Remark(3-12):

The group G has exactly one sylow p-subgroup H if and only if $\mathrm{H} \Delta G$.

Example(3-13):

$\left(\mathrm{S}_{3}, \circ\right), \mathrm{H}=\left\{f_{1}=i, f_{2}=(123), f_{3}=(132)\right\}$
$\mathrm{H} \Delta G \Rightarrow \mathrm{H}$ is a sylow 3-subgroup of S_{3},
So, there is one sylow 3-subgroup of S_{3}.

Exercises(3-14);

- Show that there is no simple group of order 200.
- Show that there is no simple group of order 56.
- Show that there is no simple group of order 20.
- Show that whether $\left(\mathrm{G}_{\ell}, \cdot\right)$ is a sylow.

1.Solvable Groups and Their Applications

Definition(4-1):

A group $(G, *)$ is called a solvable group if and only if, there is a finite collection of subgroups of $(G, *)$, $H_{0}, H_{1}, \ldots, H_{n}$ such that

1. $G=H_{0} \supset H_{1} \supset \cdots \supset H_{n-1} \supset H_{n}=\{e\}$,
2. $H_{i+1} \Delta H_{i} \quad \forall i=0, \ldots, n-1$,
3. H_{i} / H_{i+1} is a commutative group $\forall i=0, \ldots, n-1$.

Example(4-2):

Show that, every commutative group is a solvable group.

Solution:

Suppose that ($G, *$) is a commutative, to show that $(G, *)$ is a solvable.

Let $G=H_{0}$ and $H_{1}=\{e\}$

1. $G=H_{0} \supset H_{1}=\{e\}$
2. $H_{1} \Delta H_{0}$ satisfies, since $\{e\} \Delta G$, or (every subgroup of commutative group is a normal)
3. ${ }^{G} /\{e\} \cong G$ is a commutative group, or (the quotient of commutative group is a commutative)
So, $(G, *)$ is a solvable group,

Example(4-3):

Show that $\left(\mathrm{S}_{3}, \mathrm{o}\right)$ is a solvable group.

Solution: let $H_{0}=\mathrm{S}_{3}, \mathrm{H}_{1}=\left\{f_{1}=i, f_{2}=(123), f_{3}=\right.$ (132) $\}, H_{2}=\left\{f_{1}\right\}$

1. $\mathrm{S}_{3}=\mathrm{H}_{0} \supset \mathrm{H}_{1} \supset \mathrm{H}_{2}=\{e\}$
2. $H_{2} \Delta H_{1}$ satisfies, since $\left\{f_{1}\right\} \Delta\left\{f_{1}, f_{2}, f_{3}\right\}, H_{1} \Delta H_{0}$ is true, since $\left[\mathrm{S}_{3}: H_{1}\right]=2 \Rightarrow H_{1} \Delta \mathrm{~S}_{3}$
3. To prove $H_{i} /_{H_{i+1}}$ is a commutative group $\forall i=0,1$

$$
o\left(H_{1} / H_{2}\right)=\frac{o\left(\mathrm{H}_{1}\right)}{o\left(\mathrm{H}_{2}\right)}=\frac{3}{1}=3<6 \Rightarrow H_{1} / H_{2} \quad \text { is }
$$

commutative group

$$
o\left(H_{0} / H_{1}\right)=\frac{o\left(\mathrm{H}_{0}\right)}{o\left(\mathrm{H}_{1}\right)}=\frac{6}{3}=2<6 \Rightarrow H_{0} / H_{1} \quad \text { is }
$$

commutative group
Therefore, $\left(\mathrm{S}_{3}, \circ\right)$ is a solvable group.

Example(4-4): (Homework)

Show that $\left(\mathrm{G}_{s}, \circ\right)$ is a solvable group.

