Example(3-8):

Are the following groups $\left(\mathrm{S}_{3}, \circ\right)$ and $\left(\mathrm{G}_{S}, \circ\right)$ have sylow psubgroups.

Solution:

$\left(\mathrm{S}_{3}, \circ\right), O\left(\mathrm{~S}_{3}\right)=6=(2)(3)$,
$2 \backslash 6 \Rightarrow \exists$ a subgroup H such that $o(H)=2$ which is called sylow 2- subgroup.

Also, $3 \backslash 6 \Rightarrow \exists$ a subgroup K such that $o(K)=3$ which is called sylow 3- subgroup.
$\left(\mathrm{G}_{s}, \circ\right), o\left(\mathrm{G}_{s}\right)=2^{3}$ is 2 - subgroup.
Every subgroup of G_{s} is 2- subgroup, $o(H)=2^{0}$ or 2^{1} or 2^{2} or 2^{3}.

Theorem(3-9): (Second Sylow Theorem)

The number of distinct sylow p -subgroups is $k=1+$ $t p, t=0,1, \ldots$ which is divide the order of G.

Example(3-10):

Find the distinct sylow p-subgroups of $\left(\mathrm{S}_{3}, \circ\right)$.

Solution:

$o\left(\mathrm{~S}_{3}\right)=6=(2)(3)$,
$2 \backslash 6 \Longrightarrow \exists$ a subgroup H such that $o(H)=2$.
The number of sylow 2 -subgroups is $k_{1}=1+2 t, t=$ $0,1, \ldots$ and $k_{1} \backslash 6$
if $t=0 \Rightarrow k_{1}=1$ and $1 \backslash 6$
if $t=1 \Rightarrow k_{1}=3$ and $3 \backslash 6$
if $t=2 \Rightarrow k_{1}=5$ and $5 \nmid 6$
if $t=3 \Longrightarrow k_{1}=7$ and $7 \nmid 6$
so, there are two sylow 2 -subgroups.
$3 \backslash 6 \Rightarrow \exists$ a subgroup K such that $o(K)=3$.
The number of sylow 3 -subgroups is $k_{2}=1+3 t, t=$ $0,1, \ldots$ and $k_{2} \backslash 6$
if $t=0 \Rightarrow k_{2}=1$ and $1 \backslash 6$
if $t=1 \Rightarrow k_{2}=4$ and $4 \nmid 6$
if $t=2 \Rightarrow k_{2}=7$ and $7 \nmid 6$

So, there is one sylow 3-subgroup.

Example(3-11):

Find the number of sylow p-subgroups of G such that $\mathrm{o}(\mathrm{G})=12$.

Solution: $o(G)=12=(3)\left(2^{2}\right)$
$3 \backslash 12 \Rightarrow \exists$ a subgroup H such that $o(H)=3$.
The number of sylow 3 -subgroups is $k_{1}=1+3 t, t=$ $0,1, \ldots$ and $k_{1} \backslash 12$
if $t=0 \Rightarrow k_{1}=1$ and $1 \backslash 12$
if $t=1 \Rightarrow k_{1}=4$ and $4 \backslash 12$
if $t=2 \Rightarrow k_{1}=7$ and $7 \nmid 12$
if $t=3 \Longrightarrow k_{1}=10$ and $10 \nmid 12$
So, there are two sylow 3-subgroups of G.
The number of sylow 2 -subgroups is $k_{2}=1+2 t, t=$ $0,1, \ldots$ and $k_{2} \backslash 12$
if $t=0 \Rightarrow k_{2}=1$ and $1 \backslash 12$
if $t=1 \Rightarrow k_{2}=3$ and $3 \backslash 12$
if $t=2 \Rightarrow k_{2}=5$ and $5 \nmid 12$
if $t=3 \Rightarrow k_{2}=7$ and $7 \nmid 12$
So, there are two sylow 2-subgroups of G.

