
12 Binary Search Trees

The search tree data structure supports each of the dynamic-set

operations listed on page 250: SEARCH, MINIMUM, MAXIMUM,

PREDECESSOR, SUCCESSOR, INSERT, and DELETE. Thus, you

can use a search tree both as a dictionary and as a priority queue.

Basic operations on a binary search tree take time proportional to

the height of the tree. For a complete binary tree with n nodes, such

operations run in Θ(lg n) worst-case time. If the tree is a linear chain of

n nodes, however, the same operations take Θ(n) worst-case time. In

Chapter 13, we’ll see a variation of binary search trees, red-black trees,

whose operations guarantee a height of O(lg n). We won’t prove it here,

but if you build a binary search tree on a random set of n keys, its

expected height is O(lg n) even if you don’t try to limit its height.

After presenting the basic properties of binary search trees, the

following sections show how to walk a binary search tree to print its

values in sorted order, how to search for a value in a binary search tree,

how to find the minimum or maximum element, how to find the

predecessor or successor of an element, and how to insert into or delete

from a binary search tree. The basic mathematical properties of trees

appear in Appendix B.

12.1 What is a binary search tree?

A binary search tree is organized, as the name suggests, in a binary tree,

as shown in Figure 12.1. You can represent such a tree with a linked

data structure, as in Section 10.3. In addition to a key and satellite data,

each node object contains attributes left, right, and p that point to the

nodes corresponding to its left child, its right child, and its parent,

respectively. If a child or the parent is missing, the appropriate attribute

contains the value NIL. The tree itself has an attribute root that points

to the root node, or NIL if the tree is empty. The root node T.root is the

only node in a tree T whose parent is NIL.

Figure 12.1 Binary search trees. For any node x, the keys in the left subtree of x are at most

x.key, and the keys in the right subtree of x are at least x.key. Different binary search trees can

represent the same set of values. The worst-case running time for most search-tree operations is

proportional to the height of the tree. (a) A binary search tree on 6 nodes with height 2. The top

figure shows how to view the tree conceptually, and the bottom figure shows the left, right, and p

attributes in each node, in the style of Figure 10.6 on page 266. (b) A less efficient binary search

tree, with height 4, that contains the same keys.

The keys in a binary search tree are always stored in such a way as to

satisfy the binary-search-tree property:

Let x be a node in a binary search tree. If y is a node in the left

subtree of x, then y.key ≤ x.key. If y is a node in the right

subtree of x, then y.key ≥ x.key.

Thus, in Figure 12.1(a), the key of the root is 6, the keys 2, 5, and 5

in its left subtree are no larger than 6, and the keys 7 and 8 in its right

subtree are no smaller than 6. The same property holds for every node

in the tree. For example, looking at the root’s left child as the root of a

subtree, this subtree root has the key 5, the key 2 in its left subtree is no

larger than 5, and the key 5 in its right subtree is no smaller than 5.

Because of the binary-search-tree property, you can print out all the

keys in a binary search tree in sorted order by a simple recursive

algorithm, called an inorder tree walk, given by the procedure

INORDER-TREE-WALK. This algorithm is so named because it

prints the key of the root of a subtree between printing the values in its

left subtree and printing those in its right subtree. (Similarly, a preorder

tree walk prints the root before the values in either subtree, and a

postorder tree walk prints the root after the values in its subtrees.) To

print all the elements in a binary search tree T, call INORDER-TREE-

WALK(T.root). For example, the inorder tree walk prints the keys in

each of the two binary search trees from Figure 12.1 in the order 2, 5, 5,

6, 7, 8. The correctness of the algorithm follows by induction directly

from the binary-search-tree property.

INORDER-TREE-WALK(x)

1 if x ≠ NIL

2 INORDER-TREE-WALK(x.left)

3 print x.key

4 INORDER-TREE-WALK(x.right)

It takes Θ(n) time to walk an n-node binary search tree, since after

the initial call, the procedure calls itself recursively exactly twice for

each node in the tree—once for its left child and once for its right child.

The following theorem gives a formal proof that it takes linear time to

perform an inorder tree walk.

Theorem 12.1

If x is the root of an n-node subtree, then the call INORDER-TREE-

WALK(x) takes Θ(n) time.

Proof Let T(n) denote the time taken by INORDER-TREE-WALK

when it is called on the root of an n-node subtree. Since INORDER-

TREE-WALK visits all n nodes of the subtree, we have T(n) = Ω(n). It

remains to show that T(n) = O(n).

