
18 B-Trees

B-trees are balanced search trees designed to work well on disk drives or

other direct-access secondary storage devices. B-trees are similar to red-

black trees (Chapter 13), but they are better at minimizing the number

of operations that access disks. (We often say just “disk” instead of

“disk drive.”) Many database systems use B-trees, or variants of B-trees,

to store information.

B-trees differ from red-black trees in that B-tree nodes may have

many children, from a few to thousands. That is, the “branching factor”

of a B-tree can be quite large, although it usually depends on

characteristics of the disk drive used. B-trees are similar to red-black

trees in that every n-node B-tree has height O(lg n), so that B-trees can

implement many dynamic-set operations in O(lg n) time. But a B-tree

has a larger branching factor than a red-black tree, so the base of the

logarithm that expresses its height is larger, and hence its height can be

considerably lower.

B-trees generalize binary search trees in a natural manner. Figure

18.1 shows a simple B-tree. If an internal B-tree node x contains x.n

keys, then x has x.n + 1 children. The keys in node x serve as dividing

points separating the range of keys handled by x into x.n + 1 subranges,

each handled by one child of x. A search for a key in a B-tree makes an

(x.n + 1)-way decision based on comparisons with the x.n keys stored at

node x. An internal node contains pointers to its children, but a leaf

node does not.

Section 18.1 gives a precise definition of B-trees and proves that the

height of a B-tree grows only logarithmically with the number of nodes

it contains. Section 18.2 describes how to search for a key and insert a

key into a B-tree, and Section 18.3 discusses deletion. Before

proceeding, however, we need to ask why we evaluate data structures

designed to work on a disk drive differently from data structures

designed to work in main random-access memory.

Figure 18.1 A B-tree whose keys are the consonants of English. An internal node x containing

x.n keys has x.n + 1 children. All leaves are at the same depth in the tree. The blue nodes are

examined in a search for the letter R.

Data structures on secondary storage

Computer systems take advantage of various technologies that provide

memory capacity. The main memory of a computer system normally

consists of silicon memory chips. This technology is typically more than

an order of magnitude more expensive per bit stored than magnetic

storage technology, such as tapes or disk drives. Most computer systems

also have secondary storage based on solid-state drives (SSDs) or

magnetic disk drives. The amount of such secondary storage often

exceeds the amount of primary memory by one to two orders of

magnitude. SSDs have faster access times than magnetic disk drives,

which are mechanical devices. In recent years, SSD capacities have

increased while their prices have decreased. Magnetic disk drives

typically have much higher capacities than SSDs, and they remain a

more cost-effective means for storing massive amounts of information.

Disk drives that store several terabytes1 can be found for under $100.

Figure 18.2 shows a typical disk drive. The drive consists of one or

more platters, which rotate at a constant speed around a common

spindle. A magnetizable material covers the surface of each platter. The

drive reads and writes each platter by a head at the end of an arm. The

arms can move their heads toward or away from the spindle. The

surface that passes underneath a given head when it is stationary is

called a track.

Although disk drives are cheaper and have higher capacity than

main memory, they are much, much slower because they have moving

mechanical parts. The mechanical motion has two components: platter

rotation and arm movement. As of this writing, commodity disk drives

rotate at speeds of 5400–15,000 revolutions per minute (RPM). Typical

speeds are 15,000 RPM in server-grade drives, 7200 RPM in drives for

desktops, and 5400 RPM in drives for laptops. Although 7200 RPM

may seem fast, one rotation takes 8.33 milliseconds, which is over 5

orders of magnitude longer than the 50 nanosecond access times (more

or less) commonly found for main memory. In other words, if a

computer waits a full rotation for a particular item to come under the

read/write head, it could access main memory more than 100,000 times

during that span. The average wait is only half a rotation, but still, the

difference in access times for main memory compared with disk drives is

enormous. Moving the arms also takes some time. As of this writing,

average access times for commodity disk drives are around 4

milliseconds.

Figure 18.2 A typical magnetic disk drive. It consists of one or more platters covered with a

magnetizable material (two platters are shown here) that rotate around a spindle. Each platter is

read and written with a head, shown in red, at the end of an arm. Arms rotate around a

common pivot axis. A track, drawn in blue, is the surface that passes beneath the read/write

head when the head is stationary.

In order to amortize the time spent waiting for mechanical

movements, also known as latency, disk drives access not just one item

but several at a time. Information is divided into a number of equal-

sized blocks of bits that appear consecutively within tracks, and each

disk read or write is of one or more entire blocks.2 Typical disk drives

have block sizes running from 512 to 4096 bytes. Once the read/write

head is positioned correctly and the platter has rotated to the beginning

of the desired block, reading or writing a magnetic disk drive is entirely

electronic (aside from the rotation of the platter), and the disk drive can

quickly read or write large amounts of data.

