

Foundation of Mathematics 2 CHAPTER 1 SOME TYPES OF FUNCTIONS

Dr. Bassam AL-Asadi, Dr. Emad Al-Zangana and Dr. Amer Ismal

Course Outline

Second Semester

Course Title: Foundation of Mathematics 2
Code subject: MATH104
Instructors: Mustansiriyah University-College of Science-Department of Science Mathematics

Stage: The First

Contents

Chapter 1	Some Types of Functions	Inverse Function and Its Properties, Types of Function.
Chapter 2	System of Numbers	Natural Numbers, Construction of Integer Numbers.
Chapter 3	Rational Numbers and Groups	Construction of Rational Numbers, Binary Ope ration.

References

1-Fundamental Concepts of Modern Mathematics. Max D. Larsen. 1970.
2-Introduction to Mathematical Logic, $4^{\text {th }}$ edition. Elliott Mendelson. 1997.

4- A Mathematical Introduction to Logic, 2 ${ }^{\text {nd }}$ edition. Herbert B. Enderton. 2001.

Chapter One

Some Types of Functions

1. Inverse Function and Its Properties

We start this section by restate some basic and useful concepts.

Definition 1.1.1. (Inverse of a Relation)

Suppose $R \subseteq A \times B$ is a relation between A and B then the inverse relation $R^{-1} \subseteq$ $B \times A$ is defined as the relation between B and A and is given by

$$
b R^{-1} a \quad \text { if and only if } \quad a R b .
$$

That is, $R^{-1}=\{(b, a) \in B \times A:(a, b) \in R\}$.
Definition 1.1.2. (Function)
(i) A relation f from A to B is said to be function iff

$$
\forall x \in A \exists!y \in B \text { such that }(x, y) \in f
$$

(ii) A relation f from A to B is said to be function iff

$$
\forall x \in A \forall y, z \in B \text {, if }(x, y) \in f \wedge(x, z) \in f, \text { then } y=z
$$

(iii) A relation f from A to B is said to be function iff

$$
\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right) \in f \text { such that if } x_{1}=x_{2} \text {, then } y_{1}=y_{2} \text {. }
$$

This property called the well-defined relation.
Notation 1.1.3. We write $f(a)=b$ when $(a, b) \in f$ where f is a function; that is, $(a, f(a)) \in f$. We say that b is the image of a under f, and a is a preimage of b.

Question 1.1.4. From Definition 1.1 and 1.2 that if $f: X \rightarrow Y$ is a function, does $f^{-1}: Y \rightarrow X$ exist? If Yes, does $f^{-1}: Y \rightarrow X$ is a function?

Example 1.1.5.

(i) Let $A=\{1,2,3\}, B=\{a, b\}$ and f_{1} be a function from A to B defined bellow. $f_{1}=\{(1, a),(2, a),(3, b)\}$. Then $f_{1}{ }^{-1}$ is \qquad
(ii) Let $A=\{1,2,3\}, B=\{a, b, c, d\}$ and f_{2} be a function from A to B defined bellow. $f_{2}=\{(1, a),(2, b),(3, d)\}$. Then $f_{2}{ }^{-1}$ is
(iii) Let $A=\{1,2,3\}, B=\{a, b, c, d\}$ and f_{3} be a function from A to B defined bellow. $f_{3}=\{(1, a),(2, b),(3, a)\}$. Then $f_{3}{ }^{-1}$ is \qquad
(iv) Let $A=\{1,2,3\}, B=\{a, b, c$,$\} and f_{4}$ be a function from A to B defined bellow. $f_{4}=\{(1, a),(2, b),(3, c)\}$. Then f_{4}^{-1} is \qquad
(v) Let $A=\{1,2,3\}, B=\{a, b, c$,$\} and f_{5}$ be a relation from A to B defined bellow. $f_{5}=\{(1, a),(1, b),(3, c)\}$. Then f_{5} is \qquad
\qquad

Definition 1.1.6. (Inverse Function)

The function $f: X \rightarrow Y$ is said to be has inverse if the inverse relation $f^{-1}: Y \rightarrow X$ is function.

