
11 Hash Tables

Many applications require a dynamic set that supports only the

dictionary operations INSERT, SEARCH, and DELETE. For example,

a compiler that translates a programming language maintains a symbol

table, in which the keys of elements are arbitrary character strings

corresponding to identifiers in the language. A hash table is an effective

data structure for implementing dictionaries. Although searching for an

element in a hash table can take as long as searching for an element in a

linked list—Θ(n) time in the worst case—in practice, hashing performs

extremely well. Under reasonable assumptions, the average time to

search for an element in a hash table is O(1). Indeed, the built-in

dictionaries of Python are implemented with hash tables.

A hash table generalizes the simpler notion of an ordinary array.

Directly addressing into an ordinary array takes advantage of the O(1)

access time for any array element. Section 11.1 discusses direct

addressing in more detail. To use direct addressing, you must be able to

allocate an array that contains a position for every possible key.

When the number of keys actually stored is small relative to the total

number of possible keys, hash tables become an effective alternative to

directly addressing an array, since a hash table typically uses an array of

size proportional to the number of keys actually stored. Instead of using

the key as an array index directly, we compute the array index from the

key. Section 11.2 presents the main ideas, focusing on “chaining” as a

way to handle “collisions,” in which more than one key maps to the

same array index. Section 11.3 describes how to compute array indices

from keys using hash functions. We present and analyze several

variations on the basic theme. Section 11.4 looks at “open addressing,”

which is another way to deal with collisions. The bottom line is that

hashing is an extremely effective and practical technique: the basic

dictionary operations require only O(1) time on the average. Section

11.5 discusses the hierarchical memory systems of modern computer

systems have and illustrates how to design hash tables that work well in

such systems.

11.1 Direct-address tables

Direct addressing is a simple technique that works well when the

universe U of keys is reasonably small. Suppose that an application

needs a dynamic set in which each element has a distinct key drawn

from the universe U = {0, 1, …, m − 1}, where m is not too large.

To represent the dynamic set, you can use an array, or direct-address

table, denoted by T[0 : m − 1], in which each position, or slot,

corresponds to a key in the universe U. Figure 11.1 illustrates this

approach. Slot k points to an element in the set with key k. If the set

contains no element with key k, then T[k] = NIL.

The dictionary operations DIRECT-ADDRESS-SEARCH,

DIRECT-ADDRESS-INSERT, and DIRECT-ADDRESS-DELETE

on the following page are trivial to implement. Each takes only O(1)

time.

For some applications, the direct-address table itself can hold the

elements in the dynamic set. That is, rather than storing an element’s

key and satellite data in an object external to the direct-address table,

with a pointer from a slot in the table to the object, save space by

storing the object directly in the slot. To indicate an empty slot, use a

special key. Then again, why store the key of the object at all? The index

of the object is its key! Of course, then you’d need some way to tell

whether slots are empty.

Figure 11.1 How to implement a dynamic set by a direct-address table T. Each key in the

universe U = {0, 1, …, 9} corresponds to an index into the table. The set K = {2, 3, 5, 8} of

actual keys determines the slots in the table that contain pointers to elements. The other slots, in

blue, contain NIL.

DIRECT-ADDRESS-SEARCH(T, k)

1return T[k]

DIRECT-ADDRESS-INSERT(T, x)

1T[x.key] = x

DIRECT-ADDRESS-DELETE(T, x)

1T[x.key] = NIL

Exercises

11.1-1

A dynamic set S is represented by a direct-address table T of length m.

Describe a procedure that finds the maximum element of S. What is the

worst-case performance of your procedure?

11.1-2

A bit vector is simply an array of bits (each either 0 or 1). A bit vector of

length m takes much less space than an array of m pointers. Describe

how to use a bit vector to represent a dynamic set of distinct elements

drawn from the set {0, 1, …, m − 1} and with no satellite data.

Dictionary operations should run in O(1) time.

11.1-3

Suggest how to implement a direct-address table in which the keys of

stored elements do not need to be distinct and the elements can have

satellite data. All three dictionary operations (INSERT, DELETE, and

SEARCH) should run in O(1) time. (Don’t forget that DELETE takes

as an argument a pointer to an object to be deleted, not a key.)

★ 11.1-4

Suppose that you want to implement a dictionary by using direct

addressing on a huge array. That is, if the array size is m and the

dictionary contains at most n elements at any one time, then m ≫ n. At

the start, the array entries may contain garbage, and initializing the

entire array is impractical because of its size. Describe a scheme for

implementing a direct-address dictionary on a huge array. Each stored

object should use O(1) space; the operations SEARCH, INSERT, and

DELETE should take O(1) time each; and initializing the data structure

should take O(1) time. (Hint: Use an additional array, treated somewhat

like a stack whose size is the number of keys actually stored in the

dictionary, to help determine whether a given entry in the huge array is

valid or not.)

11.2 Hash tables

The downside of direct addressing is apparent: if the universe U is large

or infinite, storing a table T of size |U| may be impractical, or even

impossible, given the memory available on a typical computer.

Furthermore, the set K of keys actually stored may be so small relative

to U that most of the space allocated for T would be wasted.

When the set K of keys stored in a dictionary is much smaller than

the universe U of all possible keys, a hash table requires much less

storage than a direct-address table. Specifically, the storage requirement

reduces to Θ(|K|) while maintaining the benefit that searching for an

element in the hash table still requires only O(1) time. The catch is that

this bound is for the average-case time,1 whereas for direct addressing it

holds for the worst-case time.

With direct addressing, an element with key k is stored in slot k, but

with hashing, we use a hash function h to compute the slot number from

the key k, so that the element goes into slot h(k). The hash function h

maps the universe U of keys into the slots of a hash table T[0 : m − 1]:

h : U → {0, 1, …, m − 1},

where the size m of the hash table is typically much less than |U|. We say

that an element with key k hashes to slot h(k), and we also say that h(k)

is the hash value of key k. Figure 11.2 illustrates the basic idea. The hash

function reduces the range of array indices and hence the size of the

array. Instead of a size of |U|, the array can have size m. An example of a

simple, but not particularly good, hash function is h(k) = k mod m.

