝐺𝑖+1 = 𝐺𝑖+1}

= {𝑥 ∈ 𝐻𝑖: 𝑥 ∈ 𝐺𝑖+1} = {𝑥 ∈ 𝐻𝑖 : 𝑥 ∈ 𝐻 ∩ 𝐺𝑖+1}

=  𝐻𝑖+1 

so, (
𝐻𝑖

𝐻𝑖+1
⁄ ,⊗) ≅ (𝑓𝑖(𝐻𝑖),⊗) 

 𝑓𝑖(𝐻𝑖) ⊆
𝐺𝑖

𝐺𝑖+1
⁄  and 

𝐺𝑖
𝐺𝑖+1

⁄  is a commutative  

Hence, 𝑓𝑖(𝐻𝑖) is a commutative 

Therefore, 
𝐻𝑖

𝐻𝑖+1
⁄  is a commutative 

So, (𝐻,∗) is a solvable ∎ 
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Theorem(4-6): 

Let 𝐻∆𝐺 and 𝐺 is a solvable, then 𝐺 𝐻⁄  is a solvable. 

Theorem(4-7): 

Let 𝐻∆𝐺 and both 𝐻,  𝐺
𝐻⁄  are solvable, then (𝐺,∗) is a 

solvable. 

Proof: since (𝐻,∗) is a solvable ⟹  

there is a finite collection of subgroups of (𝐺,∗), 

𝐻0, 𝐻1, … , 𝐻𝑛  such that 

1. 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒}, 

2. 𝐻𝑖+1∆𝐻𝑖    ∀𝑖 = 0, … , 𝑛 − 1, 

3. 
𝐻𝑖

𝐻𝑖+1
⁄  is a commutative group ∀𝑖 = 0, … , 𝑛 − 1. 

Since (𝐺
𝐻⁄ ,⊗) is a solvable ⟹  

there is a finite collection of subgroups of (𝐺,∗), 

𝐺0

𝐻
,

𝐺1

𝐻
, … ,

𝐺𝑟

𝐻
  such that 
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1. 
𝐺

𝐻
=

𝐺0

𝐻
⊃

𝐺1

𝐻
⊃ ⋯ ⊃

𝐺𝑟

𝐻
= {𝑒} = 𝐻, 

2. 
𝐺𝑖+1

𝐻
∆

𝐺𝑖

𝐻
   ∀𝑖 = 0, … , 𝑟 − 1, 

3. 

𝐺𝑖

𝐻
𝐺𝑖+1

𝐻

⁄  is a commutative group ∀𝑖 = 0, … , 𝑟 − 1. 

To prove (𝐺,∗) is a solvable group. 

𝐺

𝐻
=

𝐺0

𝐻
⟹ 𝐺 = 𝐺0 

𝐺𝑟

𝐻
= 𝐻 ⟹ 𝐺𝑟 = {𝑒}  or  𝐺𝑟 = 𝐻 

𝐻∆𝐺𝑟 ⟹ 𝐻 ⊆ 𝐺𝑟 ⟹ 𝐺𝑟 = 𝐻 

So, there is a finite collection 𝐺0, 𝐺1, … , 𝐺𝑟 =

𝐻0, 𝐻1, … , 𝐻𝑛  such that  

1. 𝐺 = 𝐺0 ⊃ 𝐺1 ⊃ ⋯ ⊃ 𝐺𝑟 = 𝐻 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃

𝐻𝑛 = {𝑒}. 