Example 1.1.7.

(i) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x+3$, that is,

$$
\begin{aligned}
& f=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=x+3\} \\
& f=\{(x, f(x)): x \in \mathbb{R}\} \\
& f=\{(x, x+3) \in \mathbb{R} \times \mathbb{R}\} .
\end{aligned}
$$

Then

$$
\begin{gathered}
f^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}:(y, x) \in f\} \\
f^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: x=y+3\} \\
f^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=x-3\} \\
f^{-1}=\left\{\left(x, f^{-1}(x)\right): x \in \mathbb{R}\right\} \\
f^{-1}=\{(x, x-3) \in \mathbb{R} \times \mathbb{R}\} .
\end{gathered}
$$

That is $f^{-1}(x)=x-3$.
f^{-1} is function as shown below.
Let $\left(y_{1}, f^{-1}\left(y_{1}\right)\right)$ and $\left(y_{2}, f^{-1}\left(y_{2}\right)\right) \in f^{-1}$ such that $y_{1}=y_{2}$, T. P. $f^{-1}\left(y_{1}\right)=$ $f^{-1}\left(y_{2}\right)$.

Since $y_{1}=y_{2}$, then $y_{1}-3=y_{2}-3$ (By add -3 to both sides)
$\Rightarrow f^{-1}\left(y_{1}\right)=f^{-1}\left(y_{2}\right)$.
(ii) $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^{2}$; that is,

$$
\begin{gathered}
g=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=x^{2}\right\} \\
g=\{(x, g(x)): x \in \mathbb{R}\} \\
g=\left\{\left(x, x^{2}\right) \in \mathbb{R} \times \mathbb{R}\right\} .
\end{gathered}
$$

Then

$$
\begin{gathered}
g^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}:(y, x) \in g\} \\
g^{-1}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x=y^{2}\right\} \\
g^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y= \pm \sqrt{x}\} \\
g^{-1}=\{(x, \pm \sqrt{x}) \in \mathbb{R} \times \mathbb{R}\}, \text { that is } g^{-1}(x)= \pm \sqrt{x}
\end{gathered}
$$

g^{-1} is not function since $g^{-1}(4)= \pm 2$.
Remark 1.1.8: If f is a function, then $f(x)$ is always is an element in the $\operatorname{Ran}(f)$ for all x in $\operatorname{Dom}(f)$ but $f^{-1}(y)$ may be a subset of $\operatorname{Dom}(f)$ for all y in $\operatorname{Cod}(f)$.

Definition 1.1.9. Let $f: X \rightarrow Y$ be a function and $A \subseteq X$ and $B \subseteq y$.
(i) The set $f(A)=\{f(x) \in Y: x \in A\}=\{y \in Y: \exists x \in A$ such that $y=f(x)\}$ is called the direct image of \boldsymbol{A} by \boldsymbol{f}.
(ii) The set $f^{-1}(B)=\{x \in X: f(x) \in B\}=\{x \in X: \exists y \in B$ such that $f(x)=y\}$ is called the inverse image of \boldsymbol{B} with respect to \boldsymbol{f}.
(iii) A function $f: A \rightarrow B$ is one-to-one (1-1) or injective if each element of B appears at most once as the image of an element of A. That is, a function $f: A \rightarrow B$ is injective if $\forall x, y \in A, f(x)=f(y) \Rightarrow x=y$ or $\forall x, y \in A, x \neq y \Rightarrow$ $f(x) \neq f(y)$.
(iv) A function $f: A \rightarrow B$ is onto or surjective if $f(A)=B$, that is, each element of B appears at least once as the image of an element of A. That is, a function $f: A \rightarrow$ B is surjective if $\forall y \in B, \exists x \in A$ such that $f(x)=y$.
(v) A function $f: A \rightarrow B$ is bijective iff it is one-to-one and onto.