There is one hitch, namely that two keys may hash to the same slot.

We call this situation a collision. Fortunately, there are effective

techniques for resolving the conflict created by collisions.

Of course, the ideal solution is to avoid collisions altogether. We

might try to achieve this goal by choosing a suitable hash function h.

One idea is to make h appear to be “random,” thus avoiding collisions

or at least minimizing their number. The very term “to hash,” evoking

images of random mixing and chopping, captures the spirit of this

approach. (Of course, a hash function h must be deterministic in that a

given input k must always produce the same output h(k).) Because |U| >

m, however, there must be at least two keys that have the same hash

value, and avoiding collisions altogether is impossible. Thus, although a

well-designed, “random”-looking hash function can reduce the number

of collisions, we still need a method for resolving the collisions that do

occur.

Figure 11.2 Using a hash function h to map keys to hash-table slots. Because keys k2 and k5

map to the same slot, they collide.

The remainder of this section first presents a definition of

“independent uniform hashing,” which captures the simplest notion of

what it means for a hash function to be “random.” It then presents and

analyzes the simplest collision resolution technique, called chaining.

Section 11.4 introduces an alternative method for resolving collisions,

called open addressing.

Independent uniform hashing

An “ideal” hashing function h would have, for each possible input k in

the domain U, an output h(k) that is an element randomly and

independently chosen uniformly from the range {0, 1, …, m − 1}. Once

a value h(k) is randomly chosen, each subsequent call to h with the same

input k yields the same output h(k).

We call such an ideal hash function an independent uniform hash

function. Such a function is also often called a random oracle [43]. When

hash tables are implemented with an independent uniform hash

function, we say we are using independent uniform hashing.

Independent uniform hashing is an ideal theoretical abstraction, but

it is not something that can reasonably be implemented in practice.

Nonetheless, we’ll analyze the efficiency of hashing under the

assumption of independent uniform hashing and then present ways of

achieving useful practical approximations to this ideal.

Figure 11.3 Collision resolution by chaining. Each nonempty hash-table slot T[j] points to a

linked list of all the keys whose hash value is j. For example, h(k1) = h(k4) and h(k5) = h(k2) =

h(k7). The list can be either singly or doubly linked. We show it as doubly linked because

deletion may be faster that way when the deletion procedure knows which list element (not just

which key) is to be deleted.

Collision resolution by chaining

At a high level, you can think of hashing with chaining as a

nonrecursive form of divide-and-conquer: the input set of n elements is

divided randomly into m subsets, each of approximate size n/m. A hash

function determines which subset an element belongs to. Each subset is

managed independently as a list.

Figure 11.3 shows the idea behind chaining: each nonempty slot

points to a linked list, and all the elements that hash to the same slot go

into that slot’s linked list. Slot j contains a pointer to the head of the list

of all stored elements with hash value j. If there are no such elements,

then slot j contains NIL.

When collisions are resolved by chaining, the dictionary operations

are straightforward to implement. They appear on the next page and

use the linked-list procedures from Section 10.2. The worst-case running

time for insertion is O(1). The insertion procedure is fast in part because

it assumes that the element x being inserted is not already present in the

table. To enforce this assumption, you can search (at additional cost) for

an element whose key is x.key before inserting. For searching, the worst-

case running time is proportional to the length of the list. (We’ll analyze

this operation more closely below.) Deletion takes O(1) time if the lists

are doubly linked, as in Figure 11.3. (Since CHAINED-HASH-

DELETE takes as input an element x and not its key k, no search is

needed. If the hash table supports deletion, then its linked lists should

be doubly linked in order to delete an item quickly. If the lists were only

singly linked, then by Exercise 10.2-1, deletion could take time

proportional to the length of the list. With singly linked lists, both

deletion and searching would have the same asymptotic running times.)

CHAINED-HASH-INSERT(T, x)

1 LIST-PREPEND(T[h(x.key)], x)

CHAINED-HASH-SEARCH(T, k)

1 return LIST-SEARCH(T[h(k)], k)

CHAINED-HASH-DELETE(T, x)

1 LIST-DELETE(T[h(x.key)], x)

Analysis of hashing with chaining

How well does hashing with chaining perform? In particular, how long

does it take to search for an element with a given key?

Given a hash table T with m slots that stores n elements, we define

the load factor α for T as n/m, that is, the average number of elements

stored in a chain. Our analysis will be in terms of α, which can be less

than, equal to, or greater than 1.

The worst-case behavior of hashing with chaining is terrible: all n

keys hash to the same slot, creating a list of length n. The worst-case

time for searching is thus Θ(n) plus the time to compute the hash

function—no better than using one linked list for all the elements. We

clearly don’t use hash tables for their worst-case performance.

The average-case performance of hashing depends on how well the

hash function h distributes the set of keys to be stored among the m

slots, on the average (meaning with respect to the distribution of keys to

be hashed and with respect to the choice of hash function, if this choice

is randomized). Section 11.3 discusses these issues, but for now we

assume that any given element is equally likely to hash into any of the m

slots. That is, the hash function is uniform. We further assume that

where a given element hashes to is independent of where any other

elements hash to. In other words, we assume that we are using

independent uniform hashing.

Because hashes of distinct keys are assumed to be independent,

independent uniform hashing is universal: the chance that any two

distinct keys k1 and k2 collide is at most 1/m. Universality is important

in our analysis and also in the specification of universal families of hash

functions, which we’ll see in Section 11.3.2.

For j = 0, 1, …, m − 1, denote the length of the list T[j] by nj, so that

and the expected value of nj is E[nj] = α = n/m.

We assume that O(1) time suffices to compute the hash value h(k), so

that the time required to search for an element with key k depends

linearly on the length nh(k) of the list T[h(k)]. Setting aside the O(1)

time required to compute the hash function and to access slot h(k), we’ll

consider the expected number of elements examined by the search

algorithm, that is, the number of elements in the list T[h(k)] that the

algorithm checks to see whether any have a key equal to k. We consider

two cases. In the first, the search is unsuccessful: no element in the table

has key k. In the second, the search successfully finds an element with

key k.