2. To prove 𝐺𝑖+1∆𝐺𝑖    ∀𝑖 = 0, … , 𝑟 − 1 

Let 𝑥 ∈ 𝐺𝑖    and   𝑎 ∈ 𝐺𝑖+1   to prove   𝑥 ∗ 𝑎 ∗ 𝑥−1 ∈ 𝐺𝑖+1 

𝑥 ∈ 𝐺𝑖 ⟹ 𝑥 ∗ 𝐻 ∈
𝐺𝑖

𝐻
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𝑎 ∈ 𝐺𝑖+1 ⟹ 𝑎 ∗ 𝐻 ∈
𝐺𝑖+1

𝐻
 

𝐺𝑖+1

𝐻
∆

𝐺𝑖

𝐻
⟹ (𝑥 ∗ 𝐻) ⊗ (𝑎 ∗ 𝐻) ⊗ (𝑥 ∗ 𝐻)−1 ∈

𝐺𝑖+1

𝐻
 

⟹ (𝑥 ∗ 𝑎 ∗ 𝑥−1) ∗ 𝐻 ∈
𝐺𝑖+1

𝐻
⟹ 𝑥 ∗ 𝑎 ∗ 𝑥−1 ∈ 𝐺𝑖+1

⟹ 𝐺𝑖+1∆𝐺𝑖 

3. To prove 
𝐺𝑖

𝐺𝑖+1
  is a commutative group  ∀𝑖 = 0, … , 𝑟 −

1 

𝐺𝑖
𝐻

𝐺𝑖+1
𝐻

 is a commutative group and  

𝐺𝑖
𝐻

𝐺𝑖+1
𝐻

≅
𝐺𝑖

𝐺𝑖+1
  (

𝐺

𝐻
𝐾

𝐻

≅
𝐺

𝐾
) 

⟹
𝐺𝑖

𝐺𝑖+1
 is a commutative group 

Therefore, (𝐺,∗) is a solvable group ∎  

Exercises(4-8); 

 Show that every 𝑝-group is a solvable group. 

 Show that (S4,∘) is a solvable group. 

 Show that (Ζ4, +4) is a solvable group. 

 Show that (Ζ8, +8) is a solvable group. 
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 Show that (Ζ5, +5) is a solvable group. 

 Show that (Ζ6, +6) is a solvable group. 

 Show that (Ζ12, +12) is a solvable group. 

 Show that (Ζ24, +24) is a solvable group. 
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5 Some Applications of Group Theory 

5.1 Cayley Theorem 

Theorem(5-1-1): (Cayley Theorem) 

Every group is an isomorphic to a group of permutations. 

This means if (𝐺,∗) is any group, then (𝐺,∗) ≅ (𝐹𝐺 ,∘), 

where 𝐹𝐺 = {𝑓𝑎: 𝑎 ∈ 𝐺}, 𝑓𝑎: 𝐺 ⟶ 𝐺 ∋  𝑓𝑎(𝑥) = 𝑎 ∗ 𝑥, ∀𝑥 ∈

𝐺. 

Proof: define 𝑔: 𝐺 ⟶ 𝐹𝐺 by 𝑔(𝑎) = 𝑓𝑎, ∀𝑎 ∈ 𝐺 

To prove 𝑔 is a homomorphism, one to one and onto. 

1. 𝑔 is a homomorphism, let 𝑎, 𝑏 ∈ 𝐺 

𝑔(𝑎 ∗ 𝑏) = 𝑓𝑎∗𝑏 = 𝑓𝑎 ∘ 𝑓𝑏 = 𝑔(𝑎) ∘ 𝑔(𝑏) ⟹ 𝑔 is a 

homomorphism. 

2. 𝑔 is a one to one, let𝑔(𝑎) = 𝑔(𝑏), ∀𝑎, 𝑏 ∈ 𝐺  

⟹ 𝑓𝑎 = 𝑓𝑏 ⟹ 𝑓𝑎(𝑥) = 𝑓𝑏(𝑥) ⟹ 𝑎 ∗ 𝑥 = 𝑏 ∗ 𝑥 ⟹ 𝑎 = 𝑏 

⟹ 𝑔 is a one to one. 

3. 𝑔 is a onto, 𝑔(𝐺) = {𝑔(𝑎): 𝑎 ∈ 𝐺} = {𝑓𝑎: 𝑎 ∈ 𝐺} = 𝐹𝐺  
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Therefore, 𝐺 ≅ 𝐹𝐺∎  

Corollary(5-1-2): 

Every finite group (𝐺,∗) of order 𝑛 is an isomorphic to 

(S𝑛,∘). 