Remark 1.1.10: Let $f: X \rightarrow Y$ be a function and $A \subseteq X$. If $y \in f(A)$, then $f^{-1}(y) \subseteq A$.

Example 1.1.11.

(i) Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{4}-1 . f^{-1}(15)=\left\{x \in \mathbb{R}: x^{4}-1=15\right\}$

$$
=\left\{x \in \mathbb{R}: x^{4}=16\right\}=\{-2,2\} .
$$

(ii) Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\left\{\begin{array}{cc}-1, & -1 \leq x<0 \\ 0, & 0 \leq x<1 \\ 1, & 1 \leq x<2 \\ 2, & 2 \leq x<3\end{array}\right.$.
$D(f)=[-1,3), R(f)=\{-1,0,1,2\}$.
$f([-1,-1 / 2])=-1 . f([-1,0])=\{-1,0\}$.
$f^{-1}(0)=[0,1) . f^{-1}([1,3 / 2])=[1,2)$.

(iii)

(iv) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(x)=3 x+7$.
$f=\{\ldots,(-3,-2),(-2,1),(-1,4),(0,7),(1,10),(2,13), \ldots\}$.
(a) f is injective. Suppose otherwise; that is,
$f(x)=f(y) \Rightarrow 3 x+7=3 y+7 \Rightarrow 3 x=3 y \Rightarrow x=y$
(b) f is not surjective. For $b=2$ there is no a such that $f(a)=b$; that is, $2=$ $3 a+7$ holds for $a=-\frac{5}{3}$ which is not in $\mathbb{Z}=D(f)$.
(v) Show that the function $f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ defined as $f(x)=(1 / x)+1$ is injective but not surjective.

Solution:

We will use the contrapositive approach to show that f is injective.
Suppose $x, y \in \mathbb{R}-\{0\}$ and $f(x)=f(y)$. This means
$\frac{1}{x}+1=\frac{1}{y}+1 \rightarrow x=y$. Therefore, f is injective.
Function f is not surjective because there exists an element $b=1 \in \mathbb{R}$ for which $f(x)=(1 / x)+1 \neq 1$ for every $x \in \mathbb{R}$.
(vi) Show that the function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined by the
formula $f(m, n)=(m+n, m+2 n)$, is both injective and surjective.

Solution:

Injective: Let $(m, n),(r, s) \in \mathbb{Z} \times \mathbb{Z}=\operatorname{Dom}(f)$ such that $f(m, n)=f(r, s)$. To prove $(m, n)=(r, s)$.
$1-f(m, n)=f(r, s) \Rightarrow(m+n, m+2 n)=(r+s, r+2 s)$ Hypothesis
2- $m+n=r+s$ Def. of \times

3- $m+2 n=r+2 s$ Def. of \times

4- $m=r+2 s-2 n$
Inf. (3)
5- $n=s$ and $m=r$
Inf. (2),(4)
$6-(m, n)=(r, s)$
Def. of \times
Surjective: Let $(x, y)=\mathbb{Z} \times \mathbb{Z}=\operatorname{Ran}(f)$. To prove $\exists(m, n) \in \mathbb{Z} \times \mathbb{Z}=$ $\operatorname{Dom}(f) \ni f(m, n)=(x, y)$.
$1-f(m, n)=(m+n, m+2 n)=(x, y) \quad$ Def. of f
2- $m+n=x$
Def. of \times
3- $m+2 n=y$
Def. of \times
4- $m=x-n$
Inf. (2)
5- $n=y-x$
Inf. (3),(4)
6- $m=2 x-y$
7- $(2 x-y, y-x) \in \mathbb{Z} \times \mathbb{Z}=\operatorname{Dom}(f), f(2 x-y, y-x)=(x, y)$

Theorem 1.1.12. Let $f: A \rightarrow B$ be a function. Then f is bijective iff the inverse relation f^{-1} is a function from B to A.

