Example(3-8):

Are the following groups (S_3,\circ) and (G_s,\circ) have sylow p-subgroups.

Solution:

$$(S_3, \circ), O(S_3) = 6 = (2)(3),$$

 $2 \setminus 6 \Rightarrow \exists$ a subgroup H such that o(H) = 2 which is called sylow 2- subgroup.

Also, $3 \setminus 6 \Rightarrow \exists$ a subgroup K such that o(K) = 3 which is called sylow 3- subgroup.

 $(G_s, \circ), o(G_s) = 2^3$ is 2-subgroup.

Every subgroup of G_s is 2- subgroup, $o(H) = 2^0$ or 2^1 or 2^2 or 2^3 .

Theorem(3-9): (Second Sylow Theorem)

The number of distinct sylow p-subgroups is k = 1 + tp, t = 0,1,... which is divide the order of G.

Example(3-10):

Find the distinct sylow p-subgroups of (S_3, \circ) .

Solution:

$$o(S_3) = 6 = (2)(3),$$

 $2 \setminus 6 \Rightarrow \exists$ a subgroup H such that o(H) = 2.

The number of sylow 2-subgroups is $k_1 = 1 + 2t$, t = 0,1,... and $k_1 \setminus 6$

if
$$t = 0 \implies k_1 = 1$$
 and $1 \setminus 6$

if
$$t = 1 \Longrightarrow k_1 = 3$$
 and $3 \setminus 6$

if
$$t = 2 \implies k_1 = 5$$
 and $5 \nmid 6$

if
$$t = 3 \implies k_1 = 7$$
 and $7 \nmid 6$

so, there are two sylow 2-subgroups.

 $3 \setminus 6 \Rightarrow \exists$ a subgroup K such that o(K) = 3.

The number of sylow 3-subgroups is $k_2 = 1 + 3t$, t = 0,1,... and $k_2 \setminus 6$

if
$$t = 0 \implies k_2 = 1$$
 and $1 \setminus 6$

if
$$t = 1 \Longrightarrow k_2 = 4$$
 and $4 \nmid 6$

if
$$t = 2 \implies k_2 = 7$$
 and $7 \nmid 6$

So, there is one sylow 3-subgroup.

Example(3-11):

Find the number of sylow p-subgroups of G such that o(G) = 12.

Solution:
$$o(G) = 12 = (3)(2^2)$$

 $3 \setminus 12 \Rightarrow \exists$ a subgroup H such that o(H) = 3.

The number of sylow 3-subgroups is $k_1 = 1 + 3t$, t = 0,1,... and $k_1 \setminus 12$

if
$$t = 0 \implies k_1 = 1$$
 and $1 \setminus 12$

if
$$t = 1 \Longrightarrow k_1 = 4$$
 and $4 \setminus 12$

if
$$t = 2 \Longrightarrow k_1 = 7$$
 and $7 \nmid 12$

if
$$t = 3 \Rightarrow k_1 = 10$$
 and $10 \nmid 12$

So, there are two sylow 3-subgroups of G.

The number of sylow 2-subgroups is $k_2 = 1 + 2t$, t = 0,1,... and $k_2 \setminus 12$

if
$$t = 0 \implies k_2 = 1$$
 and $1 \setminus 12$

Prof. Dr. Najm Al-Seraji, Applications of Group Theory, 2023

if
$$t = 1 \Longrightarrow k_2 = 3$$
 and $3 \setminus 12$

if
$$t = 2 \Longrightarrow k_2 = 5$$
 and $5 \nmid 12$

if
$$t = 3 \implies k_2 = 7$$
 and $7 \nmid 12$

So, there are two sylow 2-subgroups of G.