1. P- Groups and Related Concepts.

Definition(2-1): (p-Group)

A finite group $(G, *)$ is said to be p-group if and only if the order of each element of G is a power of fixed prime p.

Definition(2-2): (p-Group)

A finite group $(G, *)$ is said to be p-group if and only if $|G|=p^{k}, k \in \mathrm{Z}$, where p is a prime number.

Example(2-3):

Show that $\left(\mathrm{Z}_{4},+_{4}\right)$ is a p- group.
Solution: $Z_{4}=\{0,1,2,3\}$ and $\left|Z_{4}\right|=4=2^{2}$
$\Rightarrow \mathrm{Z}_{4}$ is a 2- group, with
$o(0)=1=2^{0}$,
$o(1)=4=2^{2}$,
$o(2)=2=2^{1}$,
$o(3)=4=2^{2}$.

Example(2-4):

Determine whether $\left(\mathrm{Z}_{6},+_{6}\right)$ is a p- group.
Solution: $\mathrm{Z}_{6}=\{0,1,2,3,4,5\}$ and $\left|\mathrm{Z}_{6}\right|=6 \neq P^{k}$
$\Rightarrow \mathrm{Z}_{6}$ is not p - group.

Example(2-5):(Homework)

Determine whether $\left(\mathrm{G}_{s}, \circ\right)$ is a p-group.

Examples(2-6):

- $\left(\mathrm{Z}_{8},+_{8}\right)$ is a 2- group, since $\left|\mathrm{Z}_{8}\right|=8=2^{3}$,
- $\left(Z_{9},+_{9}\right)$ is a 3- group, since $\left|Z_{9}\right|=9=3^{2}$,
- $\left(\mathrm{Z}_{25},+_{25}\right)$ is a 5 - group, since $\left|\mathrm{Z}_{25}\right|=25=5^{2}$.

Theorem(2-7):

Let $\mathrm{H} \Delta \mathrm{G}$, then G is a p-group if and only if H and G / H are p- groups.

Proof: (\Longrightarrow) Assume that G is a p-group, to prove that H and G / H are p - groups.

Since G is a p- group $\Rightarrow \mathrm{o}(\mathrm{a})=\mathrm{p}^{x}$, for some $\mathrm{x} \in \mathrm{Z}^{+}, \forall a \in$ G.

Since $\mathrm{H} \subseteq \mathrm{G} \Rightarrow \forall a \in H$ group $\Rightarrow \mathrm{o}(\mathrm{a})=\mathrm{p}^{x}$, for some $\mathrm{x} \in \mathrm{Z}^{+}$.

So, H is a p - group.
To prove G / H is a p- group.
Let $a * H \in \mathrm{G} / H$, to prove $o(a * H)$ is a power of p .
$(a * H)^{\mathrm{p}^{x}}=a^{\mathrm{p}^{x}} * H=e * H=H,\left(a^{\mathrm{p}^{x}}=e\right.$ since G is a p - group $\left.\Rightarrow \mathrm{o}(\mathrm{a})=\mathrm{p}^{x}\right)$
(\Longleftarrow) Suppose that H and G / H are p -groups, to prove G is a p- group.

Let $a \in H$, to prove $o(a)$ is a power of p .
$(a * H)^{\mathrm{p}^{x}}=H \ldots(1)(\mathrm{G} / H$ is a p- group $)$
$(a * H)^{\mathrm{p}^{x}}=a^{\mathrm{p}^{x}} * H \ldots(2)$
From (1) and (2), we have $a^{\mathrm{p}^{x}} * H=H \Rightarrow a^{\mathrm{p}^{x}} \in H$ and H is a p - group,
$\Longrightarrow o\left(a^{\mathrm{p}^{x}}\right)=\mathrm{p}^{r}, r \in \mathrm{Z}^{+}$
$\Rightarrow\left(a^{\mathrm{p}^{x}}\right)^{\mathrm{p}^{r}}=e \Rightarrow a^{\mathrm{p}^{x+r}}=e, x+r \in \mathrm{Z}^{+}$,
$\Rightarrow o(a)=\mathrm{p}^{x+r}$
Therefore, G is a p-group