Since INORDER-TREE-WALK takes a small, constant amount of

time on an empty subtree (for the test x ≠ NIL), we have T(0) = c for

some constant c > 0.

For n > 0, suppose that INORDER-TREE-WALK is called on a

node x whose left subtree has k nodes and whose right subtree has n − k

− 1 nodes. The time to perform INORDER-TREE-WALK(x) is

bounded by T(n) ≤ T(k) + T(n − k − 1) + d for some constant d > 0 that

reflects an upper bound on the time to execute the body of INORDER-

TREE-WALK(x), exclusive of the time spent in recursive calls.

We use the substitution method to show that T(n) = O(n) by proving

that T(n) ≤ (c + d)n + c. For n = 0, we have (c + d) · 0 + c = c = T(0). For

n > 0, we have

T(n) ≤ T(k) + T(n − k − 1) + d

≤ ((c + d)k + c) + ((c + d)(n − k − 1) + c) + d

= (c + d)n + c − (c + d) + c + d

= (c + d)n + c,

which completes the proof.

▪

Exercises

12.1-1

For the set {1, 4, 5, 10, 16, 17, 21} of keys, draw binary search trees of

heights 2, 3, 4, 5, and 6.

12.1-2

What is the difference between the binary-search-tree property and the

min-heap property on page 163? Can the min-heap property be used to

print out the keys of an n-node tree in sorted order in O(n) time? Show

how, or explain why not.

12.1-3

Give a nonrecursive algorithm that performs an inorder tree walk.

(Hint: An easy solution uses a stack as an auxiliary data structure. A

more complicated, but elegant, solution uses no stack but assumes that

you can test two pointers for equality.)

12.1-4

Give recursive algorithms that perform preorder and postorder tree

walks in Θ(n) time on a tree of n nodes.

12.1-5

Argue that since sorting n elements takes Ω(n lg n) time in the worst case

in the comparison model, any comparison-based algorithm for

constructing a binary search tree from an arbitrary list of n elements

takes Ω(n lg n) time in the worst case.

12.2 Querying a binary search tree

Binary search trees can support the queries MINIMUM, MAXIMUM,

SUCCESSOR, and PREDECESSOR, as well as SEARCH. This

section examines these operations and shows how to support each one

in O(h) time on any binary search tree of height h.

Searching

To search for a node with a given key in a binary search tree, call the

TREE-SEARCH procedure. Given a pointer x to the root of a subtree

and a key k, TREE-SEARCH(x, k) returns a pointer to a node with key

k if one exists in the subtree; otherwise, it returns NIL. To search for key

k in the entire binary search tree T, call TREE-SEARCH(T.root, k).

TREE-SEARCH(x, k)

1 if x == NIL or k == x.key

2 return x

3 if k < x.key

4 return TREE-SEARCH(x.left, k)

5 else return TREE-SEARCH(x.right, k)

ITERATIVE-TREE-SEARCH(x, k)

1 while x ≠ NIL and k ≠ x.key

2 if k < x.key

3 x = x.left

4 else x = x.right

5 return x

The TREE-SEARCH procedure begins its search at the root and

traces a simple path downward in the tree, as shown in Figure 12.2(a).

For each node x it encounters, it compares the key k with x.key. If the

two keys are equal, the search terminates. If k is smaller than x.key, the

search continues in the left subtree of x, since the binary-search-tree

property implies that k cannot reside in the right subtree. Symmetrically,

if k is larger than x.key, the search continues in the right subtree. The

nodes encountered during the recursion form a simple path downward

from the root of the tree, and thus the running time of TREE-SEARCH

is O(h), where h is the height of the tree.

Figure 12.2 Queries on a binary search tree. Nodes and paths followed in each query are colored

blue. (a) A search for the key 13 in the tree follows the path 15 → 6 → 7 → 13 from the root. (b)

The minimum key in the tree is 2, which is found by following left pointers from the root. The

maximum key 20 is found by following right pointers from the root. (c) The successor of the

node with key 15 is the node with key 17, since it is the minimum key in the right subtree of 15.

(d) The node with key 13 has no right subtree, and thus its successor is its lowest ancestor whose

left child is also an ancestor. In this case, the node with key 15 is its successor.

