

Foundation of Mathematics 2 CHAPTER 2 SYSTEM OF NUMBERS

Dr. Bassam AL-Asadi, Dr. Emad Al-Zangana and Dr. Amer Ismal

Chapter Two

System of Numbers

1. Natural Numbers

Let $0=$ Set with no point, that is; $0=\emptyset, 1=$ Set with one point, that is; $1=\{0\}$, $2=$ Set with two points, that is; $2=\{0,1\}$, and so on. Therefore,

$$
\begin{aligned}
& 1=\{0\}=\{\varnothing\}, \\
& 2=\{0,1\}=\{\varnothing,\{\varnothing\}\}, \\
& 3=\{0,1,2\}=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}, \\
& 4=\{0,1,2,3\}=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\},\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}\}, \\
& \vdots \\
& n=\{0,1,2,3, \ldots, n-1\} .
\end{aligned}
$$

Definition 2.1.1. Let A be a set. A successor to A is $A^{+}=A \bigcup\{A\}$ and denoted by A^{+}.

According to above definition we can get the numbers $0,1,2,3, \ldots$ as follows:
$0=\varnothing$,
$1=\{0\}=\emptyset \cup\{\varnothing\}=\emptyset^{+}=0^{+}$,
$2=\{0,1\}=\{0\} \cup\{1\}=1 \cup\{1\}=1^{+}$,
$3=\{0,1,2\}=\{0,1\} \cup\{2\}=2 \cup\{2\}=2^{+}$,
Definition 2.1.2. A set A is said to be successor set if it satisfies the following conditions:
(i) $\varnothing \in A$,
(ii) if $a \in A$, then $a^{+} \in A$.

Remark 2.1.3.

(i) Any successor set should contains the numbers $0,1,2, \ldots n$.
(ii) Collection of all successor sets is not empty.
(iii) Intersection of any non-empty collection of successor sets is also successor set.

Definition 2.1.4. Intersection of all successor sets is called the set of natural numbers and denoted by \mathbb{N}, and each element of \mathbb{N} is called natural element.

Peano's Postulate 2.1.5.

$\left(\mathbf{P}_{1}\right) 0 \in \mathbb{N}$.
$\left(\mathbf{P}_{2}\right)$ If $a \in \mathbb{N}$, then $a^{+} \in \mathbb{N}$.
$\left(\mathbf{P}_{3}\right) 0 \neq a^{+} \in \mathbb{N}$ for every natural number a.
$\left(\mathbf{P}_{4}\right)$ If $a^{+}=b^{+}$, then $a=b$ for any natural numbers a, b.
$\left(\mathbf{P}_{5}\right)$ If X is a successor subset of \mathbb{N}, then $X=\mathbb{N}$.

Remark 2.1.6.

(i) \mathbf{P}_{1} says that 0 should be a natural number.
(ii) \mathbf{P}_{2} states that the relation $+: \mathbb{N} \rightarrow \mathbb{N}$, defined by $+(n)=n^{+}$is mapping.
(iii) \mathbf{P}_{3} as saying that 0 is the first natural number, or that ' -1 ' is not an element of N.
(iv) \mathbf{P}_{4} states that the map $+: \mathbb{N} \rightarrow \mathbb{N}$ is injective.
(v) \mathbf{P}_{5} is called the Principle of Induction.

2.1.7. Addition + on \mathbb{N}

We will now define the operation of addition + using only the information provided in the Peano's Postulates.

Let $a, b \in \mathbb{N}$. We define $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ as follows:

$$
+(a, b)=a+b=\left\{\begin{array}{cc}
a+0=a & \text { if } b=0 \\
a+c^{+}=(a+c)^{+} & \text {if } b \neq 0
\end{array}\right.
$$

where $b=c^{+}$.
Therefore, if we want to compute $1+1$, we note that $1=0^{+}$and get

$$
1+1=1+0^{+}=(1+0)^{+}=1^{+}=2
$$

We can proceed further to compute $1+2$.
To do so, we note that $2=1^{+}$and therefore that

$$
1+2=1+1^{+}=(1+1)^{+}=2^{+}=3
$$

2.1.8. Multiplication - on \mathbb{N}

We will now define the operation of multiplication - using only the information provided in the Peano's Postulates.