Often, accessing a block of information and reading it from a disk

drive takes longer than processing all the information read. For this

reason, in this chapter we’ll look separately at the two principal

components of the running time:

the number of disk accesses, and

the CPU (computing) time.

We measure the number of disk accesses in terms of the number of

blocks of information that need to be read from or written to the disk

drive. Although disk-access time is not constant—it depends on the

distance between the current track and the desired track and also on the

initial rotational position of the platters—the number of blocks read or

written provides a good first-order approximation of the total time

spent accessing the disk drive.

In a typical B-tree application, the amount of data handled is so

large that all the data do not fit into main memory at once. The B-tree

algorithms copy selected blocks from disk into main memory as needed

and write back onto disk the blocks that have changed. B-tree

algorithms keep only a constant number of blocks in main memory at

any time, and thus the size of main memory does not limit the size of B-

trees that can be handled.

B-tree procedures need to be able to read information from disk into

main memory and write information from main memory to disk.

Consider some object x. If x is currently in the computer’s main

memory, then the code can refer to the attributes of x as usual: x.key,

for example. If x resides on disk, however, then the procedure must

perform the operation DISK-READ(x) to read the block containing

object x into main memory before it can refer to x’s attributes. (Assume

that if x is already in main memory, then DISK-READ(x) requires no

disk accesses: it is a “no-op.”) Similarly, procedures call DISK-

WRITE(x) to save any changes that have been made to the attributes of

object x by writing to disk the block containing x. Thus, the typical

pattern for working with an object is as follows:

x = a pointer to some object

DISK-READ(x)

operations that access and/or modify the attributes of x

DISK-WRITE(x) // omitted if no attributes of x were changed

other operations that access but do not modify attributes of x

The system can keep only a limited number of blocks in main memory

at any one time. Our B-tree algorithms assume that the system

automatically flushes from main memory blocks that are no longer in

use.

Since in most systems the running time of a B-tree algorithm

depends primarily on the number of DISK-READ and DISK-WRITE

operations it performs, we typically want each of these operations to

read or write as much information as possible. Thus, a B-tree node is

usually as large as a whole disk block, and this size limits the number of

children a B-tree node can have.

Figure 18.3 A B-tree of height 2 containing over one billion keys. Shown inside each node x is

x.n, the number of keys in x. Each internal node and leaf contains 1000 keys. This B-tree has

1001 nodes at depth 1 and over one million leaves at depth 2.

Large B-trees stored on disk drives often have branching factors

between 50 and 2000, depending on the size of a key relative to the size

of a block. A large branching factor dramatically reduces both the

height of the tree and the number of disk accesses required to find any

key. Figure 18.3 shows a B-tree with a branching factor of 1001 and

height 2 that can store over one billion keys. Nevertheless, if the root

node is kept permanently in main memory, at most two disk accesses

suffice to find any key in this tree.

18.1 Definition of B-trees

To keep things simple, let’s assume, as we have for binary search trees

and red-black trees, that any satellite information associated with a key

resides in the same node as the key. In practice, you might actually store

with each key just a pointer to another disk block containing the

satellite information for that key. The pseudocode in this chapter

implicitly assumes that the satellite information associated with a key, or

the pointer to such satellite information, travels with the key whenever

the key is moved from node to node. A common variant on a B-tree,

known as a B+-tree, stores all the satellite information in the leaves and

stores only keys and child pointers in the internal nodes, thus

maximizing the branching factor of the internal nodes.

A B-tree T is a rooted tree with root T.root having the following

properties:

1. Every node x has the following attributes:

a. x.n, the number of keys currently stored in node x,

b. the x.n keys themselves, x.key1, x.key2, … , x.keyx.n, stored in

monotonically increasing order, so that x.key1 ≤ x.key2 ≤ ⋯ ≤

x.keyx.n,

c. x.leaf, a boolean value that is TRUE if x is a leaf and FALSE

if x is an internal node.

2. Each internal node x also contains x.n + 1 pointers x.c1, x.c2, …

, x.cx.n+1 to its children. Leaf nodes have no children, and so

their ci attributes are undefined.

3. The keys x.keyi separate the ranges of keys stored in each

subtree: if ki is any key stored in the subtree with root x.ci, then

k1 ≤ x.key1 ≤ k2 ≤ x.key2 ≤ ⋯ ≤ x.keyx.n ≤ kx.n+1.

4. All leaves have the same depth, which is the tree’s height h.

5. Nodes have lower and upper bounds on the number of keys they

can contain, expressed in terms of a fixed integer t ≥ 2 called the

minimum degree of the B-tree:

a. Every node other than the root must have at least t − 1 keys.

