5 Some Applications of Group Theory

5.1 Cayley Theorem

Theorem(5-1-1): (Cayley Theorem)

Every group is an isomorphic to a group of permutations.
This means if $(G, *)$ is any group, then $(G, *) \cong\left(F_{G}, \circ\right)$, where $F_{G}=\left\{f_{a}: a \in G\right\}, f_{a}: G \longrightarrow G \ni f_{a}(x)=a * x, \forall x \in$ G.

Proof: define $g: G \rightarrow F_{G}$ by $g(a)=f_{a}, \forall a \in G$
To prove g is a homomorphism, one to one and onto.

1. g is a homomorphism, let $a, b \in G$
$g(a * b)=f_{a * b}=f_{a} \circ f_{b}=g(a) \circ g(b) \Rightarrow g \quad$ is \quad a homomorphism.
2. g is a one to one, $\operatorname{let} g(a)=g(b), \forall a, b \in G$
$\Rightarrow f_{a}=f_{b} \Rightarrow f_{a}(x)=f_{b}(x) \Rightarrow a * x=b * x \Rightarrow a=b$
$\Rightarrow g$ is a one to one.
3. g is a onto, $g(G)=\{g(a): a \in G\}=\left\{f_{a}: a \in G\right\}=F_{G}$ Therefore, $G \cong F_{G}$ ■

Corollary(5-1-2):

Every finite group ($G, *$) of order n is an isomorphic to $\left(S_{n}, \circ\right)$.

Example(5-1-3):

Consider the following Cayley table of a group ($G=$ $\{e, a, b, c\}, *)$

$*$	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

Show that $(G, *)$ is an isomorphic to a subgroup of $\left(\mathrm{S}_{4}, \circ\right)$.

Solution:

$f_{e}=\left(\begin{array}{llll}e & a & b & c \\ e & a & b & c\end{array}\right)$,

$$
f_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)=
$$

$(1)(2)(3)(4)=(1)$

$$
\begin{aligned}
f_{a} & =\left(\begin{array}{llll}
e & a & b & c \\
a & e & c & b
\end{array}\right), & f_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)=(12)(34) \\
f_{b} & =\left(\begin{array}{llll}
e & a & b & c \\
b & c & e & a
\end{array}\right), & f_{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right)=(13)(24) \\
f_{c} & =\left(\begin{array}{llll}
e & a & b & c \\
c & b & a & e
\end{array}\right), & f_{4}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right)=(14)(23)
\end{aligned}
$$

Hence, $(G, *)$ is an isomorphic to the subgroup of $\left(\mathrm{S}_{4}, \circ\right)$:
$\{(1),(12)(34),(13)(24),(14)(23)\}$.
Example(5-1-4): (Homework)
Let $(G=\{1,-1, i,-i\}, \cdot)$ be a group, apply Cayley
Theorem on G.

Example(5-1-5): (Homework)

Show that $\left(Z_{3},+_{3}\right)$ is an isomorphic to a subgroup of $\left(S_{3}, \circ\right)$.

Exercises(5-1-6):

- Apply Cayley Theorem on $\left(\mathrm{Z}_{4},+_{4}\right)$.
- Apply Cayley Theorem on ($\mathrm{G}=\{ \pm 1, \pm \mathrm{i}, \pm \mathrm{j}, \pm \mathrm{k}\}$,).
- Apply Cayley Theorem on ($\mathrm{G}=\{1,-1\}$, $)$.
- Apply Cayley Theorem on ($\mathrm{G}=\left\{\mathrm{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), B=\right.$ $\left.\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), C=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right), D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right), \cdot\right)$.

5.2 Direct Product

Definition(5-2-1):

Let $(H, *)$ and $(K, *)$ be two normal subgroups of $(G, *)$, then $(G, *)$ is called an internal direct product of H and $K(G$ is a decomposition by H and K) if and only if $G=H * K$ and $H \cap K=\{e\}$.

Example(5-2-2):

Consider the following Cayley table of a group ($G=$ $\{e, a, b, c\}, *), a^{2}=b^{2}=c^{2}=e$

$*$	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

Let $H=\{e, a\}$ and $K=\{e, b\}$, show that $G=H \otimes K$ is a decomposition by H and K.