Let $a, b \in \mathbb{N}$. We define $:: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ as follows:

$$
\cdot(a, b)=a \cdot b=\left\{\begin{array}{cc}
a \cdot 0=0 & \text { if } b=0 \\
a \cdot c^{+}=a+a \cdot c & \text { if } b \neq 0
\end{array}\right.
$$

where $b=c^{+}$.
Thus, we can easily show that $a \cdot 1=a$ by noting that $1=0^{+}$and therefore,

$$
a \cdot 1=a \cdot 0^{+}=a+(a \cdot 0)=a+0=a .
$$

We can use this to multiply $3 \cdot 2$. Of course, we know that $2=1^{+}$and therefore, $3 \cdot 2=3 \cdot 1^{+}=3+(3 \cdot 1)=3+3=3+2^{+}=(3+2)^{+}=5^{+}=6$.

Remark 2.1.9. From 2.1.7 and 2.1 .8 we can deduce that for all $n \in \mathbb{N}$, if $n \neq 0$, then there exist an element $m \in \mathbb{N}$ such that $n=m^{+}$.

Theorem 2.1.10.
(i) $n^{+}=n+1, n^{+}=1+n, n=n \cdot 1, n=1 \cdot n, 0 \cdot n=0,0+n=n$
$\forall n \in \mathbb{N}$.
(ii) (Associative property of +): $(n+m)+c=n+(m+c), \forall n, m, c \in \mathbb{N}$.
(iii) (Commutative property of +): $n+m=m+n, \forall n, m \in \mathbb{N}$.
(iv) (Distributive property of on +): $\forall n, m, c \in \mathbb{N}$,

From right $(n+m) \cdot c=n \cdot c+m \cdot c$,
From left $c \cdot(n+m)=c \cdot n+c \cdot m$ (The prove depend on (vi)).
(v) (Commutative property of \cdot): $\quad n \cdot m=m \cdot n, \forall n, m \in \mathbb{N}$.
(vi) (Associative property of •):
$(n \cdot m) \cdot c=n \cdot(m \cdot c), \forall n, m, c \in \mathbb{N}$.
(vii) The addition operation + defined on \mathbb{N} is unique.
(viii) The multiplication operation \cdot defined on \mathbb{N} is unique.
(ix) (Cancellation Law for +): $m+c=n+c$, for some $c \in \mathbb{N} \Leftrightarrow m=n$.
(x) 0 is the unique element such that $0+m=m+0=m, \forall m \in \mathbb{N}$.
(xi) 1 is the unique element such that $1 \cdot m=m \cdot 1=m, \forall m \in \mathbb{N}$.

Proof:

(i) $n^{+}=(n+0)^{+} \quad($ Since $n=n+0)$
$=n+0^{+} \quad$ (Def. of +)
$=n+1 \quad\left(\right.$ Since $\left.0^{+}=1\right)$
(ii) Let $L_{m n}=\{c \in \mathbb{N} \mid(m+n)+c=m+(n+c)\}, m, n \in \mathbb{N}$.
(1) $(m+n)+0=m+n=m+(n+0)$; that is, $0 \in L_{m n}$. Therefore, $L_{m n} \neq \emptyset$.
(2) Let $c \in L_{m n}$; that is, $(m+n)+c=m+(n+c)$. To prove $c^{+} \in L_{m n}$.

$$
\begin{aligned}
(m+n)+c^{+} & =((m+n)+c)^{+} \\
& =(m+(n+c))^{+} \quad\left(\text { since } c \in L_{m n}\right) \\
& \left.=m+(n+c)^{+} \quad \text { (Def. of }+\right) \\
& =m+\left(n+c^{+}\right) \quad(\text { Def. of }+)
\end{aligned}
$$