Example(5-1-3): 

Consider the following Cayley table of a group  (𝐺 =

{𝑒, 𝑎, 𝑏, 𝑐},∗)  

∗ 𝑒 𝑎 𝑏 𝑐 

𝑒 𝑒 𝑎 𝑏 𝑐 

𝑎 𝑎 𝑒 𝑐 𝑏 

𝑏 𝑏 𝑐 𝑒 𝑎 

𝑐 𝑐 𝑏 𝑎 𝑒 

 

Show that(𝐺,∗) is an isomorphic to a subgroup of (S4,∘). 

Solution:  

𝑓𝑒 = (
𝑒 𝑎
𝑒 𝑎

    
𝑏 𝑐
𝑏 𝑐

),   𝑓1 = (
1 2
1 2

    
3 4
3 4

) =

(1)(2)(3)(4) = (1) 
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𝑓𝑎 = (
𝑒 𝑎
𝑎 𝑒

    
𝑏 𝑐
𝑐 𝑏

),     𝑓2 = (
1 2
2 1

    
3 4
4 3

) = (12)(34) 

𝑓𝑏 = (
𝑒 𝑎
𝑏 𝑐

    
𝑏 𝑐
𝑒 𝑎

),     𝑓3 = (
1 2
3 4

    
3 4
1 2

) = (13)(24) 

𝑓𝑐 = (
𝑒 𝑎
𝑐 𝑏

    
𝑏 𝑐
𝑎 𝑒

),     𝑓4 = (
1 2
4 3

    
3 4
2 1

) = (14)(23) 

Hence, (𝐺,∗) is an isomorphic to the subgroup of (S4,∘): 

{(1), (12)(34), (13)(24), (14)(23)}. 

Example(5-1-4): (Homework) 

Let   (𝐺 = {1, −1, 𝑖, −𝑖},∙) be a group, apply Cayley 

Theorem on 𝐺. 

Example(5-1-5): (Homework) 

Show that (Ζ3, +3) is an isomorphic to a subgroup of 

(S3,∘). 

Exercises(5-1-6): 

 Apply Cayley Theorem on (Ζ4, +4). 

 Apply Cayley Theorem on (G = {±1, ±i, ±j, ±k},∙). 

 Apply Cayley Theorem on (G = {1, −1},∙). 
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 Apply Cayley Theorem on (G = {A = (
1 0
0 1

) , 𝐵 =

(
1 0
0 −1

) , 𝐶 = (
−1 0
0 −1

) , 𝐷 =, (
−1 0
0 1

) ,∙). 
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5.2 Direct Product  

Definition(5-2-1): 

Let (𝐻,∗) and (𝐾,∗) be two normal subgroups of (𝐺,∗), 

then (𝐺,∗) is called an internal direct product of 𝐻 and 𝐾 (𝐺 

is a decomposition by 𝐻 and 𝐾 ) if and only if 𝐺 = 𝐻 ∗ 𝐾 

and  𝐻 ∩ 𝐾 = {𝑒}. 

Example(5-2-2): 

Consider the following Cayley table of a group  (𝐺 =

{𝑒, 𝑎, 𝑏, 𝑐},∗),   𝑎2 = 𝑏2 = 𝑐2 = 𝑒  

∗ 𝑒 𝑎 𝑏 𝑐 

𝑒 𝑒 𝑎 𝑏 𝑐 

𝑎 𝑎 𝑒 𝑐 𝑏 

𝑏 𝑏 𝑐 𝑒 𝑎 

𝑐 𝑐 𝑏 𝑎 𝑒 

 

Let 𝐻 = {𝑒, 𝑎} and 𝐾 = {𝑒, 𝑏}, show that 𝐺 = 𝐻 ⊗ 𝐾 is a 

decomposition by 𝐻 and 𝐾. 

Solution: 𝐻, 𝐾∆𝐺 since 𝐺 is a commutative group 
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𝐻 ∗ 𝐾 = {𝑒, 𝑎, 𝑏, 𝑐} and 𝐻 ∩ 𝐾 = {𝑒} 

Hence, 𝐺 = 𝐻 ⊗ 𝐾 is decomposition by 𝐻 and 𝐾. 

