
20 Elementary Graph Algorithms

This chapter presents methods for representing a graph and for

searching a graph. Searching a graph means systematically following the

edges of the graph so as to visit the vertices of the graph. A graph-

searching algorithm can discover much about the structure of a graph.

Many algorithms begin by searching their input graph to obtain this

structural information. Several other graph algorithms elaborate on

basic graph searching. Techniques for searching a graph lie at the heart

of the field of graph algorithms.

Section 20.1 discusses the two most common computational

representations of graphs: as adjacency lists and as adjacency matrices.

Section 20.2 presents a simple graph-searching algorithm called

breadth-first search and shows how to create a breadth-first tree. Section

20.3 presents depth-first search and proves some standard results about

the order in which depth-first search visits vertices. Section 20.4

provides our first real application of depth-first search: topologically

sorting a directed acyclic graph. A second application of depth-first

search, finding the strongly connected components of a directed graph,

is the topic of Section 20.5.

20.1 Representations of graphs

You can choose between two standard ways to represent a graph G = (V,

E): as a collection of adjacency lists or as an adjacency matrix. Either

way applies to both directed and undirected graphs. Because the

adjacency-list representation provides a compact way to represent

sparse graphs—those for which |E| is much less than |V|2—it is usually

the method of choice. Most of the graph algorithms presented in this

book assume that an input graph is represented in adjacency-list form.

You might prefer an adjacency-matrix representation, however, when

the graph is dense—|E| is close to |V|2—or when you need to be able to

tell quickly whether there is an edge connecting two given vertices. For

example, two of the all-pairs shortest-paths algorithms presented in

Chapter 23 assume that their input graphs are represented by adjacency

matrices.

Figure 20.1 Two representations of an undirected graph. (a) An undirected graph G with 5

vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix

representation of G.

Figure 20.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8

edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

The adjacency-list representation of a graph G = (V, E) consists of an

array Adj of |V| lists, one for each vertex in V. For each u ∈ V, the

adjacency list Adj[u] contains all the vertices v such that there is an edge

(u, v) ∈ E. That is, Adj[u] consists of all the vertices adjacent to u in G.

(Alternatively, it can contain pointers to these vertices.) Since the

adjacency lists represent the edges of a graph, our pseudocode treats the

array Adj as an attribute of the graph, just like the edge set E. In

pseudocode, therefore, you will see notation such as G.Adj[u]. Figure

20.1(b) is an adjacency-list representation of the undirected graph in

Figure 20.1(a). Similarly, Figure 20.2(b) is an adjacency-list

representation of the directed graph in Figure 20.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency

lists is |E|, since an edge of the form (u, v) is represented by having v

appear in Adj[u]. If G is an undirected graph, the sum of the lengths of

all the adjacency lists is 2 |E|, since if (u, v) is an undirected edge, then u

appears in v’s adjacency list and vice versa. For both directed and

undirected graphs, the adjacency-list representation has the desirable

property that the amount of memory it requires is Θ(V + E). Finding

each edge in the graph also takes Θ(V + E) time, rather than just Θ(E),

since each of the |V| adjacency lists must be examined. Of course, if |E| =

Ω(V)—such as in a connected, undirected graph or a strongly

connected, directed graph—we can say that finding each edge takes

Θ(E) time.

Adjacency lists can also represent weighted graphs, that is, graphs for

which each edge has an associated weight given by a weight function w :

E → ℝ. For example, let G = (V, E) be a weighted graph with weight

function w. Then you can simply store the weight w(u, v) of the edge (u,

v) ∈ E with vertex v in u’s adjacency list. The adjacency-list

representation is quite robust in that you can modify it to support many

other graph variants.

A potential disadvantage of the adjacency-list representation is that

it provides no quicker way to determine whether a given edge (u, v) is

present in the graph than to search for v in the adjacency list Adj[u]. An

adjacency-matrix representation of the graph remedies this

disadvantage, but at the cost of using asymptotically more memory. (See

Exercise 20.1-8 for suggestions of variations on adjacency lists that

permit faster edge lookup.)