Every internal node other than the root thus has at least t

children. If the tree is nonempty, the root must have at least

one key.

b. Every node may contain at most 2t − 1 keys. Therefore, an

internal node may have at most 2t children. We say that a node

is full if it contains exactly 2t − 1 keys.3

The simplest B-tree occurs when t = 2. Every internal node then has

either 2, 3, or 4 children, and it is a 2-3-4 tree. In practice, however,

much larger values of t yield B-trees with smaller height.

The height of a B-tree

The number of disk accesses required for most operations on a B-tree is

proportional to the height of the B-tree. The following theorem bounds

the worst-case height of a B-tree.

Figure 18.4 A B-tree of height 3 containing a minimum possible number of keys. Shown inside

each node x is x.n.

Theorem 18.1

If n ≥ 1, then for any n-key B-tree T of height h and minimum degree t ≥

2,

Proof By definition, the root of a nonempty B-tree T contains at least

one key, and all other nodes contain at least t − 1 keys. Let h be the

height of T. Then T contains at least 2 nodes at depth 1, at least 2t

nodes at depth 2, at least 2t2 nodes at depth 3, and so on, until at depth

h, it has at least 2th−1 nodes. Figure 18.4 illustrates such a tree for h =

3. The number n of keys therefore satisfies the inequality

so that th ≤ (n + 1)/2. Taking base-t logarithms of both sides proves the

theorem.

▪

You can see the power of B-trees as compared with red-black trees.

Although the height of the tree grows as O(log n) in both cases (recall

that t is a constant), for B-trees the base of the logarithm can be many

times larger. Thus, B-trees save a factor of about lg t over red-black trees

in the number of nodes examined for most tree operations. Because

examining an arbitrary node in a tree usually entails accessing the disk,

B-trees avoid a substantial number of disk accesses.

Exercises

18.1-1

Why isn’t a minimum degree of t = 1 allowed?

18.1-2

For what values of t is the tree of Figure 18.1 a legal B-tree?

18.1-3

Show all legal B-trees of minimum degree 2 that store the keys 1, 2, 3, 4,

5.

18.1-4

As a function of the minimum degree t, what is the maximum number

of keys that can be stored in a B-tree of height h?

18.1-5

Describe the data structure that results if each black node in a red-black

tree absorbs its red children, incorporating their children with its own.

18.2 Basic operations on B-trees

This section presents the details of the operations B-TREE-SEARCH,

B-TREE-CREATE, and B-TREE-INSERT. These procedures observe

two conventions:

The root of the B-tree is always in main memory, so that no

procedure ever needs to perform a DISK-READ on the root. If

any changes to the root node occur, however, then DISK-WRITE

must be called on the root.

Any nodes that are passed as parameters must already have had a

DISK-READ operation performed on them.

The procedures are all “one-pass” algorithms that proceed downward

from the root of the tree, without having to back up.

Searching a B-tree

Searching a B-tree is much like searching a binary search tree, except

that instead of making a binary, or “two-way,” branching decision at

each node, the search makes a multiway branching decision according

to the number of the node’s children. More precisely, at each internal

node x, the search makes an (x.n + 1)-way branching decision.

The procedure B-TREE-SEARCH generalizes the TREE-SEARCH

procedure defined for binary search trees on page 316. It takes as input

a pointer to the root node x of a subtree and a key k to be searched for

in that subtree. The top-level call is thus of the form B-TREE-

SEARCH(T.root, k). If k is in the B-tree, then B-TREE-SEARCH

returns the ordered pair (y, i) consisting of a node y and an index i such

that y.keyi = k. Otherwise, the procedure returns NIL.

B-TREE-SEARCH(x, k)

1 i = 1

2 while i ≤ x.n and k > x.keyi

3 i = i + 1

4 if i ≤ x.n and k == x.keyi

5 return (x, i)

6 elseif x.leaf

7 returnNIL

8 else DISK-READ(x.ci)

9 return B-TREE-SEARCH(x.ci, k)

Using a linear-search procedure, lines 1–3 of B-TREE-SEARCH find

the smallest index i such that k ≤ x.keyi, or else they set i to x.n + 1.

Lines 4–5 check to see whether the search has discovered the key,

returning if it has. Otherwise, if x is a leaf, then line 7 terminates the

search unsuccessfully, and if x is an internal node, lines 8–9 recurse to

search the appropriate subtree of x, after performing the necessary

DISK-READ on that child. Figure 18.1 illustrates the operation of B-

TREE-SEARCH. The blue nodes are those examined during a search

for the key R.

As in the TREE-SEARCH procedure for binary search trees, the

nodes encountered during the recursion form a simple path downward

from the root of the tree. The B-TREE-SEARCH procedure therefore

accesses O(h) = O(logt n) disk blocks, where h is the height of the B-tree

and n is the number of keys in the B-tree. Since x.n < 2t, the while loop

of lines 2–3 takes O(t) time within each node, and the total CPU time is

O(th) = O(t logtn).