Since the TREE-SEARCH procedure recurses on either the left

subtree or the right subtree, but not both, we can rewrite the algorithm

to “unroll” the recursion into a while loop. On most computers, the

ITERATIVE-TREE-SEARCH procedure on the facing page is more

efficient.

Minimum and maximum

To find an element in a binary search tree whose key is a minimum, just

follow left child pointers from the root until you encounter a NIL, as

shown in Figure 12.2(b). The TREE-MINIMUM procedure returns a

pointer to the minimum element in the subtree rooted at a given node x,

which we assume to be non-NIL.

TREE-MINIMUM(x)

1while x.left ≠ NIL

2 x = x.left

3return x

TREE-MAXIMUM(x)

1while x.right ≠ NIL

2 x = x.right

3return x

The binary-search-tree property guarantees that TREE-MINIMUM

is correct. If node x has no left subtree, then since every key in the right

subtree of x is at least as large as x.key, the minimum key in the subtree

rooted at x is x.key. If node x has a left subtree, then since no key in the

right subtree is smaller than x.key and every key in the left subtree is not

larger than x.key, the minimum key in the subtree rooted at x resides in

the subtree rooted at x.left.

The pseudocode for TREE-MAXIMUM is symmetric. Both TREE-

MINIMUM and TREE-MAXIMUM run in O(h) time on a tree of

height h since, as in TREE-SEARCH, the sequence of nodes

encountered forms a simple path downward from the root.

Successor and predecessor

Given a node in a binary search tree, how can you find its successor in

the sorted order determined by an inorder tree walk? If all keys are

distinct, the successor of a node x is the node with the smallest key

greater than x.key. Regardless of whether the keys are distinct, we define

the successor of a node as the next node visited in an inorder tree walk.

The structure of a binary search tree allows you to determine the

successor of a node without comparing keys. The TREE-SUCCESSOR

procedure on the facing page returns the successor of a node x in a

binary search tree if it exists, or NIL if x is the last node that would be

visited during an inorder walk.

The code for TREE-SUCCESSOR has two cases. If the right subtree

of node x is nonempty, then the successor of x is just the leftmost node

in x’s right subtree, which line 2 finds by calling TREE-

MINIMUM(x.right). For example, the successor of the node with key

15 in Figure 12.2(c) is the node with key 17.

On the other hand, as Exercise 12.2-6 asks you to show, if the right

subtree of node x is empty and x has a successor y, then y is the lowest

ancestor of x whose left child is also an ancestor of x. In Figure 12.2(d),

the successor of the node with key 13 is the node with key 15. To find y,

go up the tree from x until you encounter either the root or a node that

is the left child of its parent. Lines 4–8 of TREE-SUCCESSOR handle

this case.

TREE-SUCCESSOR(x)

1 if x.right ≠ NIL

2 return TREE-MINIMUM(x.right) // leftmost node in right

subtree

3 else // find the lowest ancestor of x whose left child is an ancestor of

x

4 y = x.p

5 while y ≠ NIL and x == y.right

6 x = y

7 y = y.p

8 return y

The running time of TREE-SUCCESSOR on a tree of height h is

O(h), since it either follows a simple path up the tree or follows a simple

path down the tree. The procedure TREE-PREDECESSOR, which is

symmetric to TREE-SUCCESSOR, also runs in O(h) time.

In summary, we have proved the following theorem.

Theorem 12.2

The dynamic-set operations SEARCH, MINIMUM, MAXIMUM,

SUCCESSOR, and PREDECESSOR can be implemented so that each

one runs in O(h) time on a binary search tree of height h.

▪

Exercises

12.2-1

You are searching for the number 363 in a binary search tree containing

numbers between 1 and 1000. Which of the following sequences cannot

be the sequence of nodes examined?

a. 2, 252, 401, 398, 330, 344, 397, 363.

b. 924, 220, 911, 244, 898, 258, 362, 363.

c. 925, 202, 911, 240, 912, 245, 363.

d. 2, 399, 387, 219, 266, 382, 381, 278, 363.

e. 935, 278, 347, 621, 299, 392, 358, 363.

12.2-2

Write recursive versions of TREE-MINIMUM and TREE-

MAXIMUM.

12.2-3

Write the TREE-PREDECESSOR procedure.