The adjacency-matrix representation of a graph G = (V, E) assumes

that the vertices are numbered 1, 2, … , |V| in some arbitrary manner.

Then the adjacency-matrix representation of a graph G consists of a |V|

× |V| matrix A = (aij) such that

Figures 20.1(c) and 20.2(c) are the adjacency matrices of the undirected

and directed graphs in Figures 20.1(a) and 20.2(a), respectively. The

adjacency matrix of a graph requires Θ(V2) memory, independent of the

number of edges in the graph. Because finding each edge in the graph

requires examining the entire adjacency matrix, doing so takes Θ(V2)

time.

Observe the symmetry along the main diagonal of the adjacency

matrix in Figure 20.1(c). Since in an undirected graph, (u, v) and (v, u)

represent the same edge, the adjacency matrix A of an undirected graph

is its own transpose: A = AT. In some applications, it pays to store only

the entries on and above the diagonal of the adjacency matrix, thereby

cutting the memory needed to store the graph almost in half.

Like the adjacency-list representation of a graph, an adjacency

matrix can represent a weighted graph. For example, if G = (V, E) is a

weighted graph with edge-weight function w, you can store the weight

w(u, v) of the edge (u, v) ∈ E as the entry in row u and column v of the

adjacency matrix. If an edge does not exist, you can store a NIL value

as its corresponding matrix entry, though for many problems it is

convenient to use a value such as 0 or ∞.

Although the adjacency-list representation is asymptotically at least

as space-efficient as the adjacency-matrix representation, adjacency

matrices are simpler, and so you might prefer them when graphs are

reasonably small. Moreover, adjacency matrices carry a further

advantage for unweighted graphs: they require only one bit per entry.

Representing attributes

Most algorithms that operate on graphs need to maintain attributes for

vertices and/or edges. We indicate these attributes using our usual

notation, such as v.d for an attribute d of a vertex v. When we indicate

edges as pairs of vertices, we use the same style of notation. For

example, if edges have an attribute f, then we denote this attribute for

edge (u, v) by (u, v).f. For the purpose of presenting and understanding

algorithms, our attribute notation suffices.

Implementing vertex and edge attributes in real programs can be

another story entirely. There is no one best way to store and access

vertex and edge attributes. For a given situation, your decision will likely

depend on the programming language you are using, the algorithm you

are implementing, and how the rest of your program uses the graph. If

you represent a graph using adjacency lists, one design choice is to

represent vertex attributes in additional arrays, such as an array d[1 : |V|]

that parallels the Adj array. If the vertices adjacent to u belong to Adj[u],

then the attribute u.d can actually be stored in the array entry d[u].

Many other ways of implementing attributes are possible. For example,

in an object-oriented programming language, vertex attributes might be

represented as instance variables within a subclass of a Vertex class.

Exercises

20.1-1

Given an adjacency-list representation of a directed graph, how long

does it take to compute the out-degree of every vertex? How long does it

take to compute the in-degrees?

20.1-2

Give an adjacency-list representation for a complete binary tree on 7

vertices. Give an equivalent adjacency-matrix representation. Assume

that the edges are undirected and that the vertices are numbered from 1

to 7 as in a binary heap.

20.1-3

The transpose of a directed graph G = (V, E) is the graph GT = (V, ET),

where ET = {(v, u) ∈ V × V : (u, v) ∈ E}. That is, GT is G with all its

edges reversed. Describe efficient algorithms for computing GT from G,

for both the adjacency-list and adjacency-matrix representations of G.

Analyze the running times of your algorithms.

20.1-4

Given an adjacency-list representation of a multigraph G = (V, E),

describe an O(V + E)-time algorithm to compute the adjacency-list

representation of the “equivalent” undirected graph G′ = (V, E′), where

E′ consists of the edges in E with all multiple edges between two vertices

replaced by a single edge and with all self-loops removed.