Theorem 11.1

In a hash table in which collisions are resolved by chaining, an

unsuccessful search takes Θ(1 + α) time on average, under the

assumption of independent uniform hashing.

Proof Under the assumption of independent uniform hashing, any key

k not already stored in the table is equally likely to hash to any of the m

slots. The expected time to search unsuccessfully for a key k is the

expected time to search to the end of list T[h(k)], which has expected

length E[nh(k)] = α. Thus, the expected number of elements examined in

an unsuccessful search is α, and the total time required (including the

time for computing h(k)) is Θ(1 + α).

▪

The situation for a successful search is slightly different. An

unsuccessful search is equally likely to go to any slot of the hash table. A

successful search, however, cannot go to an empty slot, since it is for an

element that is present in one of the linked lists. We assume that the

element searched for is equally likely to be any one of the elements in

the table, so the longer the list, the more likely that the search is for one

of its elements. Even so, the expected search time still turns out to be

Θ(1 + α).

Theorem 11.2

In a hash table in which collisions are resolved by chaining, a successful

search takes Θ(1 + α) time on average, under the assumption of

independent uniform hashing.

Proof We assume that the element being searched for is equally likely

to be any of the n elements stored in the table. The number of elements

examined during a successful search for an element x is 1 more than the

number of elements that appear before x in x’s list. Because new

elements are placed at the front of the list, elements before x in the list

were all inserted after x was inserted. Let xi denote the ith element

inserted into the table, for i = 1, 2, …, n, and let ki = xi.key.

Our analysis uses indicator random variables extensively. For each

slot q in the table and for each pair of distinct keys ki and kj, we define

the indicator random variable

Xijq = I {the search is for xi, h(ki) = q, and h(kj) = q}.

That is, Xijq = 1 when keys ki and kj collide at slot q and the search is

for element xi. Because Pr{the search is for xi} = 1/n, Pr{h(ki) = q} =

1/m, Pr{h(kj) = q} = 1/m, and these events are all independent, we have

that Pr{Xijq = 1} = 1/nm2. Lemma 5.1 on page 130 gives E[Xijq] =

1/nm2.

Next, we define, for each element xj, the indicator random variable

Yj = I {xj appears in a list prior to the element being searched for}

=
,

since at most one of the Xijq equals 1, namely when the element xi being

searched for belongs to the same list as xj (pointed to by slot q), and i <

j (so that xi appears after xj in the list).

Our final random variable is Z, which counts how many elements

appear in the list prior to the element being searched for:

Because we must count the element being searched for as well as all

those preceding it in its list, we wish to compute E[Z + 1]. Using

linearity of expectation (equation (C.24) on page 1192), we have

Thus, the total time required for a successful search (including the time

for computing the hash function) is Θ(2 + α/2 − α/2n) = Θ(1 + α).

▪

What does this analysis mean? If the number of elements in the table

is at most proportional to the number of hash-table slots, we have n =

O(m) and, consequently, α = n/m = O(m)/m = O(1). Thus, searching

takes constant time on average. Since insertion takes O(1) worst-case

time and deletion takes O(1) worst-case time when the lists are doubly

linked (assuming that the list element to be deleted is known, and not

just its key), we can support all dictionary operations in O(1) time on

average.

The analysis in the preceding two theorems depends only on two

essential properties of independent uniform hashing: uniformity (each

key is equally likely to hash to any one of the m slots), and

independence (so any two distinct keys collide with probability 1/m).

Exercises

11.2-1

You use a hash function h to hash n distinct keys into an array T of

length m. Assuming independent uniform hashing, what is the expected

number of collisions? More precisely, what is the expected cardinality of

{{k1, k2} : k1 ≠ k2 and h(k1) = h(k2)}?

11.2-2

Consider a hash table with 9 slots and the hash function h(k) = k mod 9.

Demonstrate what happens upon inserting the keys 5, 28, 19, 15, 20, 33,

12, 17, 10 with collisions resolved by chaining.

11.2-3

Professor Marley hypothesizes that he can obtain substantial

performance gains by modifying the chaining scheme to keep each list

in sorted order. How does the professor’s modification affect the

running time for successful searches, unsuccessful searches, insertions,

and deletions?

11.2-4

Suggest how to allocate and deallocate storage for elements within the

hash table itself by creating a “free list”: a linked list of all the unused

slots. Assume that one slot can store a flag and either one element plus a

pointer or two pointers. All dictionary and free-list operations should

run in O(1) expected time. Does the free list need to be doubly linked, or

does a singly linked free list suffice?

11.2-5

You need to store a set of n keys in a hash table of size m. Show that if

the keys are drawn from a universe U with |U| > (n − 1)m, then U has a

subset of size n consisting of keys that all hash to the same slot, so that

the worst-case searching time for hashing with chaining is Θ(n).

11.2-6

You have stored n keys in a hash table of size m, with collisions resolved

by chaining, and you know the length of each chain, including the

length L of the longest chain. Describe a procedure that selects a key

uniformly at random from among the keys in the hash table and returns

it in expected time O(L · (1 + 1/α)).

11.3 Hash functions

For hashing to work well, it needs a good hash function. Along with

being efficiently computable, what properties does a good hash function

have? How do you design good hash functions?

This section first attempts to answer these questions based on two ad

hoc approaches for creating hash functions: hashing by division and

hashing by multiplication. Although these methods work well for some

sets of input keys, they are limited because they try to provide a single

fixed hash function that works well on any data—an approach called

static hashing.

We then see that provably good average-case performance for any

data can be obtained by designing a suitable family of hash functions

and choosing a hash function at random from this family at runtime,

independent of the data to be hashed. The approach we examine is

called random hashing. A particular kind of random hashing, universal

hashing, works well. As we saw with quicksort in Chapter 7,

randomization is a powerful algorithmic design tool.