12.2-4

Professor Kilmer claims to have discovered a remarkable property of

binary search trees. Suppose that the search for key k in a binary search

tree ends up at a leaf. Consider three sets: A, the keys to the left of the

search path; B, the keys on the search path; and C, the keys to the right

of the search path. Professor Kilmer claims that any three keys a ∈ A, b

∈ B, and c ∈ C must satisfy a ≤ b ≤ c. Give a smallest possible

counterexample to the professor’s claim.

12.2-5

Show that if a node in a binary search tree has two children, then its

successor has no left child and its predecessor has no right child.

12.2-6

Consider a binary search tree T whose keys are distinct. Show that if the

right subtree of a node x in T is empty and x has a successor y, then y is

the lowest ancestor of x whose left child is also an ancestor of x. (Recall

that every node is its own ancestor.)

12.2-7

An alternative method of performing an inorder tree walk of an n-node

binary search tree finds the minimum element in the tree by calling

TREE-MINIMUM and then making n − 1 calls to TREE-

SUCCESSOR. Prove that this algorithm runs in Θ(n) time.

12.2-8

Prove that no matter what node you start at in a height-h binary search

tree, k successive calls to TREE-SUCCESSOR take O(k + h) time.

12.2-9

Let T be a binary search tree whose keys are distinct, let x be a leaf

node, and let y be its parent. Show that y.key is either the smallest key in

T larger than x.key or the largest key in T smaller than x.key.

12.3 Insertion and deletion

The operations of insertion and deletion cause the dynamic set

represented by a binary search tree to change. The data structure must

be modified to reflect this change, but in such a way that the binary-

search-tree property continues to hold. We’ll see that modifying the tree

to insert a new element is relatively straightforward, but deleting a node

from a binary search tree is more complicated.

Insertion

The TREE-INSERT procedure inserts a new node into a binary search

tree. The procedure takes a binary search tree T and a node z for which

z.key has already been filled in, z.left = NIL, and z.right = NIL. It

modifies T and some of the attributes of z so as to insert z into an

appropriate position in the tree.

TREE-INSERT(T, z)

 1x = T.root // node being compared with z

 2y = NIL // y will be parent of z

 3while x ≠ NIL // descend until reaching a leaf

 4 y = x

 5 if z.key < x.key

 6 x = x.left

 7 else x = x.right

 8z.p = y // found the location—insert z with parent y

 9 if y == NIL

10 T.root = z // tree T was empty

11elseif z.key < y.key

12 y.left = z

13else y.right = z

Figure 12.3 shows how TREE-INSERT works. Just like the

procedures TREE-SEARCH and ITERATIVE-TREE-SEARCH,

TREE-INSERT begins at the root of the tree and the pointer x traces a

simple path downward looking for a NIL to replace with the input node

z. The procedure maintains the trailing pointer y as the parent of x.

After initialization, the while loop in lines 3–7 causes these two pointers

to move down the tree, going left or right depending on the comparison

of z.key with x.key, until x becomes NIL. This NIL occupies the

position where node z will go. More precisely, this NIL is a left or right

attribute of the node that will become z’s parent, or it is T.root if tree T

is currently empty. The procedure needs the trailing pointer y, because

by the time it finds the NIL where z belongs, the search has proceeded

one step beyond the node that needs to be changed. Lines 8–13 set the

pointers that cause z to be inserted.

Figure 12.3 Inserting a node with key 13 into a binary search tree. The simple path from the root

down to the position where the node is inserted is shown in blue. The new node and the link to

its parent are highlighted in orange.

Like the other primitive operations on search trees, the procedure

TREE-INSERT runs in O(h) time on a tree of height h.

Deletion

The overall strategy for deleting a node z from a binary search tree T

has three basic cases and, as we’ll see, one of the cases is a bit tricky.

If z has no children, then simply remove it by modifying its parent

to replace z with NIL as its child.

If z has just one child, then elevate that child to take z’s position

in the tree by modifying z’s parent to replace z by z’s child.

If z has two children, find z’s successor y—which must belong to

z’s right subtree—and move y to take z’s position in the tree. The

rest of z’s original right subtree becomes y’s new right subtree, and

z’s left subtree becomes y’s new left subtree. Because y is z’s

successor, it cannot have a left child, and y’s original right child

moves into y’s original position, with the rest of y’s original right

subtree following automatically. This case is the tricky one

because, as we’ll see, it matters whether y is z’s right child.