Thus, $c^{+} \in L_{m n}$. Therefore, $L_{m n}$ is a successor subset of \mathbb{N}. So, we get by \mathbf{P}_{5} $L_{m n}=\mathbb{N}$.
(iii) Suppose that $L_{m}=\{n \in \mathbb{N} \mid m+n=n+m\}, m \in \mathbb{N}$. Then prove that L_{m} is successor subset of \mathbb{N}.
(iv) Suppose that $L_{m n}=\{c \in \mathbb{N} \mid c \cdot(m+n)=c \cdot m+c \cdot n\}, m, n \in \mathbb{N}$. Then prove that $L_{m n}$ is successor subset of \mathbb{N}.
(v) Suppose that $L_{m}=\{n \in \mathbb{N} \mid m \cdot n=n \cdot m\}, m \in \mathbb{N}$. Then prove that L_{m} is successor subset of \mathbb{N}.
(vi) Suppose that $L_{m n}=\{c \in \mathbb{N} \mid(m \cdot n) \cdot c=m \cdot(n \cdot c)\}, m, n \in \mathbb{N}$. Then prove that $L_{m n}$ is successor subset of \mathbb{N}.
(vii) Let \oplus be another operation on \mathbb{N} such that

$$
\oplus(a, b)=\left\{\begin{array}{cl}
a \oplus 0=a & \text { if } b=0 \\
a \oplus c^{+}=(a \oplus c)^{+} & \text {if } b \neq 0
\end{array}\right.
$$

where $b=c^{+}$.
Let $L=\{m \in \mathbb{N} \mid n+m=n \oplus m, \forall n \in \mathbb{N}\}$.
(1) To prove $0 \in L$.
$n+0=n=n \oplus 0$. Thus, $0 \in L$.
(2) To prove that $k^{+} \in L$ for every $k \in L$. Suppose $k \in L$.

$$
\begin{aligned}
n+k^{+} & =(n+k)^{+} & & \text {Def. of }+ \\
& =(n \oplus k)^{+} & & \text {(Since } k \in L) \\
& =n \oplus k^{+} & & \text {Def. of } \oplus
\end{aligned}
$$

Thus, $k^{+} \in L$.
From (1), (2) we get that L is a successor set and $L \subseteq \mathbb{N}$. From \mathbf{P}_{5} we get that $L=$ N.
(viii) Exercise.
(ix) Suppose that
$L=\{c \in \mathbb{N} \mid m+c=n+c$, for some $c \in \mathbb{N} \Leftrightarrow m=n\}, m, n \in \mathbb{N}$. Then prove that L is successor subset of \mathbb{N}.
(x), (xi) Exercise.

Definition 2.1.11. Let $x, y \in \mathbb{N}$. We say that \boldsymbol{x} less than \boldsymbol{y} and denoted by $x<y$ iff there exist $k \neq 0 \in \mathbb{N}$ such that $x+k=y$.

Theorem 2.1.12.

(i) The relation $<$ is transitive relation on \mathbb{N}.
(ii) $0<n^{+}$and $n<n^{+}$for all $n \in \mathbb{N}$.
(iii) $0<m$ or $m=0$, for all $m \in \mathbb{N}$.

Proof:
(i),(ii),(iii) Exercise.

Theorem 2.1.13. (Trichotomy)

For each $m, n \in \mathbb{N}$ one and only one of the following is true:
(1) $m<n$ or (2) $n<m$ or (3) $m=n$.