What makes a good hash function?

A good hash function satisfies (approximately) the assumption of

independent uniform hashing: each key is equally likely to hash to any

of the m slots, independently of where any other keys have hashed to.

What does “equally likely” mean here? If the hash function is fixed, any

probabilities would have to be based on the probability distribution of

the input keys.

Unfortunately, you typically have no way to check this condition,

unless you happen to know the probability distribution from which the

keys are drawn. Moreover, the keys might not be drawn independently.

Occasionally you might know the distribution. For example, if you

know that the keys are random real numbers k independently and

uniformly distributed in the range 0 ≤ k < 1, then the hash function

h(k) = ⌊km⌋

satisfies the condition of independent uniform hashing.

A good static hashing approach derives the hash value in a way that

you expect to be independent of any patterns that might exist in the

data. For example, the “division method” (discussed in Section 11.3.1)

computes the hash value as the remainder when the key is divided by a

specified prime number. This method may give good results, if you

(somehow) choose a prime number that is unrelated to any patterns in

the distribution of keys.

Random hashing, described in Section 11.3.2, picks the hash

function to be used at random from a suitable family of hashing

functions. This approach removes any need to know anything about the

probability distribution of the input keys, as the randomization

necessary for good average-case behavior then comes from the (known)

random process used to pick the hash function from the family of hash

functions, rather than from the (unknown) process used to create the

input keys. We recommend that you use random hashing.

Keys are integers, vectors, or strings

In practice, a hash function is designed to handle keys that are one of

the following two types:

A short nonnegative integer that fits in a w-bit machine word.

Typical values for w would be 32 or 64.

A short vector of nonnegative integers, each of bounded size. For

example, each element might be an 8-bit byte, in which case the

vector is often called a (byte) string. The vector might be of

variable length.

To begin, we assume that keys are short nonnegative integers. Handling

vector keys is more complicated and discussed in Sections 11.3.5 and

11.5.2.

11.3.1 Static hashing

Static hashing uses a single, fixed hash function. The only

randomization available is through the (usually unknown) distribution

of input keys. This section discusses two standard approaches for static

hashing: the division method and the multiplication method. Although

static hashing is no longer recommended, the multiplication method

also provides a good foundation for “nonstatic” hashing—better known

as random hashing—where the hash function is chosen at random from

a suitable family of hash functions.

The division method

The division method for creating hash functions maps a key k into one of

m slots by taking the remainder of k divided by m. That is, the hash

function is

h(k) = k mod m.

For example, if the hash table has size m = 12 and the key is k = 100,

then h(k) = 4. Since it requires only a single division operation, hashing

by division is quite fast.

The division method may work well when m is a prime not too close

to an exact power of 2. There is no guarantee that this method provides

good average-case performance, however, and it may complicate

applications since it constrains the size of the hash tables to be prime.

The multiplication method

The general multiplication method for creating hash functions operates

in two steps. First, multiply the key k by a constant A in the range 0 < A

< 1 and extract the fractional part of kA. Then, multiply this value by m

and take the floor of the result. That is, the hash function is

h(k) = ⌊m (kA mod 1)⌋,

where “kA mod 1” means the fractional part of kA, that is, kA − ⌊kA⌋.

The general multiplication method has the advantage that the value of

m is not critical and you can choose it independently of how you choose

the multiplicative constant A.

Figure 11.4 The multiply-shift method to compute a hash function. The w-bit representation of

the key k is multiplied by the w-bit value a = A · 2w. The ℓ highest-order bits of the lower w-bit

half of the product form the desired hash value ha(k).

The multiply-shift method

In practice, the multiplication method is best in the special case where

the number m of hash-table slots is an exact power of 2, so that m = 2ℓ

for some integer ℓ, where ℓ ≤ w and w is the number of bits in a machine

word. If you choose a fixed w-bit positive integer a = A 2w, where 0 < A

< 1 as in the multiplication method so that a is in the range 0 < a < 2w,

you can implement the function on most computers as follows. We

assume that a key k fits into a single w-bit word.

Referring to Figure 11.4, first multiply k by the w-bit integer a. The

result is a 2w-bit value r12w + r0, where r1 is the high-order w-bit word

of the product and r0 is the low-order w-bit word of the product. The

desired ℓ -bit hash value consists of the ℓ most significant bits of r0.

(Since r1 is ignored, the hash function can be implemented on a

computer that produces only a w-bit product given two w-bit inputs,

that is, where the multiplication operation computes modulo 2w.)

In other words, you define the hash function h = ha, where

for a fixed nonzero w-bit value a. Since the product ka of two w-bit

words occupies 2w bits, taking this product modulo 2w zeroes out the

high-order w bits (r1), leaving only the low-order w bits (r0). The ⋙

operator performs a logical right shift by w − ℓ bits, shifting zeros into

the vacated positions on the left, so that the ℓ most significant bits of r0

move into the ℓ rightmost positions. (It’s the same as dividing by 2w−ℓ

and taking the floor of the result.) The resulting value equals the ℓ most

significant bits of r0. The hash function ha can be implemented with

three machine instructions: multiplication, subtraction, and logical right

shift.

As an example, suppose that k = 123456, ℓ = 14, m = 214 = 16384,

and w = 32. Suppose further that we choose a = 2654435769 (following

a suggestion of Knuth [261]). Then ka = 327706022297664 = (76300 ·

232) + 17612864, and so r1 = 76300 and r0 = 17612864. The 14 most

significant bits of r0 yield the value ha(k) = 67.

Even though the multiply-shift method is fast, it doesn’t provide any

guarantee of good average-case performance. The universal hashing

approach presented in the next section provides such a guarantee. A

simple randomized variant of the multiply-shift method works well on

the average, when the program begins by picking a as a randomly

chosen odd integer.

11.3.2 Random hashing

Suppose that a malicious adversary chooses the keys to be hashed by

some fixed hash function. Then the adversary can choose n keys that all

hash to the same slot, yielding an average retrieval time of Θ(n). Any

static hash function is vulnerable to such terrible worst-case behavior.