Creating an empty B-tree

To build a B-tree T, first use the B-TREE-CREATE procedure on the

next page to create an empty root node and then call the B-TREE-

INSERT procedure on page 508 to add new keys. Both of these

procedures use an auxiliary procedure ALLOCATE-NODE, whose

pseudocode we omit and which allocates one disk block to be used as a

new node in O(1) time. A node created by ALLOCATE-NODE requires

no DISK-READ, since there is as yet no useful information stored on

the disk for that node. B-TREE-CREATE requires O(1) disk operations

and O(1) CPU time.

B-TREE-CREATE(T)

1 x = ALLOCATE-NODE()

2 x.leaf = TRUE

3 x.n = 0

4 DISK-WRITE(x)

5 T.root = x

Inserting a key into a B-tree

Inserting a key into a B-tree is significantly more complicated than

inserting a key into a binary search tree. As with binary search trees,

you search for the leaf position at which to insert the new key. With a B-

tree, however, you cannot simply create a new leaf node and insert it, as

the resulting tree would fail to be a valid B-tree. Instead, you insert the

new key into an existing leaf node. Since you cannot insert a key into a

leaf node that is full, you need an operation that splits a full node y

(having 2t − 1 keys) around its median key y.keyt into two nodes having

only t − 1 keys each. The median key moves up into y’s parent to

identify the dividing point between the two new trees. But if y’s parent is

also full, you must split it before you can insert the new key, and thus

you could end up splitting full nodes all the way up the tree.

To avoid having to go back up the tree, just split every full node you

encounter as you go down the tree. In this way, whenever you need to

split a full node, you are assured that its parent is not full. Inserting a

key into a B-tree then requires only a single pass down the tree from the

root to a leaf.

Splitting a node in a B-tree

The procedure B-TREE-SPLIT-CHILD on the facing page takes as

input a nonfull internal node x (assumed to reside in main memory) and

an index i such that x.ci (also assumed to reside in main memory) is a

full child of x. The procedure splits this child in two and adjusts x so

that it has an additional child. To split a full root, you first need to make

the root a child of a new empty root node, so that you can use B-TREE-

SPLIT-CHILD. The tree thus grows in height by 1: splitting is the only

means by which the tree grows taller.

B-TREE-SPLIT-CHILD(x, i)

 1y = x.ci // full node to split

 2z = ALLOCATE-NODE() // z will take half of y

 3z.leaf = y.leaf

 4z.n = t − 1

 5 for j = 1 to t − 1 // z gets y’s greatest keys …

 6 z.keyj = y.keyj+t

 7 if not y.leaf

 8 for j = 1 to t // … and its corresponding children

 9 z.cj = y.cj+t

10y.n = t − 1 // y keeps t − 1 keys

11 for j = x.n + 1 downto i + 1 // shift x’s children to the right …

12 x.cj+1 = x.cj

13x.ci+1 = z // … to make room for z as a child

14 for j = x.ndownto i // shift the corresponding keys in x

15 x.keyj+1 = x.keyj

16x.keyi = y.keyt // insert y’s median key

17x.n = x.n + 1 // x has gained a child

18DISK-WRITE(y)

19DISK-WRITE(z)

20DISK-WRITE(x)

Figure 18.5 illustrates how a node splits. B-TREE-SPLIT-CHILD

splits the full node y = x.ci about its median key (S in the figure), which

moves up into y’s parent node x. Those keys in y that are greater than

the median key move into a new node z, which becomes a new child of

x.

B-TREE-SPLIT-CHILD works by straightforward cutting and

pasting. Node x is the parent of the node y being split, which is x’s ith

child (set in line 1). Node y originally has 2t children and 2t − 1 keys,

but splitting reduces y to t children and t − 1 keys. The t largest children

and t − 1 keys of node y move over to node z, which becomes a new

child of x, positioned just after y in x’s table of children. The median

key of y moves up to become the key in node x that separates the

pointers to nodes y and z.

Lines 2–9 create node z and give it the largest t − 1 keys and, if y and

z are internal nodes, the corresponding t children of y. Line 10 adjusts

the key count for y. Then, lines 11–17 shift keys and child pointers in x

to the right in order to make room for x’s new child, insert z as a new

child of x, move the median key from y up to x in order to separate y

from z, and adjust x’s key count. Lines 18–20 write out all modified disk

blocks. The CPU time used by B-TREE-SPLIT-CHILD is Θ(t), due to

the for loops in lines 5–6 and 8–9. (The for loops in lines 11–12 and 14–

15 also run for O(t) iterations.) The procedure performs O(1) disk

operations.

Figure 18.5 Splitting a node with t = 4. Node y = x.ci splits into two nodes, y and z, and the

median key S of y moves up into y’s parent.