Proof:
Let $m \in \mathbb{N}$ and
$L_{1}=\{n \in \mathbb{N} \mid n<m\}$,
$L_{2}=\{n \in \mathbb{N} \mid m<n\}$,
$L_{3}=\{n \in \mathbb{N} \mid n=m\}$,
$M=L_{1} \cup L_{2} \cup L_{3}$.
(1) $L_{i} \neq \emptyset$ and $L_{i} \subseteq \mathbb{N}, i=1,2,3$. Therefore, $M \subseteq \mathbb{N}$ and $M \neq \emptyset$.
(2) To prove that M is a successor set.
(i) To prove that $0 \in M$.
(a) If $m=0$, then $0 \in L_{3} \rightarrow 0 \in M \quad$ (Def. of U)
(b) If $m \neq 0$, then $\exists k \in \mathbb{N} \ni$

$$
\begin{aligned}
m & =k^{+} \\
& \rightarrow 0<k^{+}=m \quad \text { (Theorem 2.1.12(ii)). } \\
& \rightarrow 0 \in L_{1} \rightarrow 0 \in M
\end{aligned}
$$

Or
If $m \neq 0$, then $0<m \quad$ (Theorem 2.1.12(iii)).

$$
\rightarrow 0 \in L_{1} \rightarrow 0 \in M
$$

(ii) Suppose that $k \in M$. To prove that $k^{+} \in M$.

Since $k \in M$, then $k \in L_{1}$ or $k \in L_{2}$ or $k \in L_{3}$
(Def. of U)
(a) If $k \in L_{1}$
$\begin{array}{ll}\rightarrow k<m & \\ \rightarrow \exists c \neq 0 \in \mathbb{N} \ni m=k+c & \left(\text { Def. of } L_{1}\right) \\ & \text { (Def of }<)\end{array}$
$\rightarrow \exists l \in \mathbb{N} \ni c=l^{+}$
(Remark 2.1.9)

$$
\begin{aligned}
\rightarrow m=k+c & =k+l^{+} \quad(\text { Def. of }+) \\
& =(k+l)^{+}
\end{aligned}
$$

$\rightarrow m=(k+l)^{+}=(l+k)^{+} \quad$ (Commutative law for +)
$\rightarrow m=l+k^{+} \quad$ (Def. of +)

- If $l=0$, then $m=k^{+} \rightarrow k^{+} \in L_{3}$;
- If $l \neq 0$, then $k^{+}<m$ (Def. of $<$) $\rightarrow k^{+} \in L_{1}$.
(b) If $k \in L_{2}$
$\rightarrow m<k$
$\rightarrow m<k<k^{+}$
$\rightarrow m<k^{+}$
$\rightarrow k^{+} \in L_{2}$
$\rightarrow k^{+} \in M$
(Def. of L_{2})
(Theorem 2.1.12(ii))
(Theorem 2.1.12(i))
(Def. of L_{2})
(Def. of U)
(c) If $k \in L_{3}$
$\rightarrow m=k$
(Def. of L_{2})
$\rightarrow m=k<k^{+}$
$\rightarrow m<k^{+}$
$\rightarrow k^{+} \in L_{2}$
(Theorem 2.1.12(ii))
(Theorem 2.1.12(i))
$\rightarrow k^{+} \in M$
(Def. of L_{2})
(Def. of U)

Theorem 2.1.14.

(i) For all $n \in \mathbb{N}, 0<n \Leftrightarrow n \neq 0$.
(ii) For all $m, n \in \mathbb{N}$, if $n \neq 0$, then $m+n \neq 0$.
(iii) $m+k<n+k \Leftrightarrow m<n$, for all $m, n, k \in \mathbb{N}$.
(iv)If $m \cdot n=0$, then either $m=0$ or $n=0, \forall m, n \in \mathbb{N}$. (\mathbb{N} has no zero divisor)
(v) (Cancellation Law for \cdot): $m \cdot c=n \cdot c$, for some $c(\neq 0) \in \mathbb{N} \Leftrightarrow m=n$.
(vi) Forall $k(\neq 0) \in \mathbb{N}$, if $m<n$, then $m \cdot k<n \cdot k$, for all $m, n \in \mathbb{N}$.
(vii) For all $k(\neq 0) \in \mathbb{N}$, if $m \cdot k<n \cdot k$, then $m<n$, for all $m, n \in \mathbb{N}$.