The only effective way to improve the situation is to choose the hash

function randomly in a way that is independent of the keys that are

actually going to be stored. This approach is called random hashing. A

special case of this approach, called universal hashing, can yield provably

good performance on average when collisions are handled by chaining,

no matter which keys the adversary chooses.

To use random hashing, at the beginning of program execution you

select the hash function at random from a suitable family of functions.

As in the case of quicksort, randomization guarantees that no single

input always evokes worst-case behavior. Because you randomly select

the hash function, the algorithm can behave differently on each

execution, even for the same set of keys to be hashed, guaranteeing

good average-case performance.

Let H be a finite family of hash functions that map a given universe

U of keys into the range {0, 1, …, m − 1}. Such a family is said to be

universal if for each pair of distinct keys k1, k2 ∈ U, the number of hash

functions h ∈ H for which h(k1) = h(k2) is at most |H|/m. In other

words, with a hash function randomly chosen from H, the chance of a

collision between distinct keys k1 and k2 is no more than the chance

1/m of a collision if h(k1) and h(k2) were randomly and independently

chosen from the set {0, 1, …, m − 1}.

Independent uniform hashing is the same as picking a hash function

uniformly at random from a family of mn hash functions, each member

of that family mapping the n keys to the m hash values in a different

way.

Every independent uniform random family of hash function is

universal, but the converse need not be true: consider the case where U

= {0, 1, …, m − 1} and the only hash function in the family is the

identity function. The probability that two distinct keys collide is zero,

even though each key is hashes to a fixed value.

The following corollary to Theorem 11.2 on page 279 says that

universal hashing provides the desired payoff: it becomes impossible for

an adversary to pick a sequence of operations that forces the worst-case

running time.

Corollary 11.3

Using universal hashing and collision resolution by chaining in an

initially empty table with m slots, it takes Θ(s) expected time to handle

any sequence of s INSERT, SEARCH, and DELETE operations

containing n = O(m) INSERT operations.

Proof The INSERT and DELETE operations take constant time.

Since the number n of insertions is O(m), we have that α = O(1).

Furthermore, the expected time for each SEARCH operation is O(1),

which can be seen by examining the proof of Theorem 11.2. That

analysis depends only on collision probabilities, which are 1/m for any

pair k1, k2 of keys by the choice of an independent uniform hash

function in that theorem. Using a universal family of hash functions

here instead of using independent uniform hashing changes the

probability of collision from 1/m to at most 1/m. By linearity of

expectation, therefore, the expected time for the entire sequence of s

operations is O(s). Since each operation takes Ω(1) time, the Θ(s) bound

follows.

▪

11.3.3 Achievable properties of random hashing

There is a rich literature on the properties a family H of hash functions

can have, and how they relate to the efficiency of hashing. We

summarize a few of the most interesting ones here.

Let H be a family of hash functions, each with domain U and range

{0, 1, …, m − 1}, and let h be any hash function that is picked uniformly

at random from H. The probabilities mentioned are probabilities over

the picks of h.

The family H is uniform if for any key k in U and any slot q in the

range {0, 1, …, m − 1}, the probability that h(k) = q is 1/m.

The family H is universal if for any distinct keys k1 and k2 in U,

the probability that h(k1) = h(k2) is at most 1/m.

The family H of hash functions is ϵ-universal if for any distinct

keys k1 and k2 in U, the probability that h(k1) = h(k2) is at most

ϵ. Therefore, a universal family of hash functions is also 1/m-

universal.2

The family H is d-independent if for any distinct keys k1, k2, …,

kd in U and any slots q1, q2, …, qd, not necessarily distinct, in {0,

1, …, m − 1} the probability that h(ki) = qi for i = 1, 2, …, d is

1/md.

Universal hash-function families are of particular interest, as they are

the simplest type supporting provably efficient hash-table operations for

any input data set. Many other interesting and desirable properties, such

as those noted above, are also possible and allow for efficient specialized

hash-table operations.

11.3.4 Designing a universal family of hash functions

This section present two ways to design a universal (or ϵ-universal)

family of hash functions: one based on number theory and another

based on a randomized variant of the multiply-shift method presented

in Section 11.3.1. The first method is a bit easier to prove universal, but

the second method is newer and faster in practice.

A universal family of hash functions based on number theory

We can design a universal family of hash functions using a little number

theory. You may wish to refer to Chapter 31 if you are unfamiliar with

basic concepts in number theory.

Begin by choosing a prime number p large enough so that every

possible key k lies in the range 0 to p − 1, inclusive. We assume here that

p has a “reasonable” length. (See Section 11.3.5 for a discussion of

methods for handling long input keys, such as variable-length strings.)

Let ℤp denote the set {0, 1, …, p − 1}, and let denote the set {1, 2,

…, p − 1}. Since p is prime, we can solve equations modulo p with the

methods given in Chapter 31. Because the size of the universe of keys is

greater than the number of slots in the hash table (otherwise, just use

direct addressing), we have p > m.

Given any and any b ∈ ℤp, define the hash function hab as a

linear transformation followed by reductions modulo p and then

modulo m:

For example, with p = 17 and m = 6, we have

h3,4(8) = ((3 · 8 + 4) mod 17) mod 6

= (28 mod 17) mod 6

= 11 mod 6

= 5.

Given p and m, the family of all such hash functions is

Each hash function hab maps ℤp to ℤm. This family of hash functions

has the nice property that the size m of the output range (which is the

size of the hash table) is arbitrary—it need not be prime. Since you can

choose from among p − 1 values for a and p values for b, the family

Hpm contains p(p − 1) hash functions.

Theorem 11.4

The family Hpm of hash functions defined by equations (11.3) and

(11.4) is universal.

Proof Consider two distinct keys k1 and k2 from ℤp, so that k1 ≠ k2.

For a given hash function hab, let

r1 = (ak1 + b) mod p,

r2 = (ak2 + b) mod p.