Example(5-2-3): 

Let (𝐺,∗) be any group with 𝐻 = 𝐺 and 𝐾 = {𝑒}, show that  

𝐺 = 𝐻 ⊗ 𝐾 is a decomposition by 𝐻 and 𝐾. 

Solution: 𝐻, 𝐾∆𝐺 

𝐻 ∗ 𝐾 = 𝐺 ∗ {𝑒} = 𝐺 

𝐻 ∩ 𝐾 = 𝐺 ∩ {𝑒} = {𝑒} 

Therefore, 𝐺 = 𝐻 ⊗ 𝐾 is a decomposition by 𝐻 and 𝐾. 

Example(5-2-4): 

Let (Ζ4, +4) be a group. Is  Ζ4 has a proper decomposition. 

Solution: the subgroups of  Ζ4 are  Ζ4, {0,2}, {0} 

Let  H = Ζ4 and K = {0,2} 

H ⊗4 𝐾 =  Ζ4 ⊗4 {0,2} =  Ζ4 

𝐻 ∩ 𝐾 =  Ζ4 ∩ {0,2} = {0,2} 
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So,  Ζ4 ≠  Ζ4 ⊗ {0,2} 

Let H = {0} and K = {0,2} 

𝐻 ⊗4 𝐾 = 𝐾 ≠  Ζ4 

Therefore,  Ζ4 has no proper decomposition. 

Theorem(5-2-5): 

Let H and K be two subgroups of  G  and G = H ⊗ K, then 

G
𝐻⁄ ≅ 𝐾 and G 𝐾⁄ ≅ 𝐻. 

Proof:  

Since G = H ⊗ K ⟹ H ∗ K = G and H ∩ 𝐾 = {𝑒} 

G
𝐻⁄ = H ∗ K

𝐻⁄    and    H ∗ K
𝐻⁄ ≅ K

𝐻 ∩ 𝐾⁄  (by second 

theorem of isomorphic) 

G
𝐻⁄ ≅ K

{𝑒}⁄ ⟹ G
𝐻⁄ ≅ 𝐾 and 

G
𝐾⁄ = H ∗ K

𝐾⁄     and       H ∗ K
𝐾⁄ ≅ H

𝐻 ∩ 𝐾⁄  

G
𝐾⁄ ≅ H

{𝑒}⁄ ⟹ G
𝐾⁄ ≅ 𝐻∎ 

Definition(5-2-6): 
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Let (𝐺1,∗) and (𝐺2,∘) be two groups, define 𝐺1 × 𝐺2 =

{(𝑎, 𝑏): 𝑎 ∈ 𝐺1, 𝑏 ∈ 𝐺2} such that (𝑎, 𝑏)⨀(𝑐, 𝑑) =

(𝑎 ∗ 𝑐, 𝑏 ∘ 𝑑) ∋ 𝑎, 𝑐 ∈ 𝐺1, 𝑏, 𝑑 ∈ 𝐺2. Then   (𝐺1 × 𝐺2, ⨀) is 

a group which is called an external direct product of 𝐺1 and 

𝐺2. 

Example(5-2-7):  (Homework) 

Show that (𝐺1 × 𝐺2, ⨀) is a group. 

Example(5-2-8): 

Let 𝐺1 = (Ζ3, +3) and 𝐺2 = (Ζ2, +2). Find 𝐺1 × 𝐺2. 

Solution: 

𝐺1 × 𝐺2 = Ζ3 × Ζ2

= {(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)} 

(1,1)⨀(2,1) = (0,0) 

o(Ζ3 × Ζ2) = 𝑜(Ζ3). 𝑜(Ζ2) = 6. 

 

 

Theorem(5-2-9): 
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Let (𝐺1,∗) and (𝐺2,∘) be two groups, then  

1. (𝐺1 × 𝐺2, ⨀) is an abelian if and only if both 𝐺1 and 

𝐺2 are abelian. 

2. 𝐺1 × {𝑒2} △ 𝐺1 × 𝐺2. 