The procedure for deleting a given node z from a binary search tree

T takes as arguments pointers to T and z. It organizes its cases a bit

differently from the three cases outlined previously by considering the

four cases shown in Figure 12.4.

Figure 12.4 Deleting a node z, in blue, from a binary search tree. Node z may be the root, a left

child of node q, or a right child of q. The node that will replace node z in its position in the tree

is colored orange. (a) Node z has no left child. Replace z by its right child r, which may or may

not be NIL. (b) Node z has a left child l but no right child. Replace z by l. (c) Node z has two

children. Its left child is node l, its right child is its successor y (which has no left child), and y’s

right child is node x. Replace z by y, updating y’s left child to become l, but leaving x as y’s right

child. (d) Node z has two children (left child l and right child r), and its successor y ≠ r lies

within the subtree rooted at r. First replace y by its own right child x, and set y to be r’s parent.

Then set y to be q’s child and the parent of l.

If z has no left child, then as in part (a) of the figure, replace z by

its right child, which may or may not be NIL. When z’s right child

is NIL, this case deals with the situation in which z has no

children. When z’s right child is non-NIL, this case handles the

situation in which z has just one child, which is its right child.

Otherwise, if z has just one child, then that child is a left child. As

in part (b) of the figure, replace z by its left child.

Otherwise, z has both a left and a right child. Find z’s successor y,

which lies in z’s right subtree and has no left child (see Exercise

12.2-5). Splice node y out of its current location and replace z by y

in the tree. How to do so depends on whether y is z’s right child:

If y is z’s right child, then as in part (c) of the figure, replace

z by y, leaving y’s right child alone.

Otherwise, y lies within z’s right subtree but is not z’s right

child. In this case, as in part (d) of the figure, first replace y

by its own right child, and then replace z by y.

As part of the process of deleting a node, subtrees need to move

around within the binary search tree. The subroutine TRANSPLANT

replaces one subtree as a child of its parent with another subtree. When

TRANSPLANT replaces the subtree rooted at node u with the subtree

rooted at node v, node u’s parent becomes node v’s parent, and u’s

parent ends up having v as its appropriate child. TRANSPLANT allows

v to be NIL instead of a pointer to a node.

TRANSPLANT(T, u, v)

1 if u.p == NIL

2 T.root = v

3 elseif u == u.p.left

4 u.p.left = v

5 else u.p.right = v

6 if v ≠ NIL

7 v.p = u.p

Here is how TRANSPLANT works. Lines 1–2 handle the case in

which u is the root of T. Otherwise, u is either a left child or a right child

of its parent. Lines 3–4 take care of updating u.p.left if u is a left child,

and line 5 updates u.p.right if u is a right child. Because v may be NIL,

lines 6–7 update v.p only if v is non-NIL. The procedure

TRANSPLANT does not attempt to update v.left and v.right. Doing so,

or not doing so, is the responsibility of TRANSPLANT’s caller.

The procedure TREE-DELETE on the facing page uses

TRANSPLANT to delete node z from binary search tree T. It executes

the four cases as follows. Lines 1–2 handle the case in which node z has

no left child (Figure 12.4(a)), and lines 3–4 handle the case in which z

has a left child but no right child (Figure 12.4(b)). Lines 5–12 deal with

the remaining two cases, in which z has two children. Line 5 finds node

y, which is the successor of z. Because z has a nonempty right subtree,

its successor must be the node in that subtree with the smallest key;

hence the call to TREE-MINIMUM(z.right). As we noted before, y has

no left child. The procedure needs to splice y out of its current location

and replace z by y in the tree. If y is z’s right child (Figure 12.4(c)), then

lines 10–12 replace z as a child of its parent by y and replace y’s left

child by z’s left child. Node y retains its right child (x in Figure 12.4(c)),

and so no change to y.right needs to occur. If y is not z’s right child

(Figure 12.4(d)), then two nodes have to move. Lines 7–9 replace y as a

child of its parent by y’s right child (x in Figure 12.4(c)) and make z’s

right child (r in the figure) become y’s right child instead. Finally, lines

10–12 replace z as a child of its parent by y and replace y’s left child by

z’s left child.

TREE-DELETE(T, z)

 1 if z.left == NIL

 2 TRANSPLANT(T, z, z.right) // replace z by its right child

 3elseif z.right == NIL

 4 TRANSPLANT(T, z, z.left) // replace z by its left child

 5else y = TREE-MINIMUM(z.right) // y is z’s successor

 6 if y ≠ z.right // is y farther down the tree?