We first note that r1 ≠ r2. Why? Since we have r1 − r2 = a(k1 − k2) (mod

p), it follows that r1 ≠ r2 because p is prime and both a and (k1 − k2) are

nonzero modulo p. By Theorem 31.6 on page 908, their product must

also be nonzero modulo p. Therefore, when computing any hab ∈

Hpm, distinct inputs k1 and k2 map to distinct values r1 and r2

modulo p, and there are no collisions yet at the “mod p level.”

Moreover, each of the possible p(p − 1) choices for the pair (a, b) with a

≠ 0 yields a different resulting pair (r1, r2) with r1 ≠ r2, since we can

solve for a and b given r1 and r2:

a = ((r − r2)((k1 − k2)−1 mod p)) mod p,

b = (r1 − ak1) mod p,

where ((k1 − k2)−1 mod p) denotes the unique multiplicative inverse,

modulo p, of k1 − k2. For each of the p possible values of r1, there are

only p − 1 possible values of r2 that do not equal r1, making only p(p −

1) possible pairs (r1, r2) with r1 ≠ r2. Therefore, there is a one-to-one

correspondence between pairs (a, b) with a ≠ 0 and pairs (r1, r2) with r1

≠ r2. Thus, for any given pair of distinct inputs k1 and k2, if we pick (a,

b) uniformly at random from , the resulting pair (r1, r2) is

equally likely to be any pair of distinct values modulo p.

Therefore, the probability that distinct keys k1 and k2 collide is equal

to the probability that r1 = r2 (mod m) when r1 and r2 are randomly

chosen as distinct values modulo p. For a given value of r1, of the p − 1

possible remaining values for r2, the number of values r2 such that r2 ≠

r1 and r2 = r1 (mod m) is at most

The probability that r2 collides with r1 when reduced modulo m is at

most ((p − 1)/m)/(p − 1) = 1/m, since r2 is equally likely to be any of the

p − 1 values in Zp that are different from r1, but at most (p − 1)/m of

those values are equivalent to r1 modulo m.

Therefore, for any pair of distinct values k1, k2 ∈ ℤp,

Pr{hab(k1) = hab(k2)} ≤ 1/m,

so that Hpm is indeed universal.

▪

A 2/m-universal family of hash functions based on the multiply-shift

method

We recommend that in practice you use the following hash-function

family based on the multiply-shift method. It is exceptionally efficient

and (although we omit the proof) provably 2/m-universal. Define H to

be the family of multiply-shift hash functions with odd constants a:

Theorem 11.5

The family of hash functions H given by equation (11.5) is 2/m-

universal.

▪

That is, the probability that any two distinct keys collide is at most

2/m. In many practical situations, the speed of computing the hash

function more than compensates for the higher upper bound on the

probability that two distinct keys collide when compared with a

universal hash function.

11.3.5 Hashing long inputs such as vectors or strings

Sometimes hash function inputs are so long that they cannot be easily

encoded modulo a reasonably sized prime number p or encoded within

a single word of, say, 64 bits. As an example, consider the class of

vectors, such as vectors of 8-bit bytes (which is how strings in many

programming languages are stored). A vector might have an arbitrary

nonnegative length, in which case the length of the input to the hash

function may vary from input to input.

Number-theoretic approaches

One way to design good hash functions for variable-length inputs is to

extend the ideas used in Section 11.3.4 to design universal hash

functions. Exercise 11.3-6 explores one such approach.

Cryptographic hashing

Another way to design a good hash function for variable-length inputs

is to use a hash function designed for cryptographic applications.

Cryptographic hash functions are complex pseudorandom functions,

designed for applications requiring properties beyond those needed

here, but are robust, widely implemented, and usable as hash functions

for hash tables.

A cryptographic hash function takes as input an arbitrary byte string

and returns a fixed-length output. For example, the NIST standard

deterministic cryptographic hash function SHA-256 [346] produces a

256-bit (32-byte) output for any input.

Some chip manufacturers include instructions in their CPU

architectures to provide fast implementations of some cryptographic

functions. Of particular interest are instructions that efficiently

implement rounds of the Advanced Encryption Standard (AES), the

“AES-NI” instructions. These instructions execute in a few tens of

nanoseconds, which is generally fast enough for use with hash tables. A

message authentication code such as CBC-MAC based on AES and the

use of the AES-NI instructions could be a useful and efficient hash

function. We don’t pursue the potential use of specialized instruction

sets further here.

Cryptographic hash functions are useful because they provide a way

of implementing an approximate version of a random oracle. As noted

earlier, a random oracle is equivalent to an independent uniform hash

function family. From a theoretical point of view, a random oracle is an

unachievable ideal: a deterministic function that provides a randomly

selected output for each input. Because it is deterministic, it provides

the same output if queried again for the same input. From a practical

point of view, constructions of hash function families based on

cryptographic hash functions are sensible substitutes for random

oracles.

There are many ways to use a cryptographic hash function as a hash

function. For example, we could define

h(k) = SHA-256(k) mod m.

To define a family of such hash functions one may prepend a “salt”

string a to the input before hashing it, as in

ha(k) = SHA-256(a ‖ k) mod m,

where a ‖ k denotes the string formed by concatenating the strings a and

k. The literature on message authentication codes (MACs) provides

additional approaches.

Cryptographic approaches to hash-function design are becoming

more practical as computers arrange their memories in hierarchies of

differing capacities and speeds. Section 11.5 discusses one hash-function

design based on the RC6 encryption method.

Exercises

11.3-1

You wish to search a linked list of length n, where each element contains

a key k along with a hash value h(k). Each key is a long character string.

How might you take advantage of the hash values when searching the

list for an element with a given key?

11.3-2

You hash a string of r characters into m slots by treating it as a radix-

128 number and then using the division method. You can represent the

number m as a 32-bit computer word, but the string of r characters,

treated as a radix-128 number, takes many words. How can you apply

the division method to compute the hash value of the character string

without using more than a constant number of words of storage outside

the string itself ?

11.3-3

Consider a version of the division method in which h(k) = k mod m,

where m = 2p − 1 and k is a character string interpreted in radix 2p.