Proof:
(ii) Case 1:

If $m=0$.
$\rightarrow m+n=0+n=n \neq 0$
$\rightarrow m+n \neq 0$

Case 2:

If $m \neq 0 \rightarrow 0<m$
By (i)
Suppose that $m+n=0$
$\rightarrow m<0$
$\rightarrow m<0$ and $0<m$
Contradiction with Trichotomy Theorem; that is, $m+n \neq 0$.
(vii) Let $m \cdot k<n \cdot k$. Assume that $m \nless n$
$\rightarrow n<m$ or $n=m$
Suppose $n=m$
$\rightarrow m \cdot k=n \cdot k$
$\rightarrow m \cdot k=n \cdot k$ and $m \cdot k<n \cdot k$
\rightarrow Contradiction with (Trichotomy Theorem)
Suppose $n<m$
$\rightarrow n \cdot k<m \cdot k$
$\rightarrow n \cdot k<m \cdot k$ and $m \cdot k<n \cdot k$
\rightarrow Contradiction with Trichotomy Theorem
$\rightarrow \therefore m<n$
(i),(iii),(iv),(v),(vi) Exercise.

2. Construction of Integer Numbers

Let write $\mathbb{N} \times \mathbb{N}$ as follows:

$$
\mathbb{N} \times \mathbb{N}=\left\{\begin{array}{ccccccccc}
(0,0) & (0,1) & (0,2) & (0,3) & (0,4) & \cdots & \cdots & \cdots & \cdots \\
(1,0) & (1,1) & (1,2) & (1,3) & (1,4) & \cdots & \cdots & \cdots & \cdots \\
(2,0) & (2,1) & (2,2) & (2,3) & (2,4) & \cdots & \cdots & \cdots & \cdots \\
(3,0) & (3,1) & (3,2) & (3,3) & (3,4) & \cdots & \cdots & \cdots & \cdots \\
(4,0) & (4,1) & (4,2) & (4,3) & (4,4) & \cdots & \cdots & \cdots & \cdots \\
(5,0) & (5,1) & (5,2) & (5,3) & (5,4) & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & & & \\
\vdots & \vdots & \vdots & \vdots & \vdots & & & \\
\vdots & \vdots & \vdots & \vdots & \vdots & & & &
\end{array}\right\}
$$

Let define a relation on $\mathbb{N} \times \mathbb{N}$ as follows:

$$
(a, b) R^{*}(c, d) \Leftrightarrow a+d=b+c \text {. }
$$

Example 2.2.1. $(1,0) R^{*}(4,3)$ since $1+3=0+4$.

$$
(1,0) R^{*}(6,4) \text { since } 1+4 \neq 0+6 \text {. }
$$

Theorem 2.2.2. The relation R^{*} on $\mathbb{N} \times \mathbb{N}$ is an equivalence relation.
Proof:
(1) Reflexive. For all $(a, b) \in \mathbb{N} \times \mathbb{N}, a+b=a+b$; that is $(a, b) R^{*}(a, b)$.
(2) Symmetric. Let $(a, b),(c, d) \in \mathbb{N} \times \mathbb{N}$ such that $(a, b) R^{*}(c, d)$. To prove that $(c, d) R^{*}(a, b)$.
$\rightarrow a+d=b+c \quad$ (Def. of $\left.R^{*}\right)$
$\rightarrow d+a=c+b \quad$ (Comm. law for +)
$\rightarrow c+b=d+a \quad$ (Equal properties)
$\rightarrow(c, d) R^{*}(a, b) \quad\left(\right.$ Def. of $\left.R^{*}\right)$
(3) Transitive. Let $(a, b),(c, d),(r, s) \in \mathbb{N} \times \mathbb{N}$ such that $(a, b) R^{*}(c, d)$ and $(c, d) R^{*}(r, s)$. To prove $(a, b) R^{*}(r, s)$.
$a+d=b+c \quad\left(\right.$ Since $\left.(a, b) R^{*}(a, b)\right)$
$c+s=d+r \quad \quad$ (Since $(c, d) R^{*}(r, s)$)
$\rightarrow(a+d)+s=(b+c)+s \quad$ (Add s to both side of (1))

$$
\begin{equation*}
=b+(c+s) \quad \text { (Cancellations low and asso. law for }+) \tag{2}
\end{equation*}
$$