20.1-5

The square of a directed graph G = (V, E) is the graph G2 = (V, E2)

such that (u, v) ∈ E2 if and only if G contains a path with at most two

edges between u and v. Describe efficient algorithms for computing G2

from G for both the adjacency-list and adjacency-matrix representations

of G. Analyze the running times of your algorithms.

20.1-6

Most graph algorithms that take an adjacency-matrix representation as

input require Ω(V2) time, but there are some exceptions. Show how to

determine whether a directed graph G contains a universal sink—a

vertex with in-degree |V| – 1 and out-degree 0—in O(V) time, given an

adjacency matrix for G.

20.1-7

The incidence matrix of a directed graph G = (V, E) with no self-loops is

a |V| × |E| matrix B = (bij) such that

Describe what the entries of the matrix product BBT represent, where

BT is the transpose of B.

20.1-8

Suppose that instead of a linked list, each array entry Adj[u] is a hash

table containing the vertices v for which (u, v) ∈ E, with collisions

resolved by chaining. Under the assumption of uniform independent

hashing, if all edge lookups are equally likely, what is the expected time

to determine whether an edge is in the graph? What disadvantages does

this scheme have? Suggest an alternate data structure for each edge list

that solves these problems. Does your alternative have disadvantages

compared with the hash table?

20.2 Breadth-first search

Breadth-first search is one of the simplest algorithms for searching a

graph and the archetype for many important graph algorithms. Prim’s

minimum-spanning-tree algorithm (Section 21.2) and Dijkstra’s single-

source shortest-paths algorithm (Section 22.3) use ideas similar to those

in breadth-first search.

Given a graph G = (V, E) and a distinguished source vertex s,

breadth-first search systematically explores the edges of G to “discover”

every vertex that is reachable from s. It computes the distance from s to

each reachable vertex, where the distance to a vertex v equals the

smallest number of edges needed to go from s to v. Breadth-first search

also produces a “breadth-first tree” with root s that contains all

reachable vertices. For any vertex v reachable from s, the simple path in

the breadth-first tree from s to v corresponds to a shortest path from s

to v in G, that is, a path containing the smallest number of edges. The

algorithm works on both directed and undirected graphs.

Breadth-first search is so named because it expands the frontier

between discovered and undiscovered vertices uniformly across the

breadth of the frontier. You can think of it as discovering vertices in

waves emanating from the source vertex. That is, starting from s, the

algorithm first discovers all neighbors of s, which have distance 1. Then

it discovers all vertices with distance 2, then all vertices with distance 3,

and so on, until it has discovered every vertex reachable from s.

In order to keep track of the waves of vertices, breadth-first search

could maintain separate arrays or lists of the vertices at each distance

from the source vertex. Instead, it uses a single first-in, first-out queue

(see Section 10.1.3) containing some vertices at a distance k, possibly

followed by some vertices at distance k + 1. The queue, therefore,

contains portions of two consecutive waves at any time.

To keep track of progress, breadth-first search colors each vertex

white, gray, or black. All vertices start out white, and vertices not

reachable from the source vertex s stay white the entire time. A vertex

that is reachable from s is discovered the first time it is encountered

during the search, at which time it becomes gray, indicating that is now

on the frontier of the search: the boundary between discovered and

undiscovered vertices. The queue contains all the gray vertices.