Proof:

Suppose $f: A \rightarrow B$ is bijective. To prove f^{-1} is a function from B to A. $f^{-1} \neq \emptyset$ since f is onto.
$(*)$ Let $\left(y_{1}, x_{1}\right)$ and $\left(y_{2}, x_{2}\right) \in f^{-1}$ such that $y_{1}=y_{2}$, to prove $x_{1}=x_{2}$.
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in f \quad$ Def. of f^{-1}
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{1}\right) \in f \quad$ By hypothesis $(*)$
$x_{1}=x_{2} \quad$ Def. of 1-1 on f
$\therefore f^{-1}$ is a function from B to A.
Conversely, suppose f^{-1} is a function from B to A, to prove $f: A \rightarrow B$ is bijective, that is, $1-1$ and onto.

1-1: Let $a, b \in A$ and $f(a)=f(b)$. To prove $a=b$.
$(a, f(a))$ and $(b, f(b)) \in f$
$(a, f(a))$ and $(b, f(a)) \in f$
$(f(a), a)$ and $(f(a), b) \in f^{-1}$
$a=b$
Hypothesis (f is function)
Hypothesis $(f(a)=f(b))$
Def. of inverse relation f^{-1}
Since f^{-1} is function
$\therefore f$ is 1-1.
onto: Let $b \in B$. To prove $\exists a \in A$ such that $f(a)=b$.
$\left(b, f^{-1}(b)\right) \in f^{-1}$
$\left(f^{-1}(b), b\right) \in f \quad$ Def. of inverse relation f^{-1}
Put $a=f^{-1}(b)$.
$a \in A$ and $f(a)=b$
Hypothesis (f is function)
$\therefore f$ is onto.
Hypothesis (f^{-1} is a function from B to A)

Definition 1.1.13.

(i) A function $I_{A}: A \rightarrow A$ defined by $I_{A}(x)=x$, for every $x \in A$ is called the identity function on A. $I_{A}=\{(x, x): x \in A\}$.
(ii) Let $A \subseteq X$. A function $i_{A}: A \rightarrow X$ defined by $i_{A}(x)=x$, for every $x \in A$ is called the inclusion function on A.

Theorem 1.1.14.

If $f: X \rightarrow Y$ is a bijective function, then $f \circ f^{-1}=I_{Y}$ and $f^{-1} \circ f=I_{X}$.

Proof: Exercise.

Example 1.1.15. Let $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ be a function defined as

$$
f(m, n)=(m+n, m+2 n) .
$$

f is bijective (Exercise).
To find the inverse f^{-1} formula, let $f(n, m)=(x, y)$. Then
$(m+n, m+2 n)=(x, y)$. So, the we get the following system

$$
\begin{align*}
m+n & =x \ldots .(1) \\
m+2 n & =y \ldots .(2) \tag{3}
\end{align*}
$$

From (1) we get $m=x-n$
$n=y-x \quad \operatorname{Inf}(2)$ and (3)
$m=2 x-y \quad \operatorname{Rep}(n: y-x)$ or $\operatorname{sub}(4)$ in (3)
Define f^{-1} as follows
$f^{-1}(x, y)=(2 x-y, y-x)$.
We can check our work by confirming that $f \circ f^{-1}=I_{Y}$.

$$
\begin{aligned}
\left(f \circ f^{-1}\right)(x, y)= & f(2 x-y, y-x) \\
& =((2 x-y)+(y-x),(2 x-y)+2(y-x)) \\
& =(x, 2 x-y+2 y-2 x)=(x, y)=I_{Y}(x, y)
\end{aligned}
$$

Remark 1.1.16. If $f: X \rightarrow Y$ is oneto-one but not onto, then one can still define an inverse function $f^{-1}: \operatorname{Ran}(f) \rightarrow X$ whose domain in the range of f.