Solution: $H, K \Delta G$ since G is a commutative group
$H * K=\{e, a, b, c\}$ and $H \cap K=\{e\}$
Hence, $G=H \otimes K$ is decomposition by H and K.

Example(5-2-3):

$\operatorname{Let}(G, *)$ be any group with $H=G$ and $K=\{e\}$, show that
$G=H \otimes K$ is a decomposition by H and K.
Solution: $H, K \Delta G$
$H * K=G *\{e\}=G$
$H \cap K=G \cap\{e\}=\{e\}$
Therefore, $G=H \otimes K$ is a decomposition by H and K.
Example(5-2-4):
Let $\left(\mathrm{Z}_{4},+_{4}\right)$ be a group. Is Z_{4} has a proper decomposition.
Solution: the subgroups of Z_{4} are $\mathrm{Z}_{4},\{0,2\},\{0\}$
Let $\mathrm{H}=\mathrm{Z}_{4}$ and $\mathrm{K}=\{0,2\}$
$\mathrm{H} \otimes_{4} K=\mathrm{Z}_{4} \otimes_{4}\{0,2\}=\mathrm{Z}_{4}$
$H \cap K=\mathrm{Z}_{4} \cap\{0,2\}=\{0,2\}$

So, $\mathrm{Z}_{4} \neq \mathrm{Z}_{4} \otimes\{0,2\}$
Let $\mathrm{H}=\{0\}$ and $\mathrm{K}=\{0,2\}$
$H \otimes_{4} K=K \neq \mathrm{Z}_{4}$
Therefore, Z_{4} has no proper decomposition.

Theorem(5-2-5):

Let H and K be two subgroups of G and $\mathrm{G}=\mathrm{H} \otimes \mathrm{K}$, then $\mathrm{G} /{ }_{H} \cong K$ and $\mathrm{G} /{ }_{K} \cong H$.

Proof:

Since $\mathrm{G}=\mathrm{H} \otimes \mathrm{K} \Rightarrow \mathrm{H} * \mathrm{~K}=\mathrm{G}$ and $\mathrm{H} \cap K=\{e\}$
$\mathrm{G} / H=\mathrm{H} * \mathrm{~K} / H \quad$ and $\quad \mathrm{H} * \mathrm{~K} / H \cong \mathrm{~K} / H \cap K$ (by second theorem of isomorphic)
$\mathrm{G} /{ }_{H} \cong \mathrm{~K} /\{e\} \Rightarrow \mathrm{G} /{ }_{H} \cong K$ and
$\mathrm{G} /{ }_{K}=\mathrm{H} * \mathrm{~K} / K_{K} \quad$ and $\quad \mathrm{H} * \mathrm{~K} / K \cong \mathrm{H} / H \cap K$
$\mathrm{G} / K_{K} \cong \mathrm{H} /\{e\} \Rightarrow \mathrm{G} /{ }_{K} \cong H ■$
Definition(5-2-6):

Let $\left(G_{1}, *\right)$ and $\left(G_{2}, \circ\right)$ be two groups, define $G_{1} \times G_{2}=$ $\left\{(a, b): a \in G_{1}, b \in G_{2}\right\} \quad$ such that $\quad(a, b) \odot(c, d)=$ $(a * c, b \circ d) \ni a, c \in G_{1}, b, d \in G_{2}$. Then $\left(G_{1} \times G_{2}, \odot\right)$ is a group which is called an external direct product of G_{1} and G_{2}.

Example(5-2-7): (Homework)

Show that $\left(G_{1} \times G_{2}, \odot\right)$ is a group.
Example(5-2-8):
Let $G_{1}=\left(\mathrm{Z}_{3},+_{3}\right)$ and $G_{2}=\left(\mathrm{Z}_{2},+_{2}\right)$. Find $G_{1} \times G_{2}$.

Solution:

$G_{1} \times G_{2}=\mathrm{Z}_{3} \times \mathrm{Z}_{2}$

$$
=\{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)\}
$$

$(1,1) \odot(2,1)=(0,0)$
$o\left(\mathrm{Z}_{3} \times \mathrm{Z}_{2}\right)=o\left(\mathrm{Z}_{3}\right) . o\left(\mathrm{Z}_{2}\right)=6$.