Show that if string x can be converted to string y by permuting its

characters, then x and y hash to the same value. Give an example of an

application in which this property would be undesirable in a hash

function.

11.3-4

Consider a hash table of size m = 1000 and a corresponding hash

function h(k) = ⌊m (kA mod 1)⌋ for . Compute the

locations to which the keys 61, 62, 63, 64, and 65 are mapped.

★ 11.3-5

Show that any ϵ-universal family H of hash functions from a finite set

U to a finite set Q has ϵ ≥ 1/|Q| − 1/|U|.

★ 11.3-6

Let U be the set of d-tuples of values drawn from ℤp, and let Q = ℤp,

where p is prime. Define the hash function hb : U → Q for b ∈ ℤp on an

input d-tuple 〈a0, a1, …, ad−1〉 from U as

and let H = {hb : b ∈ ℤp}. Argue that H is ϵ-universal for ϵ = (d −

1)/p. (Hint: See Exercise 31.4-4.)

11.4 Open addressing

This section describes open addressing, a method for collision

resolution that, unlike chaining, does not make use of storage outside of

the hash table itself. In open addressing, all elements occupy the hash

table itself. That is, each table entry contains either an element of the

dynamic set or NIL. No lists or elements are stored outside the table,

unlike in chaining. Thus, in open addressing, the hash table can “fill up”

so that no further insertions can be made. One consequence is that the

load factor α can never exceed 1.

Collisions are handled as follows: when a new element is to be

inserted into the table, it is placed in its “first-choice” location if

possible. If that location is already occupied, the new element is placed

in its “second-choice” location. The process continues until an empty

slot is found in which to place the new element. Different elements have

different preference orders for the locations.

To search for an element, systematically examine the preferred table

slots for that element, in order of decreasing preference, until either you

find the desired element or you find an empty slot and thus verify that

the element is not in the table.

Of course, you could use chaining and store the linked lists inside the

hash table, in the otherwise unused hash-table slots (see Exercise 11.2-

4), but the advantage of open addressing is that it avoids pointers

altogether. Instead of following pointers, you compute the sequence of

slots to be examined. The memory freed by not storing pointers

provides the hash table with a larger number of slots in the same

amount of memory, potentially yielding fewer collisions and faster

retrieval.

To perform insertion using open addressing, successively examine, or

probe, the hash table until you find an empty slot in which to put the

key. Instead of being fixed in the order 0, 1, …, m − 1 (which implies a

Θ(n) search time), the sequence of positions probed depends upon the

key being inserted. To determine which slots to probe, the hash function

includes the probe number (starting from 0) as a second input. Thus, the

hash function becomes

h : U × {0, 1, …, m − 1} → {0, 1, …, m − 1}.

Open addressing requires that for every key k, the probe sequence 〈h(k,

0), h(k, 1), …, h(k, m − 1)〉 be a permutation of 〈0, 1, …, m − 1〉, so that

every hash-table position is eventually considered as a slot for a new key

as the table fills up. The HASH-INSERT procedure on the following

page assumes that the elements in the hash table T are keys with no

satellite information: the key k is identical to the element containing key

k. Each slot contains either a key or NIL (if the slot is empty). The

HASH-INSERT procedure takes as input a hash table T and a key

k that is assumed to be not already present in the hash table. It either

returns the slot number where it stores key k or flags an error because

the hash table is already full.

HASH-INSERT(T, k)

1 i = 0

2 repeat

3 q = h(k, i)

4 if T[q] == NIL

5 T[q] = k

6 return q

7 else i = i + 1

8 until i == m

9 error “hash table overflow”

HASH-SEARCH(T, k)

1 i = 0

2 repeat

3 q = h(k, i)

4 if T[q] == k

5 return q

6 i = i + 1

7 until T[q] == NIL or i == m

8 return NIL

The algorithm for searching for key k probes the same sequence of

slots that the insertion algorithm examined when key k was inserted.

Therefore, the search can terminate (unsuccessfully) when it finds an

empty slot, since k would have been inserted there and not later in its

probe sequence. The procedure HASH-SEARCH takes as input a hash

table T and a key k, returning q if it finds that slot q contains key k, or

NIL if key k is not present in table T.

Deletion from an open-address hash table is tricky. When you delete

a key from slot q, it would be a mistake to mark that slot as empty by

simply storing NIL in it. If you did, you might be unable to retrieve any

key k for which slot q was probed and found occupied when k was

inserted. One way to solve this problem is by marking the slot, storing

in it the special value DELETED instead of NIL. The HASH-INSERT

procedure then has to treat such a slot as empty so that it can insert a

new key there. The HASH-SEARCH procedure passes over DELETED

values while searching, since slots containing DELETED were filled

when the key being searched for was inserted. Using the special value

DELETED, however, means that search times no longer depend on the

load factor α, and for this reason chaining is frequently selected as a

collision resolution technique when keys must be deleted. There is a

simple special case of open addressing, linear probing, that avoids the

need to mark slots with DELETED. Section 11.5.1 shows how to delete

from a hash table when using linear probing.

In our analysis, we assume independent uniform permutation hashing

(also confusingly known as uniform hashing in the literature): the probe

sequence of each key is equally likely to be any of the m! permutations

of 〈0, 1, …, m − 1〉. Independent uniform permutation hashing

generalizes the notion of independent uniform hashing defined earlier to

a hash function that produces not just a single slot number, but a whole

probe sequence. True independent uniform permutation hashing is

difficult to implement, however, and in practice suitable approximations

(such as double hashing, defined below) are used.

We’ll examine both double hashing and its special case, linear

probing. These techniques guarantee that 〈h(k, 0), h(k, 1), …, h(k, m −

1)〉 is a permutation of 〈0, 1, …, m − 1〉 for each key k. (Recall that the

second parameter to the hash function h is the probe number.) Neither

double hashing nor linear probing meets the assumption of independent

uniform permutation hashing, however. Double hashing cannot

generate more than m2 different probe sequences (instead of the m! that

independent uniform permutation hashing requires). Nonetheless,

double hashing has a large number of possible probe sequences and, as

you might expect, seems to give good results. Linear probing is even

more restricted, capable of generating only m different probe sequences.