Theorem 1.1.17. Let $f: X \rightarrow Y$ be a function.
(i) If $\left\{Y_{j} \subseteq Y: j \in J\right\}$ is a collection of subsets of Y, then

$$
f^{-1}\left(\mathrm{U}_{j \in J} Y_{j}\right)=\mathrm{U}_{j \in J} f^{-1}\left(Y_{j}\right) \text { and } f^{-1}\left(\bigcap_{j \in J} Y_{j}\right)=\bigcap_{j \in J} f^{-1}\left(Y_{j}\right)
$$

(ii) If $\left\{X_{i} \subseteq X: i \in I\right\}$ is a collection of subsets of X, then
$f\left(\bigcup_{i \in I} X_{i}\right)=\bigcup_{i \in I} f\left(X_{i}\right)$ and $f\left(\bigcap_{i \in I} X_{i}\right) \subseteq \bigcap_{i \in I} f\left(X_{i}\right)$.
(iii) If A and B are subsets of X such that $A=B$, then $f(A)=f(B)$. The converse is not true.
(iv) If C and D are subsets of Y such that $C=D$, then $f^{-1}(C)=f^{-1}(D)$. The converse is not true.
(v) If A and B are subsets of X, then $f(A)-f(B) \subseteq f(A-B)$. The converse is not true.
(vi) If C and D are subsets of Y, then $f^{-1}(C)-f^{-1}(D)=f^{-1}(C-D)$.

Proof:
(i) Let $x \in f^{-1}\left(\mathrm{U}_{j \in J} Y_{j}\right)$.
$\exists y \in \bigcup_{j \in J} Y_{j}$ such that $f(x)=y \quad$ Def. of inverse image
$y \in Y_{j}$ for some $j \in J\left(f(x) \in Y_{j}\right.$ for some $\left.j \in J\right) \quad$ Def. of U
$x \in f^{-1}\left(Y_{j}\right) \quad$ Def. of inverse image
so $x \in U_{j \in J} f^{-1}\left(Y_{j}\right) \quad$ Def. of U
It follow that $f^{-1}\left(\mathrm{U}_{j \in J} Y_{j}\right) \subseteq \mathrm{U}_{j \in J} f^{-1}\left(Y_{j}\right) \quad$ Def. of $\subseteq \ldots . .(*)$
Conversely,
If $x \in \bigcup_{j \in J} f^{-1}\left(Y_{j}\right)$, then $x \in f^{-1}\left(Y_{j}\right)$, for some $j \in J \quad$ Def. of U

So $f(x) \in Y_{j}$ and $f(x) \in \bigcup_{j \in J} Y_{j}$

$$
x \in f^{-1}\left(\mathrm{U}_{j \in J} Y_{j}\right)
$$

It follow that $\mathrm{U}_{j \in J} f^{-1}\left(Y_{j}\right) \subseteq f^{-1}\left(\mathrm{U}_{j \in J} Y_{j}\right)$
$\therefore f^{-1}\left(\mathrm{U}_{j \in J} Y_{j}\right)=\mathrm{U}_{j \in J} f^{-1}\left(Y_{j}\right)$

Def. of inverse and U
Def. of inverse f^{-1}
Def. of $\subseteq \ldots . .(* *)$

Example 1.1.18. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(x)=1$.
$\mathbb{Z}_{e} \cap \mathbb{Z}_{o}=\emptyset . f\left(\mathbb{Z}_{e} \cap \mathbb{Z}_{o}\right)=f(\varnothing)=\emptyset$. But $f\left(\mathbb{Z}_{e}\right) \cap f\left(\mathbb{Z}_{o}\right)=\{1\}$.

2. Types of Function

Definitions 1.2.1.

(i) (Constant Function)

The function $f: X \rightarrow Y$ is said to be constant function if there exist a unique element $b \in Y$ such that $f(x)=b$ for all $x \in X$.
(ii) (Restriction Function)

Let $f: X \rightarrow Y$ be a function and $A \subseteq X$. Then the function $g: A \rightarrow Y$ defined by $g(x)=f(x)$ all $x \in X$ is said to be restriction function of f and denoted by $g=$ $\left.f\right|_{A}$.