Theorem(5-2-9):

Let $\left(G_{1}, *\right)$ and $\left(G_{2}, \circ\right)$ be two groups, then

1. $\left(G_{1} \times G_{2}, \odot\right)$ is an abelian if and only if both G_{1} and G_{2} are abelian.
2. $G_{1} \times\left\{e_{2}\right\} \Delta G_{1} \times G_{2}$.
3. $\left\{e_{1}\right\} \times G_{2} \Delta G_{1} \times G_{2}$.
4. $G_{1} \cong G_{1} \times\left\{e_{2}\right\}$.
5. $G_{2} \cong\left\{e_{2}\right\} \times G_{2}$.

Proof:

1. (\Rightarrow) suppose that $G_{1} \times G_{2}$ is an abelian, to prove G_{1} and G_{2} are abelian.

Let $\left(a, e_{2}\right),\left(b, e_{2}\right) \in G_{1} \times G_{2} \ni a, b \in G_{1}, e_{2} \in G_{2}$
Since $G_{1} \times G_{2}$ is an abelian, then
$\left(a, e_{2}\right) \odot\left(b, e_{2}\right)=\left(b, e_{2}\right) \odot\left(a, e_{2}\right)$
$\left(a * b, e_{2}\right)=\left(b * a, e_{2}\right) \Longrightarrow a * b=b * a$
Hence, $\left(G_{1}, *\right)$ is an abelian.
Similarly that $\left(G_{2}, *\right)$ is an abelian.
(\Longleftarrow) suppose that $\left(G_{1}, *\right)$ and $\left(G_{2}, \circ\right)$ are abelian, to prove $G_{1} \times G_{2}$ is an abelian.

Let $(a, b),(c, d) \in G_{1} \times G_{2}$, to prove $(a, b) \odot(c, d)=$ $(c, d) \odot(a, b)$
$(a, b) \odot(c, d)=(a * c, b * d)$
$(c, d) \odot(a, b)=(c * a, d * b)$
$a * c=c * a\left(G_{1}\right.$ is an abelian $)$
$b * d=d * b\left(G_{2}\right.$ is an abelian $)$
$\Rightarrow(a, b) \odot(c, d)=(c, d) \odot(a, b)$
Therefore, $G_{1} \times G_{2}$ is an abelian.
2. To prove $G_{1} \times\left\{e_{2}\right\} \Delta G_{1} \times G_{2}$
$G_{1} \times\left\{e_{2}\right\}=\left\{\left(a, e_{2}\right): a \in G_{1}\right\} \neq \emptyset$
To prove $\left(G_{1} \times\left\{e_{2}\right\}, \odot\right)$ is a subgroup of $G_{1} \times G_{2}$
Let $\left(a, e_{2}\right),\left(b, e_{2}\right) \in G_{1} \times\left\{e_{2}\right\}$
$\left(a, e_{2}\right) \odot\left(b, e_{2}\right)^{-1}=\left(a, e_{2}\right) \odot\left(b^{-1}, e_{2}^{-1}\right)=\left(a * b^{-1}, e_{2}\right)$
So, $\left(G_{1} \times\left\{e_{2}\right\}, \odot\right)$ is a subgroup of $G_{1} \times G_{2}$.

To prove $G_{1} \times\left\{e_{2}\right\} \Delta G_{1} \times G_{2}$
Let $(x, y) \in G_{1} \times G_{2}$ and $\left(a, e_{2}\right) \in G_{1} \times\left\{e_{2}\right\}$
To prove $(x, y) \odot\left(a, e_{2}\right) \odot(x, y)^{-1} \in G_{1} \times\left\{e_{2}\right\}$
$\left(x * a * x^{-1}, y * e_{2} * y^{-1}\right)=\left(x * a * x^{-1}, e_{2}\right) \in G_{1} \times\left\{e_{2}\right\}$
Hence, $G_{1} \times\left\{e_{2}\right\} \Delta G_{1} \times G_{2}$.

3. (Homework).