Double hashing

Double hashing offers one of the best methods available for open

addressing because the permutations produced have many of the

characteristics of randomly chosen permutations. Double hashing uses a

hash function of the form

h(k, i) = (h1(k) + ih2(k)) mod m,

where both h1 and h2 are auxiliary hash functions. The initial probe goes

to position T[h1(k)], and successive probe positions are offset from

previous positions by the amount h2(k), modulo m. Thus, the probe

sequence here depends in two ways upon the key k, since the initial

probe position h1(k), the step size h2(k), or both, may vary. Figure 11.5

gives an example of insertion by double hashing.

In order for the entire hash table to be searched, the value h2(k) must

be relatively prime to the hash-table size m. (See Exercise 11.4-5.) A

convenient way to ensure this condition is to let m be an exact power of

2 and to design h2 so that it always produces an odd number. Another

way is to let m be prime and to design h2 so that it always returns a

positive integer less than m. For example, you could choose m prime

and let

Figure 11.5 Insertion by double hashing. The hash table has size 13 with h1(k) = k mod 13 and

h2(k) = 1 + (k mod 11). Since 14 = 1 (mod 13) and 14 = 3 (mod 11), the key 14 goes into empty

slot 9, after slots 1 and 5 are examined and found to be occupied.

h1(k) = k mod m,

h2(k) = 1 + (k mod m′),

where m′ is chosen to be slightly less than m (say, m − 1). For example, if

k = 123456, m = 701, and m′ = 700, then h1(k) = 80 and h2(k) = 257, so

that the first probe goes to position 80, and successive probes examine

every 257th slot (modulo m) until the key has been found or every slot

has been examined.

Although values of m other than primes or exact powers of 2 can in

principle be used with double hashing, in practice it becomes more

difficult to efficiently generate h2(k) (other than choosing h2(k) = 1,

which gives linear probing) in a way that ensures that it is relatively

prime to m, in part because the relative density ϕ(m)/m of such numbers

for general m may be small (see equation (31.25) on page 921).

When m is prime or an exact power of 2, double hashing produces

Θ(m2) probe sequences, since each possible (h1(k), h2(k)) pair yields a

distinct probe sequence. As a result, for such values of m, double

hashing appears to perform close to the “ideal” scheme of independent

uniform permutation hashing.

Linear probing

Linear probing, a special case of double hashing, is the simplest open-

addressing approach to resolving collisions. As with double hashing, an

auxiliary hash function h1 determines the first probe position h1(k) for

inserting an element. If slot T[h1(k)] is already occupied, probe the next

position T[h1(k) + 1]. Keep going as necessary, on up to slot T[m − 1],

and then wrap around to slots T[0], T[1], and so on, but never going

past slot T[h1(k) − 1]. To view linear probing as a special case of double

hashing, just set the double-hashing step function h2 to be fixed at 1:

h2(k) = 1 for all k. That is, the hash function is

for i = 0, 1, …, m − 1. The value of h1(k) determines the entire probe

sequence, and so assuming that h1(k) can take on any value in {0, 1, …,

m − 1}, linear probing allows only m distinct probe sequences.

We’ll revisit linear probing in Section 11.5.1.

Analysis of open-address hashing

As in our analysis of chaining in Section 11.2, we analyze open

addressing in terms of the load factor α = n/m of the hash table. With

open addressing, at most one element occupies each slot, and thus n ≤

m, which implies α ≤ 1. The analysis below requires α to be strictly less

than 1, and so we assume that at least one slot is empty. Because

deleting from an open-address hash table does not really free up a slot,

we assume as well that no deletions occur.

For the hash function, we assume independent uniform permutation

hashing. In this idealized scheme, the probe sequence 〈h(k, 0), h(k, 1),

…, h(k, m − 1)〉 used to insert or search for each key k is equally likely

to be any permutation of 〈0, 1, …, m − 1〉. Of course, any given key has

a unique fixed probe sequence associated with it. What we mean here is

that, considering the probability distribution on the space of keys and

the operation of the hash function on the keys, each possible probe

sequence is equally likely.

We now analyze the expected number of probes for hashing with

open addressing under the assumption of independent uniform

permutation hashing, beginning with the expected number of probes

made in an unsuccessful search (assuming, as stated above, that α < 1).

The bound proven, of 1/(1 − α) = 1 + α + α2 + α3 + ⋯, has an

intuitive interpretation. The first probe always occurs. With probability

approximately α, the first probe finds an occupied slot, so that a second

probe happens. With probability approximately α2, the first two slots

are occupied so that a third probe ensues, and so on.

Theorem 11.6

Given an open-address hash table with load factor α = n/m < 1, the

expected number of probes in an unsuccessful search is at most 1/(1 −

α), assuming independent uniform permutation hashing and no

deletions.

Proof In an unsuccessful search, every probe but the last accesses an

occupied slot that does not contain the desired key, and the last slot

probed is empty. Let the random variable X denote the number of

probes made in an unsuccessful search, and define the event Ai, for i =

1, 2, …, as the event that an ith probe occurs and it is to an occupied

slot. Then the event {X ≥ i} is the intersection of events A1 ⋂ A2 ⋂ ⋯

⋂ Ai−1. We bound Pr{X ≥ i} by bounding Pr{A1 ⋂ A2 ⋂ ⋯ ⋂ Ai−1}.

By Exercise C.2-5 on page 1190,

Pr{A1 ⋂ A2 ⋂ ⋯ ⋂

Ai−1}

= Pr{A1} · Pr{A2 | A1} · Pr {A3 | A1 ⋂ A2}

⋯

Pr{Ai−1 | A1 ⋂ A2 ⋂ ⋯ ⋂ Ai−2}.

	III Data Structures
	11 Hash Tables
	11.1 Direct-address tables
	11.2 Hash tables
	11.3 Hash functions
	11.4 Open addressing