Inserting a key into a B-tree in a single pass down the tree

Inserting a key k into a B-tree T of height h requires just a single pass

down the tree and O(h) disk accesses. The CPU time required is O(th) =

O(t logt n). The B-TREE-INSERT procedure uses B-TREE-SPLIT-

CHILD to guarantee that the recursion never descends to a full node. If

the root is full, B-TREE-INSERT splits it by calling the procedure B-

TREE-SPLIT-ROOT on the facing page.

B-TREE-INSERT(T, k)

1 r = T.root

2 if r.n == 2t − 1

3 s = B-TREE-SPLIT-ROOT(T)

4 B-TREE-INSERT-NONFULL(s, k)

5 else B-TREE-INSERT-NONFULL(r, k)

B-TREE-INSERT works as follows. If the root is full, then line 3

calls B-TREE-SPLIT-ROOT in line 3 to split it. A new node s (with

two children) becomes the root and is returned by B-TREE-SPLIT-

ROOT. Splitting the root, illustrated in Figure 18.6, is the only way to

increase the height of a B-tree. Unlike a binary search tree, a B-tree

increases in height at the top instead of at the bottom. Regardless of

whether the root split, B-TREE-INSERT finishes by calling B-TREE-

INSERT-NONFULL to insert key k into the tree rooted at the nonfull

root node, which is either the new root (the call in line 4) or the original

root (the call in line 5).

Figure 18.6 Splitting the root with t = 4. Root node r splits in two, and a new root node s is

created. The new root contains the median key of r and has the two halves of r as children. The

B-tree grows in height by one when the root is split. A B-tree’s height increases only when the

root splits.

B-TREE-SPLIT-ROOT(T)

1 s = ALLOCATE-NODE()

2 s.leaf = FALSE

3 s.n = 0

4 s.c1 = T.root

5 T.root = s

6 B-TREE-SPLIT-CHILD(s, 1)

7 return s

The auxiliary procedure B-TREE-INSERT-NONFULL on page 511

inserts key k into node x, which is assumed to be nonfull when the

procedure is called. B-TREEINSERT-NONFULL recurses as

necessary down the tree, at all times guaranteeing that the node to

which it recurses is not full by calling B-TREE-SPLIT-CHILD as

necessary. The operation of B-TREE-INSERT and the recursive

operation of B-TREE-INSERT-NONFULL guarantee that this

assumption is true.

Figure 18.7 illustrates the various cases of how B-TREE-INSERT-

NONFULL inserts a key into a B-tree. Lines 3–8 handle the case in

which x is a leaf node by inserting key k into x, shifting to the right all

keys in x that are greater than k. If x is not a leaf node, then k should go

into the appropriate leaf node in the subtree rooted at internal node x.

Lines 9–11 determine the child x.ci to which the recursion descends.

Line 13 detects whether the recursion would descend to a full child, in

which case line 14 calls B-TREE-SPLIT-CHILD to split that child into

two nonfull children, and lines 15–16 determine which of the two

children is the correct one to descend to. (Note that DISK-READ(x.ci)

is not needed after line 16 increments i, since the recursion descends in

this case to a child that was just created by B-TREE-SPLIT-CHILD.)

The net effect of lines 13–16 is thus to guarantee that the procedure

never recurses to a full node. Line 17 then recurses to insert k into the

appropriate subtree.

Figure 18.7 Inserting keys into a B-tree. The minimum degree t for this B-tree is 3, so that a node

can hold at most 5 keys. Blue nodes are modified by the insertion process. (a) The initial tree for

this example. (b) The result of inserting B into the initial tree. This case is a simple insertion into

a leaf node. (c) The result of inserting Q into the previous tree. The node RST U V splits into

two nodes containing RS and U V, the key T moves up to the root, and Q is inserted in the

leftmost of the two halves (the RS node). (d) The result of inserting L into the previous tree. The

root splits right away, since it is full, and the B-tree grows in height by one. Then L is inserted

into the leaf containing JK. (e) The result of inserting F into the previous tree. The node

ABCDE splits before F is inserted into the rightmost of the two halves (the DE node).

B-TREE-INSERT-NONFULL(x, k)

 1 i = x.n

 2 if x.leaf // inserting into a leaf?

 3 while i ≥ 1 and k < x.keyi // shift keys in x to make room for k

 4 x.keyi+1 = x.keyi

 5 i = i − 1

 6 x.keyi+1 = k // insert key k in x

 7 x.n = x.n + 1 // now x has 1 more key

 8 DISK-WRITE(x)

 9else while i ≥ 1 and k < x.keyi // find the child where k belongs

10 i = i − 1

11 i = i + 1

12 DISK-READ(x.ci)

13 if x.ci.n == 2t − 1 // split the child if it’s full

14 B-TREE-SPLIT-CHILD(x, i)

15 if k > x.keyi // does k go into x.ci or x.ci+1?