$=b+(c+s) \quad$ (Cancellations low and asso. law for +)
$\rightarrow(a+d)+s=b+(c+s) \quad$ (Sub.(2) in (3))

$$
=b+(d+r)
$$

$\rightarrow a+(d+s)=b+(r+d)$ (Asso. law and comm. law for +)
$\rightarrow a+(s+d)=b+(r+d) \quad$ (Comm. law for +)
$\rightarrow(a+s)+d=(b+r)+d \quad$ (Asso.law for +)
$\rightarrow(a+s)=(b+r)$
(Cancellation low for +)
$\rightarrow(a, b) R^{*}(r, s)$
(Def. of R^{*})

Remark 2.2.3.

(i) The equivalence class of each $(a, b) \in \mathbb{N} \times \mathbb{N}$ is as follows:

$$
[(a, b)]=[a, b]=\{(r, s) \in \mathbb{N} \times \mathbb{N} \mid a+s=b+r\}
$$

$$
\begin{aligned}
{[1,0] } & =\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid 1+y=0+x\} \\
& =\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x=1+y\} \\
& =\{(y+1, y) \mid y \in \mathbb{N}\} \\
& =\{(1,0),(2,1),(3,2), \ldots\} . \\
{[0,0] } & =\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid 0+y=0+x\} \\
& =\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x=y\} \\
& =\{(x, x) \mid x \in \mathbb{N}\} \\
& =\{(0,0),(1,1),(2,2), \ldots\} .
\end{aligned}
$$

(ii) $[a, b]=\{(a, b),(a+1, b+1),(a+2, b+2), \ldots\}$.
(iii) These classes $[(a, b)]$ formed a partition on $\mathbb{N} \times \mathbb{N}$.

Theorem 2.2.4. For all $(x, y) \in \mathbb{N} \times \mathbb{N}$, one of the following hold:
(i) $[x, y]=[0,0]$, if $x=y$.
(ii) $[x, y]=[z, 0]$, for some $z \in \mathbb{N}$, if $y<x$.
(iii) $[x, y]=[0, z]$, for some $z \in \mathbb{N}$, if $x<y$.

Proof:

Let $(x, y) \in \mathbb{N} \times \mathbb{N}$. Then by Trichotomy Theorem, there are three possibilities. (1) $x=y$,

$$
\begin{array}{ll}
\rightarrow 0+y=0+x & \text { Def. of }+ \\
\rightarrow(0,0) R^{*}(x, y) & \text { Def. of } R^{*} \\
\rightarrow[0,0]=[x, y] & \text { Def. of }[a, b] \\
\mathbf{(2)} x<y, & \text { Def. of }< \\
\rightarrow y=x+z \text { for some } z \in \mathbb{N} & \text { Def. of }+ \\
\rightarrow x+z=y+0 & \text { Def. of } R^{*} \\
\rightarrow(x, y) R^{*}(0, z) \rightarrow(0, z) R^{*}(x, y) & \text { Def. of }[a, b] \\
\rightarrow[0, z]=[x, y] & \\
\mathbf{(3) y < x} \boldsymbol{\rightarrow} x=y+z \text { for some } z \in \mathbb{N} & \text { Def. of }< \\
\rightarrow x+0=y+z & \text { Def. of }+ \\
\rightarrow(x, y) R^{*}(z, 0) \rightarrow(z, 0) R^{*}(x, y) & \text { Def. of } R^{*} \\
\rightarrow[z, 0]=[x, y] & \text { Def. of }[a, b]
\end{array}
$$

2.2.5. Constriction of Integer Numbers \mathbb{Z}

The set of integer numbers, \mathbb{Z} will be defined as follows:

$$
\mathbb{Z}=\bigcup_{(a, b) \in \mathbb{N} \times \mathbb{N}}[(a, b)]=\bigcup_{a(\neq 0) \in \mathbb{N}}[(a, 0)] \bigcup_{b(\neq 0) \in \mathbb{N}}[(0, b)] \bigcup[(0,0)] .
$$