Eventually, all the edges of a gray vertex will be explored, so that all of

its neighbors will be discovered. Once all of a vertex’s edges have been

explored, the vertex is behind the frontier of the search, and it goes from

gray to black.1

Breadth-first search constructs a breadth-first tree, initially

containing only its root, which is the source vertex s. Whenever the

search discovers a white vertex v in the course of scanning the adjacency

list of a gray vertex u, the vertex v and the edge (u, v) are added to the

tree. We say that u is the predecessor or parent of v in the breadth-first

tree. Since every vertex reachable from s is discovered at most once, each

vertex reachable from s has exactly one parent. (There is one exception:

because s is the root of the breadth-first tree, it has no parent.) Ancestor

and descendant relationships in the breadth-first tree are defined relative

to the root s as usual: if u is on the simple path in the tree from the root

s to vertex v, then u is an ancestor of v and v is a descendant of u.

The breadth-first-search procedure BFS on the following page

assumes that the graph G = (V, E) is represented using adjacency lists. It

denotes the queue by Q, and it attaches three additional attributes to

each vertex v in the graph:

v.color is the color of v: WHITE, GRAY, or BLACK.

v.d holds the distance from the source vertex s to v, as computed

by the algorithm.

v.π is v’s predecessor in the breadth-first tree. If v has no

predecessor because it is the source vertex or is undiscovered, then

v.π NIL.

Figure 20.3 illustrates the progress of BFS on an undirected graph.

The procedure BFS works as follows. With the exception of the

source vertex s, lines 1–4 paint every vertex white, set u.d = ∞ for each

vertex u, and set the parent of every vertex to be NIL. Because the

source vertex s is always the first vertex discovered, lines 5–7 paint s

gray, set s.d to 0, and set the predecessor of s to NIL. Lines 8–9 create

the queue Q, initially containing just the source vertex.

The while loop of lines 10–18 iterates as long as there remain gray

vertices, which are on the frontier: discovered vertices that have not yet

had their adjacency lists fully examined. This while loop maintains the

following invariant:

At the test in line 10, the queue Q consists of the set of gray

vertices.

Although we won’t use this loop invariant to prove correctness, it is easy

to see that it holds prior to the first iteration and that each iteration of

the loop maintains the invariant. Prior to the first iteration, the only

gray vertex, and the only vertex in Q, is the source vertex s. Line 11

determines the gray vertex u at the head of the queue Q and removes it

from Q. The for loop of lines 12–17 considers each vertex v in the

adjacency list of u. If v is white, then it has not yet been discovered, and

the procedure discovers it by executing lines 14–17. These lines paint

vertex v gray, set v’s distance v.d to u.d + 1, record u as v’s parent v.π,

and place v at the tail of the queue Q. Once the procedure has examined

all the vertices on u’s adjacency list, it blackens u in line 18, indicating

that u is now behind the frontier. The loop invariant is maintained

because whenever a vertex is painted gray (in line 14) it is also enqueued

(in line 17), and whenever a vertex is dequeued (in line 11) it is also

painted black (in line 18).

BFS(G, s)

 1 for each vertex u ∈ G.V – {s}

 2 u.color = WHITE

 3 u.d = ∞

 4 u.π NIL

 5s.color = GRAY

 6s.d = 0

 7s.π NIL

 8Q = Ø

 9ENQUEUE(Q, s)

10while Q ≠ Ø

11 u = DEQUEUE(Q)

12 for each vertex v in G.Adj[u] // search the neighbors of u

13 if v.color == WHITE // is v being discovered now?

14 v.color = GRAY

15 v.d = u.d + 1

16 v.π = u

17 ENQUEUEd(Q, v) // v is now on the frontier

18 u.color = BLACK // u is now behind the frontier

The results of breadth-first search may depend upon the order in

which the neighbors of a given vertex are visited in line 12: the breadth-

first tree may vary, but the distances d computed by the algorithm do

not. (See Exercise 20.2-5.)

A simple change allows the BFS procedure to terminate in many

cases before the queue Q becomes empty. Because each vertex is

discovered at most once and receives a finite d value only when it is

discovered, the algorithm can terminate once every vertex has a finite d

value. If BFS keeps count of how many vertices have been discovered, it

can terminate once either the queue Q is empty or all |V| vertices are

discovered.