16 i = i + 1

17 B-TREE-INSERT-NONFULL(x.ci, k)

For a B-tree of height h, B-TREE-INSERT performs O(h) disk

accesses, since only O(1) DISK-READ and DISK-WRITE operations

occur at each level of the tree. The total CPU time used is O(t) in each

level of the tree, or O(th) = O(t logt n) overall. Since B-TREE-INSERT-

NONFULL is tail-recursive, you can instead implement it with a while

loop, thereby demonstrating that the number of blocks that need to be

in main memory at any time is O(1).

Exercises

18.2-1

Show the results of inserting the keys

F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E

in order into an empty B-tree with minimum degree 2. Draw only the

configurations of the tree just before some node must split, and also

draw the final configuration.

18.2-2

Explain under what circumstances, if any, redundant DISK-READ or

DISK-WRITE operations occur during the course of executing a call to

B-TREE-INSERT. (A redundant DISK-READ is a DISK-READ for a

block that is already in memory. A redundant DISK-WRITE writes to

disk a block of information that is identical to what is already stored

there.)

18.2-3

Professor Bunyan asserts that the B-TREE-INSERT procedure always

results in a B-tree with the minimum possible height. Show that the

professor is mistaken by proving that with t = 2 and the set of keys {1,

2, … , 15}, there is no insertion sequence that results in a B-tree with the

minimum possible height.

★ 18.2-4

If you insert the keys {1, 2, … , n} into an empty B-tree with minimum

degree 2, how many nodes does the final B-tree have?

18.2-5

Since leaf nodes require no pointers to children, they could conceivably

use a different (larger) t value than internal nodes for the same disk

block size. Show how to modify the procedures for creating and

inserting into a B-tree to handle this variation.

18.2-6

Suppose that you implement B-TREE-SEARCH to use binary search

rather than linear search within each node. Show that this change makes

the required CPU time O(lg n), independent of how t might be chosen

as a function of n.

18.2-7

Suppose that disk hardware allows you to choose the size of a disk

block arbitrarily, but that the time it takes to read the disk block is

a+bt, where a and b are specified constants and t is the minimum degree

for a B-tree using blocks of the selected size. Describe how to choose t

so as to minimize (approximately) the B-tree search time. Suggest an

optimal value of t for the case in which a = 5 milliseconds and b = 10

microseconds.

18.3 Deleting a key from a B-tree

Deletion from a B-tree is analogous to insertion but a little more

complicated, because you can delete a key from any node—not just a

leaf—and when you delete a key from an internal node, you must

rearrange the node’s children. As in insertion, you must guard against

deletion producing a tree whose structure violates the B-tree properties.

Just as a node should not get too big due to insertion, a node must not

get too small during deletion (except that the root is allowed to have

fewer than the minimum number t − 1 of keys). And just as a simple

insertion algorithm might have to back up if a node on the path to

where the key is to be inserted is full, a simple approach to deletion

might have to back up if a node (other than the root) along the path to

where the key is to be deleted has the minimum number of keys.

The procedure B-TREE-DELETE deletes the key k from the subtree

rooted at x. Unlike the procedures TREE-DELETE on page 325 and

RB-DELETE on page 348, which are given the node to delete—

presumably as the result of a prior search—B-TREE-DELETE

combines the search for key k with the deletion process. Why do we

combine search and deletion in B-TREE-DELETE? Just as B-TREE-

INSERT prevents any node from becoming overfull (having more than

2t − 1 keys) while making a single pass down the tree, B-TREE-

DELETE prevents any node from becoming underfull (having fewer

than t − 1 keys) while also making a single pass down the tree, searching

for and ultimately deleting the key.

To prevent any node from becoming underfull, the design of B-

TREE-DELETE guarantees that whenever it calls itself recursively on a

node x, the number of keys in x is at least the minimum degree t at the

time of the call. (Although the root may have fewer than t keys and a

recursive call may be made from the root, no recursive call is made on

the root.) This condition requires one more key than the minimum

required by the usual B-tree conditions, and so a key might have to be

moved from x into one of its child nodes (still leaving x with at least the

minimum t − 1 keys) before a recursive call is made on that child, thus

allowing deletion to occur in one downward pass without having to

traverse back up the tree.

We describe how the procedure B-TREE-DELETE(T, k) deletes a

key k from a B-tree T instead of presenting detailed pseudocode. We

examine three cases, illustrated in Figure 18.8. The cases are for when

the search arrives at a leaf, at an internal node containing key k, and at

an internal node not containing key k. As mentioned above, in all three

cases node x has at least t keys (with the possible exception of when x is

the root). Cases 2 and 3—when x is an internal node—guarantee this

property as the recursion descends through the B-tree.