2.2.6. Addition, Subtraction and Multiplication on \mathbb{Z}

Addition: $\oplus: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$;
$[r, s] \oplus[t, u]=[r+t, s+u]$
Subtraction: $\ominus: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$;

$$
[r, s] \ominus[t, u]=[r, s] \oplus[u, t]=[r+u, s+t]
$$

Multiplication: $\odot: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$;

$$
[r, s] \odot[t, u]=[r \cdot t+s \cdot u, r \cdot u+s \cdot t]
$$

Theorem 2.2.7. The relations \oplus, \ominus and \odot are well defined; that is, \oplus, \ominus and \odot are functions.

Proof:

To prove \oplus is function. Assume that $[r, s]=\left[r_{0}, s_{0}\right]$ and $[t, u]=\left[t_{0}, u_{0}\right]$.
$[r, s] \oplus[t, u]=[r+t, s+u]$
$\left[r_{0}, s_{0}\right] \oplus\left[t_{0}, u_{0}\right]=\left[r_{0}+t_{0}, s_{0}+u_{0}\right]$
To prove $[r+t, s+u]=\left[r_{0}+t_{0}, s_{0}+u_{0}\right]$.
$\rightarrow(r, s) R^{*}\left(r_{0}, s_{0}\right) \quad[r, s]=\left[r_{0}, s_{0}\right]$ and Def. of R^{*}
$\rightarrow r+s_{0}=s+r_{0} \quad \ldots . .(1)$
$\rightarrow(t, u) R^{*}\left(t_{0}, u_{0}\right) \quad[r, s]=\left[r_{0}, s_{0}\right]$ and Def. of R^{*}
$\rightarrow t+u_{0}=u+t_{0}$
$\rightarrow\left(r+s_{0}\right)+\left(t+u_{0}\right)=\left(s+r_{0}\right)+\left(u+t_{0}\right) \quad$ Adding (1), (2)
$\rightarrow(r+t)+\left(s_{0}+u_{0}\right)=(s+u)+\left(r_{0}+t_{0}\right)$ Asso. and comm. for +
$\rightarrow(r+t, s+u) R^{*}\left(r_{0}+t_{0}, s_{0}+u_{0}\right) \quad$ Def. of R^{*}
$\rightarrow[r+t, s+u]=\left[r_{0}+t_{0}, s_{0}+u_{0}\right] \quad$ Def. of $[a, b]$

\ominus and $\odot($ Exercise $)$

Example 2.2.8.

$[2,4] \oplus[0,1]=[2+0,4+1]=[2,5]=[0,3]$.
$[5,2] \oplus[8,1]=[5+8,2+1]=[13,3]=[10,0]$.

Notation 2.2.9.

(i) Let identify the equivalence classes $[r, s]$ according to its form as in Theorem 2.2.3.
$[a, 0]=+a, a \in \mathbb{N}$, called positive integer.
$[0, b]=-b, b \in \mathbb{N}$, called negative integer.
$[0,0]=0, \quad$ called the zero element.
$[4,6]=[0,2]=-2$
$[9,6]=[3,0]=3$
$[6,6]=[0,0]=0$
(ii) The relation $i: \mathbb{N} \rightarrow \mathbb{Z}$, defined by $i(n)=[n, 0]$ is $1-1$ function, and
$i(n+m)=i(n) \oplus i(m), i(n \cdot m)=i(n) \odot i(m)$. So, we can identify n with $+n$; that is, $+n=n,+=\oplus$ and $==\odot$.

Theorem 2.2.10.