 7 TRANSPLANT(T, y, y.right) // replace y by its right child

 8 y.right = z.right // z’s right child becomes

 9 y.right.p = y // y’s right child

10 TRANSPLANT(T, z, y) // replace z by its successor y

11 y.left = z.left // and give z’s left child to y,

12 y.left.p = y // which had no left child

Each line of TREE-DELETE, including the calls to

TRANSPLANT, takes constant time, except for the call to TREE-

MINIMUM in line 5. Thus, TREE-DELETE runs in O(h) time on a

tree of height h.

In summary, we have proved the following theorem.

Theorem 12.3

The dynamic-set operations INSERT and DELETE can be

implemented so that each one runs in O(h) time on a binary search tree

of height h.

▪

Exercises

12.3-1

Give a recursive version of the TREE-INSERT procedure.

12.3-2

Suppose that you construct a binary search tree by repeatedly inserting

distinct values into the tree. Argue that the number of nodes examined

in searching for a value in the tree is 1 plus the number of nodes

examined when the value was first inserted into the tree.

12.3-3

You can sort a given set of n numbers by first building a binary search

tree containing these numbers (using TREE-INSERT repeatedly to

insert the numbers one by one) and then printing the numbers by an

inorder tree walk. What are the worst-case and best-case running times

for this sorting algorithm?

12.3-4

When TREE-DELETE calls TRANSPLANT, under what

circumstances can the parameter v of TRANSPLANT be NIL?

12.3-5

Is the operation of deletion “commutative” in the sense that deleting x

and then y from a binary search tree leaves the same tree as deleting y

and then x? Argue why it is or give a counterexample.

12.3-6

Suppose that instead of each node x keeping the attribute x.p, pointing

to x’s parent, it keeps x.succ, pointing to x’s successor. Give pseudocode

for TREE-SEARCH, TREE-INSERT, and TREE-DELETE on a

binary search tree T using this representation. These procedures should

operate in O(h) time, where h is the height of the tree T. You may

assume that all keys in the binary search tree are distinct. (Hint: You

might wish to implement a subroutine that returns the parent of a

node.)

12.3-7

When node z in TREE-DELETE has two children, you can choose

node y to be its predecessor rather than its successor. What other

changes to TREE-DELETE are necessary if you do so? Some have

argued that a fair strategy, giving equal priority to predecessor and

successor, yields better empirical performance. How might TREE-

DELETE be minimally changed to implement such a fair strategy?

Problems

12-1 Binary search trees with equal keys

Equal keys pose a problem for the implementation of binary search

trees.

a. What is the asymptotic performance of TREE-INSERT when used to

insert n items with identical keys into an initially empty binary search

tree?

Consider changing TREE-INSERT to test whether z.key = x.key before

line 5 and to test whether z.key = y.key before line 11. If equality holds,

implement one of the following strategies. For each strategy, find the

asymptotic performance of inserting n items with identical keys into an

initially empty binary search tree. (The strategies are described for line

5, which compares the keys of z and x. Substitute y for x to arrive at the

strategies for line 11.)

b. Keep a boolean flag x.b at node x, and set x to either x.left or x.right

based on the value of x.b, which alternates between FALSE and

TRUE each time TREE-INSERT visits x while inserting a node with

the same key as x.

c. Keep a list of nodes with equal keys at x, and insert z into the list.

d. Randomly set x to either x.left or x.right. (Give the worst-case

performance and informally derive the expected running time.)

12-2 Radix trees

Given two strings a = a0a1 … ap and b = b0b1 … bq, where each ai and

each bj belongs to some ordered set of characters, we say that string a is

lexicographically less than string b if either

1. there exists an integer j, where 0 ≤ j ≤ min {p, q}, such that ai = bi

for all i = 0, 1, …, j − 1 and aj < bj, or

2. p < q and ai = bi for all i = 0, 1, …, p.

For example, if a and b are bit strings, then 10100 < 10110 by rule 1

(letting j = 3) and 10100 < 101000 by rule 2. This ordering is similar to

that used in English-language dictionaries.