Figure 18.8 Deleting keys from a B-tree. The minimum degree for this B-tree is t = 3, so that,

other than the root, every node must have at least 2 keys. Blue nodes are those that are modified

by the deletion process. (a) The B-tree of Figure 18.7(e). (b) Deletion of F, which is case 1:

simple deletion from a leaf when all nodes visited during the search (other than the root) have at

least t = 3 keys. (c) Deletion of M, which is case 2a: the predecessor L of M moves up to take

M’s position. (d) Deletion of G, which is case 2c: push G down to make node DEGJK and then

delete G from this leaf (case 1). (e) Deletion of D, which is case 3b: since the recursion cannot

descend to node CL because it has only 2 keys, push P down and merge it with CL and TX to

form CLP TX. Then delete D from a leaf (case 1). (e0) After (e), delete the empty root. The tree

shrinks in height by 1. (f) Deletion of B, which is case 3a: C moves to fill B’s position and E

moves to fill C’s position.

Case 1: The search arrives at a leaf node x. If x contains key k, then

delete k from x. If x does not contain key k, then k was not in the B-

tree and nothing else needs to be done.

Case 2: The search arrives at an internal node x that contains key k. Let k

= x.keyi. One of the following three cases applies, depending on the

number of keys in x.ci (the child of x that precedes k) and x.ci+1 (the

child of x that follows k).

Case 2a: x.ci has at least t keys. Find the predecessor k′ of k in the

subtree rooted at x.ci. Recursively delete k′ from x.ci, and replace k by

k′ in x. (Key k′ can be found and deleted in a single downward pass.)

Case 2b: x.ci has t − 1 keys and x.ci+1has at least t keys. This case is

symmetric to case 2a. Find the successor k′ of k in the subtree rooted

at x.ci+1. Recursively delete k′ from x.ci+1, and replace k by k′ in x.

(Again, finding and deleting k′ can be done in a single downward

pass.)

Case 2c: Both x.ci and x.ci+1have t − 1 keys. Merge k and all of x.ci+1

into x.ci, so that x loses both k and the pointer to x.ci+1, and x.ci now

contains 2t − 1 keys. Then free x.ci+1 and recursively delete k from

x.ci.

Case 3: The search arrives at an internal node x that does not contain key

k. Continue searching down the tree while ensuring that each node

visited has at least t keys. To do so, determine the root x.ci of the

appropriate subtree that must contain k, if k is in the tree at all. If x.ci

has only t − 1 keys, execute case 3a or 3b as necessary to guarantee

descending to a node containing at least t keys. Then finish by

recursing on the appropriate child of x.

Case 3a: x.ci has only t − 1 keys but has an immediate sibling with at

least t keys. Give x.ci an extra key by moving a key from x down into

x.ci, moving a key from x.ci’s immediate left or right sibling up into x,

and moving the appropriate child pointer from the sibling into x.ci.

Case 3b: x.ci and each of x.ci’s immediate siblings have t − 1 keys. (It is

possible for x.ci to have either one or two siblings.) Merge x.ci with

one sibling, which involves moving a key from x down into the new

merged node to become the median key for that node.

In cases 2c and 3b, if node x is the root, it could end up having no

keys. When this situation occurs, then x is deleted, and x’s only child

x.c1 becomes the new root of the tree. This action decreases the height

of the tree by one and preserves the property that the root of the tree

contains at least one key (unless the tree is empty).

Since most of the keys in a B-tree are in the leaves, deletion

operations often end up deleting keys from leaves. The B-TREE-

DELETE procedure then acts in one downward pass through the tree,

without having to back up. When deleting a key in an internal node x,

however, the procedure might make a downward pass through the tree

to find the key’s predecessor or successor and then return to node x to

replace the key with its predecessor or successor (cases 2a and 2b).

Returning to node x does not require a traversal through all the levels

between x and the node containing the predecessor or successor,

however, since the procedure can just keep a pointer to x and the key

position within x and put the predecessor or successor key directly

there.

Although this procedure seems complicated, it involves only O(h)

disk operations for a B-tree of height h, since only O(1) calls to DISK-

READ and DISK-WRITE are made between recursive invocations of

the procedure. The CPU time required is O(th) = O(t logtn).

Exercises

18.3-1

Show the results of deleting C, P, and V, in order, from the tree of

Figure 18.8(f).

18.3-2

Write pseudocode for B-TREE-DELETE.

Problems

18-1 Stacks on secondary storage

Consider implementing a stack in a computer that has a relatively small

amount of fast primary memory and a relatively large amount of slower

disk storage. The operations PUSH and POP work on single-word

values. The stack can grow to be much larger than can fit in memory,

and thus most of it must be stored on disk.

A simple, but inefficient, stack implementation keeps the entire stack

on disk. Maintain in memory a stack pointer, which is the disk address

of the top element on the stack. Indexing block numbers and word

offsets within blocks from 0, if the pointer has value p, the top element

is the (p mod m)th word on block ⌊p/m⌋ of the disk, where m is the

number of words per block.