3. {𝑒1} × 𝐺2 △ 𝐺1 × 𝐺2. 

4. 𝐺1 ≅ 𝐺1 × {𝑒2}. 

5. 𝐺2 ≅ {𝑒2} × 𝐺2. 

Proof: 

1. (⟹) suppose that 𝐺1 × 𝐺2 is an abelian, to prove 

𝐺1and 𝐺2 are abelian. 

Let (𝑎, 𝑒2), (𝑏, 𝑒2) ∈ 𝐺1 × 𝐺2 ∋ 𝑎, 𝑏 ∈ 𝐺1, 𝑒2 ∈ 𝐺2 

Since 𝐺1 × 𝐺2 is an abelian, then  

(𝑎, 𝑒2)⨀(𝑏, 𝑒2) = (𝑏, 𝑒2)⨀(𝑎, 𝑒2) 

(𝑎 ∗ 𝑏, 𝑒2) = (𝑏 ∗ 𝑎, 𝑒2) ⟹ 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 

Hence, (𝐺1,∗) is an abelian. 

Similarly that (𝐺2,∗) is an abelian. 
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(⟸) suppose that (𝐺1,∗) and (𝐺2,∘) are abelian, to prove 

𝐺1 × 𝐺2 is an abelian. 

Let (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐺1 × 𝐺2, to prove (𝑎, 𝑏)⨀(𝑐, 𝑑) =

(𝑐, 𝑑)⨀(𝑎, 𝑏) 

(𝑎, 𝑏)⨀(𝑐, 𝑑) = (𝑎 ∗ 𝑐, 𝑏 ∗ 𝑑) 

(𝑐, 𝑑)⨀(𝑎, 𝑏) = (𝑐 ∗ 𝑎, 𝑑 ∗ 𝑏) 

𝑎 ∗ 𝑐 =  𝑐 ∗ 𝑎  (𝐺1is an abelian) 

𝑏 ∗ 𝑑 =  𝑑 ∗ 𝑏  (𝐺2is an abelian) 

⟹ (𝑎, 𝑏)⨀(𝑐, 𝑑) = (𝑐, 𝑑)⨀(𝑎, 𝑏) 

Therefore, 𝐺1 × 𝐺2 is an abelian. 

2. To prove 𝐺1 × {𝑒2} △ 𝐺1 × 𝐺2 

𝐺1 × {𝑒2} = {(𝑎, 𝑒2): 𝑎 ∈ 𝐺1} ≠ ∅ 

To prove (𝐺1 × {𝑒2}, ⨀) is a subgroup of 𝐺1 × 𝐺2 

Let  (𝑎, 𝑒2), (𝑏, 𝑒2) ∈ 𝐺1 × {𝑒2} 

(𝑎, 𝑒2)⨀(𝑏, 𝑒2)−1 = (𝑎, 𝑒2)⨀(𝑏−1, 𝑒2
−1) = (𝑎 ∗ 𝑏−1, 𝑒2) 

So, (𝐺1 × {𝑒2}, ⨀) is a subgroup of 𝐺1 × 𝐺2. 
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To prove 𝐺1 × {𝑒2} △ 𝐺1 × 𝐺2 

Let (𝑥, 𝑦) ∈ 𝐺1 × 𝐺2 and  (𝑎, 𝑒2) ∈ 𝐺1 × {𝑒2} 

To prove (𝑥, 𝑦)⨀(𝑎, 𝑒2)⨀(𝑥, 𝑦)−1 ∈ 𝐺1 × {𝑒2} 

(𝑥 ∗ 𝑎 ∗ 𝑥−1, 𝑦 ∗ 𝑒2 ∗ 𝑦−1) = (𝑥 ∗ 𝑎 ∗ 𝑥−1, 𝑒2) ∈ 𝐺1 × {𝑒2} 

Hence, 𝐺1 × {𝑒2} △ 𝐺1 × 𝐺2. 

3. (Homework). 