Figure 20.3 The operation of BFS on an undirected graph. Each part shows the graph and the

queue Q at the beginning of each iteration of the while loop of lines 10–18. Vertex distances

appear within each vertex and below vertices in the queue. The tan region surrounds the frontier

of the search, consisting of the vertices in the queue. The light blue region surrounds the vertices

behind the frontier, which have been dequeued. Each part highlights in orange the vertex

dequeued and the breadth-first tree edges added, if any, in the previous iteration. Blue edges

belong to the breadth-first tree constructed so far.

Analysis

Before proving the various properties of breadth-first search, let’s take

on the easier job of analyzing its running time on an input graph G =

(V, E). We use aggregate analysis, as we saw in Section 16.1. After

initialization, breadth-first search never whitens a vertex, and thus the

test in line 13 ensures that each vertex is enqueued at most once, and

hence dequeued at most once. The operations of enqueuing and

dequeuing take O(1) time, and so the total time devoted to queue

operations is O(V). Because the procedure scans the adjacency list of

each vertex only when the vertex is dequeued, it scans each adjacency

list at most once. Since the sum of the lengths of all |V| adjacency lists is

Θ(E), the total time spent in scanning adjacency lists is O(V + E). The

overhead for initialization is O(V), and thus the total running time of

the BFS procedure is O(V + E). Thus, breadth-first search runs in time

linear in the size of the adjacency-list representation of G.

Shortest paths

Now, let’s see why breadth-first search finds the shortest distance from a

given source vertex s to each vertex in a graph. Define the shortest-path

distance δ(s, v) from s to v as the minimum number of edges in any path

from vertex s to vertex v. If there is no path from s to v, then δ(s, v) = ∞.

We call a path of length δ(s, v) from s to v a shortest path2 from s to v.

Before showing that breadth-first search correctly computes shortest-

path distances, we investigate an important property of shortest-path

distances.

Lemma 20.1

Let G = (V, E) be a directed or undirected graph, and let s ∈ V be an

arbitrary vertex. Then, for any edge (u, v) ∈ E,

δ(s, v) ≤ δ(s, u) + 1.

Proof If u is reachable from s, then so is v. In this case, the shortest

path from s to v cannot be longer than the shortest path from s to u

followed by the edge (u, v), and thus the inequality holds. If u is not

reachable from s, then δ(s, u) = ∞, and again, the inequality holds.

▪

Our goal is to show that the BFS procedure properly computes v.d =

δ(s, v) for each vertex v ∈ V. We first show that v.d bounds δ(s, v) from

above.

Lemma 20.2

Let G = (V, E) be a directed or undirected graph, and suppose that BFS

is run on G from a given source vertex s ∈ V. Then, for each vertex v ∈

V, the value v.d computed by BFS satisfies v.d ≥ δ(s, v) at all times,

including at termination.

Proof The lemma is true intuitively, because any finite value assigned

to v.d equals the number of edges on some path from s to v. The formal

proof is by induction on the number of ENQUEUE operations. The

inductive hypothesis is that v.d ≥ δ(s, v) for all v ∈ V.

The base case of the induction is the situation immediately after

enqueuing s in line 9 of BFS. The inductive hypothesis holds here,

because s.d = 0 = δ(s, s) and v.d = 1 ∞ δ(s, v) for all v ∈ V – {s}.

For the inductive step, consider a white vertex v that is discovered

during the search from a vertex u. The inductive hypothesis implies that

u.d ≥ δ(s, u). The assignment performed by line 15 and Lemma 20.1 give

v.d = u.d + 1

≥ δ(s, u) + 1

≥ δ(s, v).

Vertex v is then enqueued, and it is never enqueued again because it is

also grayed and lines 14–17 execute only for white vertices. Thus, the

value of v.d never changes again, and the inductive hypothesis is

maintained.