To implement the PUSH operation, increment the stack pointer,

read the appropriate block into memory from disk, copy the element to

be pushed to the appropriate word on the block, and write the block

back to disk. A POP operation is similar. Read in the appropriate block

from disk, save the top of the stack, decrement the stack pointer, and

return the saved value. You need not write back the block, since it was

not modified, and the word in the block that contained the popped

value is ignored.

As in the analyses of B-tree operations, two costs matter: the total

number of disk accesses and the total CPU time. A disk access also

incurs a cost in CPU time. In particular, any disk access to a block of m

words incurs charges of one disk access and Θ(m) CPU time.

a. Asymptotically, what is the worst-case number of disk accesses for n

stack operations using this simple implementation? What is the CPU

time for n stack operations? Express your answer in terms of m and n

for this and subsequent parts.

Now consider a stack implementation in which you keep one block of

the stack in memory. (You also maintain a small amount of memory to

record which block is currently in memory.) You can perform a stack

operation only if the relevant disk block resides in memory. If necessary,

you can write the block currently in memory to the disk and read the

new block from the disk into memory. If the relevant disk block is

already in memory, then no disk accesses are required.

b. What is the worst-case number of disk accesses required for n PUSH

operations? What is the CPU time?

c. What is the worst-case number of disk accesses required for n stack

operations? What is the CPU time?

Suppose that you now implement the stack by keeping two blocks in

memory (in addition to a small number of words for bookkeeping).

d. Describe how to manage the stack blocks so that the amortized

number of disk accesses for any stack operation is O(1/m) and the

amortized CPU time for any stack operation is O(1).

18-2 Joining and splitting 2-3-4 trees

The join operation takes two dynamic sets S′ and S″ and an element x

such that x′.key < x.key < x″.key for any x′ ∈ S′ and x″ ∈ S″. It returns

a set S = S′ ∪ {x} ∪ S″. The split operation is like an “inverse” join:

given a dynamic set S and an element x ∈ S, it creates a set S′ that

consists of all elements in S − {x} whose keys are less than x.key and

another set S″ that consists of all elements in S − {x} whose keys are

greater than x.key. This problem investigates how to implement these

operations on 2-3-4 trees (B-trees with t = 2). Assume for convenience

that elements consist only of keys and that all key values are distinct.

a. Show how to maintain, for every node x of a 2-3-4 tree, the height of

the subtree rooted at x as an attribute x.height. Make sure that your

implementation does not affect the asymptotic running times of

searching, insertion, and deletion.

b. Show how to implement the join operation. Given two 2-3-4 trees T′
and T″ and a key k, the join operation should run in O(1 + |h′ − h″|)

time, where h′ and h″ are the heights of T′ and T″, respectively.

c. Consider the simple path p from the root of a 2-3-4 tree T to a given

key k, the set S′ of keys in T that are less than k, and the set S″ of keys

in T that are greater than k. Show that p breaks S′ into a set of trees

 and a set of keys such that for i

= 1, 2, … , m and any keys and . What is the relationship

between the heights of and ? Describe how p breaks S″ into sets

of trees and keys.

d. Show how to implement the split operation on T. Use the join

operation to assemble the keys in S′ into a single 2-3-4 tree T′ and the

keys in S″ into a single 2-3-4 tree T″. The running time of the split

operation should be O(lg n), where n is the number of keys in T. (Hint:

The costs for joining should telescope.)

Chapter notes

Knuth [261], Aho, Hopcroft, and Ullman [5], and Sedgewick and

Wayne [402] give further discussions of balanced-tree schemes and B-

trees. Comer [99] provides a comprehensive survey of B-trees. Guibas

and Sedgewick [202] discuss the relationships among various kinds of

balanced-tree schemes, including red-black trees and 2-3-4 trees.

In 1970, J. E. Hopcroft invented 2-3 trees, a precursor to B-trees and

2-3-4 trees, in which every internal node has either two or three children.

Bayer and McCreight [39] introduced B-trees in 1972 with no

explanation of their choice of name.

Bender, Demaine, and Farach-Colton [47] studied how to make B-

trees perform well in the presence of memory-hierarchy effects. Their

cache-oblivious algorithms work efficiently without explicitly knowing

the data transfer sizes within the memory hierarchy.

1 When specifying disk capacities, one terabyte is one trillion bytes, rather than 240 bytes.

2 SSDs also exhibit greater latency than main memory and access data in blocks.

3 Another common variant on a B-tree, known as a B*-tree, requires each internal node to be at

least 2/3 full, rather than at least half full, as a B-tree requires.

	V Advanced Data Structures
	18 B-Trees
	18.1 Definition of B-trees
	18.2 Basic operations on B-trees
	18.3 Deleting a key from a B-tree