(i) $a \in \mathbb{Z}$ is positive if there exist $[x, y] \in \mathbb{Z}$ such that $a=[x, y]$ and $y<x$.
(ii) $b \in \mathbb{Z}$ is negative if there exist $[x, y] \in \mathbb{Z}$ such that $b=[x, y]$ and $x<y$.
(iii) For each element $[x, y] \in \mathbb{Z},[y, x] \in \mathbb{Z}$ is the unique element such that

$$
[x, y]+[y, x]=0 . \text { Denote }[\boldsymbol{y}, \boldsymbol{x}] \text { by }-[\boldsymbol{x}, \boldsymbol{y}] .
$$

(iv) $(-m) \odot n=-(m \cdot n), \forall n, m \in \mathbb{Z}$.
(v) $m \odot(-n)=-(m \cdot n), \forall n, m \in \mathbb{Z}$.
(vi) $(-m) \odot(-n)=m \cdot n, \forall n, m \in \mathbb{Z}$.
(vii) (Commutative property of +): $n+m=m+n, \forall n, m \in \mathbb{Z}$.
(viii) (Associative property of +): $(n+m)+c=n+(m+c), \forall n, m, c \in \mathbb{Z}$.
(ix) (Commutative property of $\cdot): n \cdot m=m \cdot n, \forall n, m \in \mathbb{Z}$.
(x) (Associative property of $\cdot): \quad(n \cdot m) \cdot c=n \cdot(m \cdot c), \forall n, m, c \in \mathbb{Z}$.
(xi) (Cancellation Law for +): $m+c=n+c$, for some $c \in \mathbb{Z} \Leftrightarrow m=n$.
(xii) (CancellationLaw for \cdot): $m \cdot c=n \cdot c$, for some $c(\neq 0) \in \mathbb{Z} \Leftrightarrow m=n$.
(xiii) 0 is the unique element such that $0+m=m+0=m, \forall m \in \mathbb{Z}$.
(xiv) 1 is the unique element such that $1 \cdot m=m \cdot 1=m, \forall m \in \mathbb{Z}$.
(xv) Let $a, b, c \in \mathbb{Z}$. Then $c=a-b \Leftrightarrow a=c+b$.
(xvi) $-(-b)=b, \forall b \in \mathbb{Z}$.

Proof: Exercise.

Remark 2.2.11.

For each element $a=[x, y] \in \mathbb{Z}$, the unique element in Theorem 2.2.8(xiv) is $-a=[y, x]$.

Definition 2.2.12. (\mathbb{Z} as an Ordered)

Let $[r, s],[t, u] \in \mathbb{Z}$. We say that $[r, s]$ less than $[t, u]$ and denoted by

$$
[r, s]<[t, u] \Leftrightarrow r+u<s+t .
$$

This is well defined and agrees with the ordering on \mathbb{N}.
Theorem 2.2.13.(Trichotomy For $\mathbb{Z})$ (Well Ordering)
For each $[r, s],[t, u] \in \mathbb{Z}$ one and only one of the following is true:
(1) $[r, s]<[t, u]$ or (2) $[t, u]<[r, s]$ or (3) $[r, s]=[t, u]$.

Proof:

Since $r+u, t+s \in \mathbb{N}$, so by Trichotomy Theorem for \mathbb{N}, one and only one of the following is true:
(1) $r+u<s+t \rightarrow[r, s]<[t, u]$
(2) $s+t<r+u \rightarrow[t, u]<[r, s]$
(3) $r+u=s+t \rightarrow(r, s) R^{*}(t, u) \rightarrow[r, s]=[t, u]$.

Theorem 2.2.14.
For each $[r, s] \in \mathbb{Z},[r, s]<[0,0] \Leftrightarrow r<s$.
Proof:

$$
[r, s]<[0,0] \Leftrightarrow r+0<s+0 \Leftrightarrow r<s .
$$

Remark 2.2.15.

According to Theorem 2.2.11 and Notation 2.2.7(i), for all $[r, s] \in \mathbb{Z}$

$$
\begin{aligned}
{[r, s]<[0,0] } & \Leftrightarrow r<s \Leftrightarrow[r, r+l] \in \mathbb{Z}, \text { where } s=r+l \text { for some } l \\
& \Leftrightarrow[0, l]<[0,0] \\
& \Leftrightarrow-l<0 .
\end{aligned}
$$