▪

To prove that v.d = δ(s, v), we first show more precisely how the

queue Q operates during the course of BFS. The next lemma shows that

at all times, the d values of vertices in the queue either are all the same

or form a sequence 〈k, k, … , k, k + 1, k + 1, … , k + 1〉 for some integer

k ≥ 0.

Lemma 20.3

Suppose that during the execution of BFS on a graph G = (V, E), the

queue Q contains the vertices 〈v1, v2, … , vr〉, where v1 is the head of Q

and vr is the tail. Then, vr.d ≤ v1.d + 1 and vi.d ≤ vi+1.d for i = 1, 2, … ,

r – 1.

Proof The proof is by induction on the number of queue operations.

Initially, when the queue contains only s, the lemma trivially holds.

For the inductive step, we must prove that the lemma holds after

both dequeuing and enqueuing a vertex. First, we examine dequeuing.

When the head v1 of the queue is dequeued, v2 becomes the new head.

(If the queue becomes empty, then the lemma holds vacuously.) By the

inductive hypothesis, v1.d ≤ v2.d. But then we have vr.d ≤ v1.d+1 ≤ v2.d

+ 1, and the remaining inequalities are unaffected. Thus, the lemma

follows with v2 as the new head.

Now, we examine enqueuing. When line 17 of BFS enqueues a vertex

v onto a queue containing vertices 〈v1, v2, … , vr〉, the enqueued vertex

becomes vr+1. If the queue was empty before v was enqueued, then

after enqueuing v, we have r = 1 and the lemma trivially holds. Now

suppose that the queue was nonempty when v was enqueued. At that

time, the procedure has most recently removed vertex u, whose

adjacency list is currently being scanned, from the queue Q. Just before

u was removed, we had u = v1 and the inductive hypothesis held, so that

u.d ≤ v2.d and vr.d ≤ u.d + 1. After u is removed from the queue, the

vertex that had been v2 becomes the new head v1 of the queue, so that

now u.d ≤ v1.d. Thus, vr+1.d = v.d = u.d + 1 ≤ v1.d + 1. Since vr.d ≤ u.d +

1, we have vr.d ≤ u.d + 1 = v.d = vr+1.d, and the remaining inequalities

are unaffected. Thus, the lemma follows when v is enqueued.

▪

The following corollary shows that the d values at the time that

vertices are enqueued monotonically increase over time.

Corollary 20.4

Suppose that vertices vi and vj are enqueued during the execution of

BFS, and that vi is enqueued before vj. Then vi.d ≤ vj.d at the time that vj

is enqueued.

Proof Immediate from Lemma 20.3 and the property that each vertex

receives a finite d value at most once during the course of BFS.

▪

We can now prove that breadth-first search correctly finds shortest-

path distances.

Theorem 20.5 (Correctness of breadth-first search)

Let G = (V, E) be a directed or undirected graph, and suppose that BFS

is run on G from a given source vertex s ∈ V. Then, during its

execution, BFS discovers every vertex v ∈ V that is reachable from the

source s, and upon termination, v.d = δ(s, v) for all v ∈ V. Moreover, for

any vertex v ≠ s that is reachable from s, one of the shortest paths from s

to v is a shortest path from s to v.π followed by the edge (v.π, v).