4. To prove 𝐺1 ≅ 𝐺1 × {𝑒2}. 

Proof: 

Define 𝑓: (𝐺1,∗) ⟶ (𝐺1 × {𝑒2}, ⨀)  ∋ 𝑓(𝑎) = (𝑎, 𝑒2)  

𝑓 is a map ? let  𝑎1, 𝑎2 ∈ 𝐺1 and  𝑎1 = 𝑎2 ⟹ (𝑎1, 𝑒2) =

(𝑎2, 𝑒2) ⟹ 𝑓(𝑎1) = 𝑓(𝑎2), so 𝑓 is a map 

𝑓 is an one to one ? let  𝑓(𝑎1) = 𝑓(𝑎2) ⟹ (𝑎1, 𝑒2) =

(𝑎2, 𝑒2) ⟹ 𝑎1 = 𝑎2, so 𝑓 is a one to one. 

𝑓 is a homomorphism ? 𝑓(𝑎 ∗ 𝑏) = (𝑎 ∗ 𝑏, 𝑒2) =

(𝑎, 𝑒2)⨀(𝑏, 𝑒2) = 𝑓(𝑎)⨀𝑓(𝑏), so 𝑓 is a homomorphism 



Prof. Dr. Najm Al-Seraji, Applications of  Group Theory, 2023 
 

 

 52 

𝑓 is an onto ?   𝑅𝑓 = {𝑓(𝑎): 𝑎 ∈ 𝐺1} = {(𝑎, 𝑒2): 𝑎 ∈ 𝐺1} =

𝐺1 × {𝑒2} so 𝑓 is an onto. 

Therefore, (𝐺1,∗) ≅ (𝐺1 × {𝑒2}, ⨀)∎ 

5. (Homework)  

Theorem(5-2-10): 

Let (𝐺1,∗) and (𝐺2,∘) be two 𝑝-groups, then  (𝐺1 × 𝐺2, ⨀) 

is a 𝑝-group. 

Proof: 

Since 𝐺1is 𝑝-group ⟹ 𝑜(𝐺1) = 𝑝𝑘1 , 𝑘1 ∈ 𝛧+ 

Since 𝐺2is 𝑝-group ⟹ 𝑜(𝐺2) = 𝑝𝑘2 , 𝑘2 ∈ 𝛧+ 

𝑜(𝐺1 × 𝐺2) = 𝑜(𝐺2) × 𝑜(𝐺1) = 𝑝𝑘1 × 𝑝𝑘2

= 𝑝𝑘1+𝑘2 , 𝑘1 + 𝑘2 ∈  𝛧+ 

Therefore,   𝐺1 × 𝐺2 is a 𝑝-group ∎ 

Exercises(5-2-11): 

 Let 𝐻 = {0,2,4}  and  𝐾 = {0,3} are subgroups of  

(Ζ6, +6), show that    Ζ6 = 𝐻 ⊗ 𝐾 is a decomposition. 
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 Let 𝐻 = {0}, show that Ζ7 = 𝐻 ⊗ Ζ7 is a 

decomposition. 

 Find Ζ3 × Ζ7. 

 Is S3 × Ζ2 an abelian? 

 Is G𝑠 × Ζ2 an abelian? 

 Is S3 × G𝑆 an abelian? 

 Is {±1, ±i} × Ζ2 an abelian? 

 Is Ζ4 × Ζ8 a 𝑝-group? 

 Is Ζ5 × Ζ25 a 𝑝-group? 

 Is Ζ11 × Ζ121 a 𝑝-group? 

 Is Ζ7 × Ζ49 a 𝑝-group? 

 Is Ζ27 × Ζ3 a 𝑝-group? 

 Is Ζ5 × Ζ125 a 𝑝-group? 

 Is Ζ2 × Ζ64 a 𝑝-group? 

 Is Ζ4 × Ζ128 a 𝑝-group? 

 Is Ζ9 × Ζ81 a 𝑝-group? 

 Is Ζ27 × Ζ81 a 𝑝-group? 

 Is Ζ128 × Ζ8 a 𝑝-group? 

 Is Ζ2 × Ζ256 a 𝑝-group? 


