Corollary(1-20):

The group $(G / H, \otimes)$ is a simple, if $|G / H|$ is a prime number.

Examples(1-21);

1. Show that $\left(\langle 2\rangle,+_{12}\right)$ is a maximal normal subgroup of $\left(\mathrm{Z}_{12},+_{12}\right)$.
2. Show that $\left(\langle 3\rangle,+_{15}\right)$ is a maximal normal subgroup of $\left(\mathrm{Z}_{15},+_{15}\right)$. (Homework)

Solution(1): $\left(\langle 2\rangle,{ }^{12}\right)=\left(\{0,2,4,6,8,10\},{ }_{12}\right)$
$|G / H|=\frac{|G|}{|H|}=\frac{\left|\mathrm{Z}_{12}\right|}{|\langle 2\rangle|}=\frac{12}{6}=2$ is a prime $\Rightarrow \frac{\mathrm{Z}_{12}}{\langle 2\rangle}$ is a simple
(by Corollary (1-20)). From Theorem (1-19), we get that
$\langle 2\rangle$ is a maximal normal subgroup of Z_{12}.

Corollary(1-22):

A normal chain $G=H_{0} \supset H_{1} \supset \cdots \supset H_{n-1} \supset H_{n}=\{e\}$ is a composition of a group $(G, *)$, if $\left(H_{i} / H_{i-1}, \otimes\right)$ is a simple group for all $i=1, \ldots, n$.

Example(1-23);

Show that $\mathrm{Z}_{60} \supset\langle 3\rangle \supset\langle 6\rangle \supset\langle 12\rangle \supset\{0\}$ is a composition chain of a group $\left(\mathrm{Z}_{60},+_{60}\right)$.

Solution: $\frac{\left|\mathrm{Z}_{60}\right|}{|\langle 3\rangle|}=\frac{60}{20}=3$ is a prime $\Rightarrow \frac{\mathrm{Z}_{60}}{\langle 3\rangle}$ is a simple.
So, we get that $\langle 3\rangle$ is a maximal normal subgroup of Z_{60}.
$\frac{|\langle 3\rangle|}{|\langle 6\rangle|}=\frac{20}{10}=2$ is a prime $\Rightarrow \frac{\langle 3\rangle}{\langle 6\rangle}$ is a simple.
So, we get that $\langle 6\rangle$ is a maximal normal subgroup of $\langle 3\rangle$.
$\frac{|\langle 6\rangle|}{|\langle 12\rangle|}=\frac{10}{5}=2$ is a prime $\Rightarrow \frac{\langle 6\rangle}{\langle 12\rangle}$ is a simple.
So, we get that $\langle 12\rangle$ is a maximal normal subgroup of $\langle 6\rangle$.
$\frac{|\langle 12\rangle|}{|\{0\}|}=\frac{5}{1}=5$ is a prime $\Rightarrow \frac{\langle 12\rangle}{\{0\}}$ is a simple.
So, we get that $\{0\}$ is a maximal normal subgroup of $\langle 12\rangle$.
By corollaries (1-19) and (1-21), we have that $\mathrm{Z}_{60} \supset\langle 3\rangle \supset$
$\langle 6\rangle \supset\langle 12\rangle \supset\{0\}$ is a composition chain of a group $\left(\mathrm{Z}_{60},+_{60}\right)$.

Theorem(1-24):

Every finite group $(G, *)$ with more than one element has a composition chain.

Theorem(1-25): (Jordan-Holder)

In a finite group $(G, *)$ with more than one element, any two composition chains are equivalent.

Example(1-26):

In a group $\left(\mathrm{Z}_{60},+_{60}\right)$, show that the two chains

$$
\begin{aligned}
& \mathrm{Z}_{60} \supset\langle 3\rangle \supset\langle 6\rangle \supset\langle 12\rangle \supset\{0\} \\
& \mathrm{Z}_{60} \supset\langle 2\rangle \supset\langle 6\rangle \supset\langle 30\rangle \supset\{0\},
\end{aligned}
$$

are compositions and equivalent.

Solution:

$\left({ }^{\mathrm{Z}_{60}} /\langle 3\rangle, \otimes\right) \cong\left({ }^{\langle 2\rangle} /\langle 6\rangle, \otimes\right)$, since $\left|{ }^{\mathrm{Z}_{60}} /\langle 3\rangle\right|=\frac{60}{20}=3=$
$|\langle 2\rangle /\langle 6\rangle|=\frac{30}{10}$,
$\left({ }^{\langle 3\rangle} /\langle 6\rangle, \otimes\right) \cong\left({ }^{\mathrm{Z}_{60}} /\langle 2\rangle, \otimes\right)$, since $\left|{ }^{\langle 3\rangle} /\langle 6\rangle\right|=\frac{20}{10}=2=$ $\left|\mathrm{Z}_{60} /\langle 2\rangle\right|=\frac{60}{30}$,
$\left({ }^{\langle 6\rangle} /\langle 12\rangle, \otimes\right) \cong\left({ }^{\langle 30\rangle} /\{0\}, \otimes\right)$, since $\left|{ }^{\langle 6\rangle} /\langle 12\rangle\right|=\frac{10}{5}=$
$2=|\langle 30\rangle /\{0\}|=\frac{2}{1}$,
$\left({ }^{\langle 12\rangle} /\{0\}, \otimes\right) \cong\left({ }^{\langle 6\rangle} /\langle 30\rangle, \otimes\right)$, since $|\langle 12\rangle /\{0\}|=\frac{5}{1}=$
$5=|\langle 6\rangle /\langle 30\rangle|=\frac{10}{2}$.
Therefore, by Jordan-Holder theorem the two chains

$$
\begin{aligned}
& \mathrm{Z}_{60} \supset\langle 3\rangle \supset\langle 6\rangle \supset\langle 12\rangle \supset\{0\} \\
& \mathrm{Z}_{60} \supset\langle 2\rangle \supset\langle 6\rangle \supset\langle 30\rangle \supset\{0\},
\end{aligned}
$$

are compositions and equivalent.