(iii) (Extension Function)

Let $f: A \rightarrow B$ be a function and $A \subseteq X$. Then the function $g: X \rightarrow B$ defined by $g(x)=f(x)$ all $x \in A$ is said to be extension function of f from A to X.
(iv) (Absolute Value Function)

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ which defined as follows

$$
f(x)=|x|= \begin{cases}x, & x \geq 0 \\ -x & x<0\end{cases}
$$

is called the absolute value function.

(v) (Permutation Function)

Every bijection function f on a non empty set A is said to be permutation on A.
(vi) (Sequence)

Let A be a non empty set. A function $f: \mathbb{N} \rightarrow A$ is called a sequence in A and denoted by $\left\{f_{n}\right\}$, where $f_{n}=f(n)$.

(vii) (Canonical Function)

Let A be a non empty set, R an equivalence relation on A and A / R be the set of all equivalence class. The function $\pi: A \rightarrow A / R$ defined by $\pi(x)=[x]$ is called the canonical function.

(viii) (Projection Function)

Let A_{1}, A_{2} be two sets. The function $P_{1}: A_{1} \times A_{2} \rightarrow A_{1}$ defined by $P_{1}(x, y)=x$ for all $(x, y) \in A_{1} \times A_{2}$ is called the first projection.

The function $P_{2}: A_{1} \times A_{2} \rightarrow A_{2}$ defined by $P_{2}(x, y)=y$ for all $(x, y) \in A_{1} \times A_{2}$ is called the second projection.
(ix) (Cross Product of Functions)

Let $f: A_{1} \rightarrow A_{2}$ and $g: B_{1} \rightarrow B_{2}$ be two functions. The cross product of f with g, $f \times g: A_{1} \times B_{1} \rightarrow A_{2} \times B_{2}$ is the function defined as follows:

$$
(f \times g)(x, y)=(f(x), g(y)) \text { for all }(x, y) \in A_{1} \times B_{1} .
$$

Examples 1.2.2.

(i)(Constant Function). $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=2, \forall x \in \mathbb{R} . \operatorname{Dom}(f)=\mathbb{R}, \operatorname{Ran}(f)=$ $\{2\}, \operatorname{Cod}(f)=\mathbb{R}$.

(ii) (Restriction Function). $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x+1, \forall x \in \mathbb{R}$.
$\operatorname{Dom}(f)=\mathbb{R}, \operatorname{Ran}(f)=\mathbb{R}, \operatorname{Cod}(f)=\mathbb{R}$. Let $A=[-1,0]$.
$g=\left.f\right|_{A}: A \rightarrow \mathbb{R} . g(x)=f(x)=x+1, \forall x \in A$.
$D(g)=A, R(g)=[0,1], \operatorname{Cod}(g)=\mathbb{R}$.

$f(x)=x+1$

$g=\left.f\right|_{A}$
(iii) (Extension Function). $f:[-1,0] \rightarrow \mathbb{R}, f(x)=x+1, \forall x \in[-1,0]$.
$\operatorname{Dom}(f)=[-1,0], R(f)=[0,1], \operatorname{Cod}(f)=\mathbb{R}$.
Let $A=\mathbb{R} . g: A \rightarrow \mathbb{R} . g(x)=f(x)=x+1, \forall x \in A$.
$D(g)=A, R(g)=\mathbb{R}, \operatorname{Cod}(g)=\mathbb{R}$.
(iv) (Absolute Value Function) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=|x|=\left\{\begin{array}{ll}x, & x \geq 0 \\ -x & x<0\end{array}\right.$.
$\operatorname{Dom}(f)=\mathbb{R},, R(f)=[0, \infty), \operatorname{Cod}(f)=\mathbb{R}$.

(v) (Permutation Function). $f: \mathbb{N} \rightarrow \mathbb{N}, f(x)=-x, \forall x \in \mathbb{N}$. The function is bijective, so it is permutation function. $\operatorname{Dom}(f)=\mathbb{N}, \operatorname{Ran}(f)=\mathbb{N}, \operatorname{Cod}(f)=\mathbb{N}$.