The radix tree data structure shown in Figure 12.5 (also known as a

trie) stores the bit strings 1011, 10, 011, 100, and 0. When searching for

a key a = a0a1 … ap, go left at a node of depth i if ai = 0 and right if ai

= 1. Let S be a set of distinct bit strings whose lengths sum to n. Show

how to use a radix tree to sort S lexicographically in Θ(n) time. For the

example in Figure 12.5, the output of the sort should be the sequence 0,

011, 10, 100, 1011.

Figure 12.5 A radix tree storing the bit strings 1011, 10, 011, 100, and 0. To determine each

node’s key, traverse the simple path from the root to that node. There is no need, therefore, to

store the keys in the nodes. The keys appear here for illustrative purposes only. Keys

corresponding to blue nodes are not in the tree. Such nodes are present only to establish a path

to other nodes.

12-3 Average node depth in a randomly built binary search tree

A randomly built binary search tree on n keys is a binary search tree

created by starting with an empty tree and inserting the keys in random

order, where each of the n! permutations of the keys is equally likely. In

this problem, you will prove that the average depth of a node in a

randomly built binary search tree with n nodes is O(lg n). The technique

reveals a surprising similarity between the building of a binary search

tree and the execution of RANDOMIZED-QUICKSORT from Section

7.3.

Denote the depth of any node x in tree T by d(x, T). Then the total

path length P(T) of a tree T is the sum, over all nodes x in T, of d(x, T).

a. Argue that the average depth of a node in T is

Thus, you need to show that the expected value of P(T) is O(n lg n).

b. Let TL and TR denote the left and right subtrees of tree T,

respectively. Argue that if T has n nodes, then

P(T) = P(TL) + P(TR) + n − 1.

c. Let P(n) denote the average total path length of a randomly built

binary search tree with n nodes. Show that

d. Show how to rewrite P(n) as

e. Recalling the alternative analysis of the randomized version of

quicksort given in Problem 7-3, conclude that P(n) = O(n lg n).

Each recursive invocation of randomized quicksort chooses a random

pivot element to partition the set of elements being sorted. Each node of

a binary search tree partitions the set of elements that fall into the

subtree rooted at that node.

f. Describe an implementation of quicksort in which the comparisons to

sort a set of elements are exactly the same as the comparisons to insert

the elements into a binary search tree. (The order in which

comparisons are made may differ, but the same comparisons must

occur.)

12-4 Number of different binary trees

Let bn denote the number of different binary trees with n nodes. In this

problem, you will find a formula for bn, as well as an asymptotic

estimate.

a. Show that b0 = 1 and that, for n ≥ 1,

b. Referring to Problem 4-5 on page 121 for the definition of a

generating function, let B(x) be the generating function

Show that B(x) = xB(x)2 + 1, and hence one way to express B(x) in

closed form is

The Taylor expansion of f(x) around the point x = a is given by

where f(k)(x) is the kth derivative of f evaluated at x.

c. Show that

(the nth Catalan number) by using the Taylor expansion of

around x = 0. (If you wish, instead of using the Taylor expansion, you

may use the generalization of the binomial theorem, equation (C.4) on

page 1181, to noninteger exponents n, where for any real number n

and for any integer k, you can interpret to be n(n − 1) … (n − k +

1)/k! if k ≥ 0, and 0 otherwise.)

d. Show that

Chapter notes

Knuth [261] contains a good discussion of simple binary search trees as

well as many variations. Binary search trees seem to have been

independently discovered by a number of people in the late 1950s. Radix

trees are often called “tries,” which comes from the middle letters in the

word retrieval. Knuth [261] also discusses them.

Many texts, including the first two editions of this book, describe a

somewhat simpler method of deleting a node from a binary search tree

when both of its children are present. Instead of replacing node z by its

successor y, delete node y but copy its key and satellite data into node z.

The downside of this approach is that the node actually deleted might

not be the node passed to the delete procedure. If other components of

a program maintain pointers to nodes in the tree, they could mistakenly

end up with “stale” pointers to nodes that have been deleted. Although

the deletion method presented in this edition of this book is a bit more

complicated, it guarantees that a call to delete node z deletes node z and

only node z.

Section 14.5 will show how to construct an optimal binary search

tree when you know the search frequencies before constructing the tree.

That is, given the frequencies of searching for each key and the

frequencies of searching for values that fall between keys in the tree, a

set of searches in the constructed binary search tree examines the

minimum number of nodes.

	III Data Structures
	12 Binary Search Trees
	12.1 What is a binary search tree?
	12.2 Querying a binary search tree
	12.3 Insertion and deletion