4. To prove $G_{1} \cong G_{1} \times\left\{e_{2}\right\}$.

Proof:

Define $f:\left(G_{1}, *\right) \longrightarrow\left(G_{1} \times\left\{e_{2}\right\}, \odot\right) \ni f(a)=\left(a, e_{2}\right)$
f is a map ? let $a_{1}, a_{2} \in G_{1}$ and $a_{1}=a_{2} \Rightarrow\left(a_{1}, e_{2}\right)=$ $\left(a_{2}, e_{2}\right) \Rightarrow f\left(a_{1}\right)=f\left(a_{2}\right)$, so f is a map
f is an one to one ? let $f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow\left(a_{1}, e_{2}\right)=$ $\left(a_{2}, e_{2}\right) \Rightarrow a_{1}=a_{2}$, so f is a one to one.
f is a homomorphism ? $f(a * b)=\left(a * b, e_{2}\right)=$ $\left(a, e_{2}\right) \odot\left(b, e_{2}\right)=f(a) \odot f(b)$, so f is a homomorphism
f is an onto ? $\quad R_{f}=\left\{f(a): a \in G_{1}\right\}=\left\{\left(a, e_{2}\right): a \in G_{1}\right\}=$ $G_{1} \times\left\{e_{2}\right\}$ so f is an onto.

Therefore, $\left(G_{1}, *\right) \cong\left(G_{1} \times\left\{e_{2}\right\}, \odot\right) ■$

5. (Homework)

Theorem(5-2-10):

Let $\left(G_{1}, *\right)$ and $\left(G_{2}, \circ\right)$ be two p-groups, then $\left(G_{1} \times G_{2}, \odot\right)$ is a p-group.

Proof:

Since G_{1} is p-group $\Rightarrow o\left(G_{1}\right)=p^{k_{1}}, k_{1} \in Z^{+}$
Since G_{2} is p-group $\Rightarrow o\left(G_{2}\right)=p^{k_{2}}, k_{2} \in Z^{+}$

$$
\begin{gathered}
o\left(G_{1} \times G_{2}\right)=o\left(G_{2}\right) \times o\left(G_{1}\right)=p^{k_{1}} \times p^{k_{2}} \\
=p^{k_{1}+k_{2}}, k_{1}+k_{2} \in Z^{+}
\end{gathered}
$$

Therefore, $G_{1} \times G_{2}$ is a p-group ■

Exercises(5-2-11):

- Let $H=\{0,2,4\}$ and $K=\{0,3\}$ are subgroups of $\left(\mathrm{Z}_{6},+_{6}\right)$, show that $\mathrm{Z}_{6}=H \otimes K$ is a decomposition.
- Let $H=\{0\}$, show that $\mathrm{Z}_{7}=H \otimes \mathrm{Z}_{7} \quad$ is $\quad \mathrm{a}$ decomposition.
- Find $\mathrm{Z}_{3} \times \mathrm{Z}_{7}$.
- Is $\mathrm{S}_{3} \times \mathrm{Z}_{2}$ an abelian?
- Is $\mathrm{G}_{s} \times \mathrm{Z}_{2}$ an abelian?
- Is $\mathrm{S}_{3} \times \mathrm{G}_{S}$ an abelian?
- Is $\{ \pm 1, \pm \mathrm{i}\} \times \mathrm{Z}_{2}$ an abelian?
- Is $\mathrm{Z}_{4} \times \mathrm{Z}_{8}$ a p-group?
- Is $\mathrm{Z}_{5} \times \mathrm{Z}_{25}$ a p-group?
- Is $\mathrm{Z}_{11} \times \mathrm{Z}_{121}$ a p-group?
- Is $\mathrm{Z}_{7} \times \mathrm{Z}_{49}$ a p-group?
- Is $\mathrm{Z}_{27} \times \mathrm{Z}_{3}$ a p-group?
- Is $\mathrm{Z}_{5} \times \mathrm{Z}_{125}$ a p-group?
- Is $\mathrm{Z}_{2} \times \mathrm{Z}_{64}$ a p-group?
- Is $\mathrm{Z}_{4} \times \mathrm{Z}_{128}$ a p-group?
- Is $\mathrm{Z}_{9} \times \mathrm{Z}_{81}$ a p-group?
- Is $\mathrm{Z}_{27} \times \mathrm{Z}_{81}$ a p-group?
- Is $\mathrm{Z}_{128} \times \mathrm{Z}_{8}$ a p-group?
- Is $\mathrm{Z}_{2} \times \mathrm{Z}_{256}$ a p-group?