(vi) (Sequence). $f: \mathbb{N} \rightarrow \mathbb{Q}, f(n)=\frac{1}{n}, \forall x \in \mathbb{N} .\left\{f_{n}\right\}=\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$.
(vii) (Canonical Function). Let R be an equivalence relation defined on \mathbb{Z} as follows:
$x R y$ iff $x-y$ is even integer, that is, $R=\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x-y$ even $\}$.
$[0]=\{x \in \mathbb{Z}: x-0$ even $\}=\{\ldots,-4,-2,0,2,4, \ldots\}=[2]=[-2]=\cdots$.
$[1]=\{x \in \mathbb{Z}: x-1$ even $\}=\{\ldots,-5,-3,-1,1,3,5, \ldots\}=[-1]=[3]=\cdots$.
$\mathbb{Z} / R=\{[0],[1]\}$.
$\pi(0)=[0]=\pi(2)=\pi(-2)=\cdots$.
$\pi(1)=[1]=\pi(-1)=\pi(-3)=\cdots$.
(viii) (Projection Function)
$P_{1}: \mathbb{Z} \times \mathbb{Q} \longrightarrow \mathbb{Z}, P_{1}(x, y)=x$ for all $(x, y) \in \mathbb{Z} \times \mathbb{Q} . P_{1}\left(2, \frac{2}{5}\right)=2 . P_{1}\left(\mathbb{Z}, \frac{2}{5}\right)=\mathbb{Z}$.
$P_{1}^{-1}(3)=\{3\} \times \mathbb{Q}$.

(ix) (Cross Product of Functions)

$f: \mathbb{N} \rightarrow \mathbb{Q}, f(n)=\frac{1}{n}, \forall n \in \mathbb{N}$ and $f: \mathbb{N} \rightarrow \mathbb{N}, f(x)=-x, \forall x \in \mathbb{N}$

$$
\begin{aligned}
f \times g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q} \times \mathbb{N},(f \times g)(x, y) & =(f(x), g(y)) \\
& =\left(\frac{1}{x},-y\right) \text { for all }(x, y) \in \mathbb{N} \times \mathbb{N} .
\end{aligned}
$$

(x) (Involution Function)

Let X be a finite set and let f be a bijection from X to X (that is, $f: X \rightarrow X$).
The function f is called an involution if $f=f^{-1}$. An equivalent way of stating this is

$$
f(f(x))=x \quad \text { for all } \quad x \in X .
$$

The figure below is an example of an involution on a set X of five elements. In the diagram of an involution, note that if j is the image of i then i is the image of j.

Exercise 1.2.3.

(i) Let R be an equivalence relation defined on \mathbb{N} as follows:

$$
R=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x-y \text { divisble by } 3\} .
$$

1-Find \mathbb{N} / R.
2- Find $\pi([0]), \pi([1]), \pi^{-1}([2])$.
(ii) Prove that: the Projection function is onto but not injective.
(iii) Prove that: the Identity function is bijective.
(iv) Prove that: the inclusion function is bijective onto its image.
(v) Let $f: A_{1} \rightarrow A_{2}$ and $g: B_{1} \rightarrow B_{2}$ be two functions. If f and g are both 1-1 (onto), then $f \times g$ is $1-1$ (onto).
(vi) If $f: X \rightarrow Y$ is a bijective function, then f^{-1} is bijective function.
(vii) If $f: X \rightarrow Y$ is a bijective function, then
1- $f \circ f^{-1}=I_{Y}$ is bijective function.
2- $f^{-1} \circ f=I_{X}$ is bijective function.
(viii) Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be functions. If $g \circ f=I_{X}$, then f is injective and g is onto.
(ix) Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a function defined as follows:

$$
f(x, y)=x^{2}+y^{2} .
$$

1- Find the $f(\mathbb{R} \times \mathbb{R})$ (image of f).
2- Find $f^{-1}([0,1])$.
3- Does f 1-1 or onto?
4- Let $A=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x=\sqrt{2-y^{2}}\right\}$. Find $f(A)$.