Proof Assume for the purpose of contradiction that some vertex

receives a d value not equal to its shortest-path distance. Of all such

vertices, let v be a vertex that has the minimum δ(s, v). By Lemma 20.2,

we have v.d ≥ δ(s, v), and thus v.d > δ(s, v). We cannot have v = s,

because s.d = 0 and δ(s, s) = 0. Vertex v must be reachable from s, for

otherwise we would have δ(s, v) = ∞ ≥ v.d. Let u be the vertex

immediately preceding v on some shortest path from s to v (since v ≠ s,

vertex u must exist), so that δ(s, v) = δ(s, u)+1. Because δ(s, u) < δ(s, v),

and because of how we chose v, we have u.d = δ(s, u). Putting these

properties together gives

Now consider the time when BFS chooses to dequeue vertex u from

Q in line 11. At this time, vertex v is either white, gray, or black. We

shall show that each of these cases leads to a contradiction of inequality

(20.1). If v is white, then line 15 sets v.d = u.d + 1, contradicting

inequality (20.1). If v is black, then it was already removed from the

queue and, by Corollary 20.4, we have v.d ≤ u.d, again contradicting

inequality (20.1). If v is gray, then it was painted gray upon dequeuing

some vertex w, which was removed from Q earlier than u and for which

v.d = w.d + 1. By Corollary 20.4, however, w.d ≤ u.d, and so v.d = w.d + 1

≤ u.d + 1, once again contradicting inequality (20.1).

Thus we conclude that v.d = δ(s, v) for all v ∈ V. All vertices v

reachable from s must be discovered, for otherwise they would have ∞ =

v.d > δ(s, v). To conclude the proof of the theorem, observe from lines

15–16 that if v.π = u, then v.d = u.d + 1. Thus, to form a shortest path

from s to v, take a shortest path from s to v.π and then traverse the edge

(v.π v).

▪

Breadth-first trees

The blue edges in Figure 20.3 show the breadth-first tree built by the

BFS procedure as it searches the graph. The tree corresponds to the π

attributes. More formally, for a graph G = (V, E) with source s, we

define the predecessor subgraph of G as Gπ = (Vπ, Eπ), where

and

The predecessor subgraph Gπ is a breadth-first tree if Vπ consists of the

vertices reachable from s and, for all v ∈ Vπ, the subgraph Gπ contains

a unique simple path from s to v that is also a shortest path from s to v

in G. A breadth-first tree is in fact a tree, since it is connected and |Eπ| =

|Vπ| − 1 (see Theorem B.2 on page 1169). We call the edges in Eπtree

edges.

The following lemma shows that the predecessor subgraph produced

by the BFS procedure is a breadth-first tree.

Lemma 20.6

When applied to a directed or undirected graph G = (V, E), procedure

BFS constructs π so that the predecessor subgraph Gπ = (Vπ, Eπ) is a

breadth-first tree.

Proof Line 16 of BFS sets v.π = u if and only if (u, v) = E and δ(s, v) <

∞—that is, if v is reachable from s—and thus Vπ consists of the vertices

in V reachable from s. Since the predecessor subgraph Gπ forms a tree,

by Theorem B.2, it contains a unique simple path from s to each vertex

in Vπ. Applying Theorem 20.5 inductively yields that every such path is

a shortest path in G.

The PRINT-PATH procedure prints out the vertices on a shortest

path from s to v, assuming that BFS has already computed a breadth-

first tree. This procedure runs in time linear in the number of vertices in

the path printed, since each recursive call is for a path one vertex

shorter.

PRINT-PATH(G, s, v)

 1 if v == s

 2 print s

 3elseif v.π == NIL

 4 print “no path from” s “to” v “exists”

 5else PRINT-PATH(G, s, v.π)

 6 print v

Exercises

20.2-1

Show the d and π values that result from running breadth-first search on

the directed graph of Figure 20.2(a), using vertex 3 as the source.

20.2-2

Show the d and π values that result from running breadth-first search on

the undirected graph of Figure 20.3, using vertex u as the source.

Assume that neighbors of a vertex are visited in alphabetical order.

20.2-3

Show that using a single bit to store each vertex color suffices by

arguing that the BFS procedure produces the same result if line 18 is

removed. Then show how to obviate the need for vertex colors

altogether.

20.2-4

What is the running time of BFS if we represent its input graph by an

adjacency matrix and modify the algorithm to handle this form of

input?

20.2-5

Argue that in a breadth-first search, the value u.d assigned to a vertex u

is independent of the order in which the vertices appear in each

adjacency list. Using Figure 20.3 as an example, show that the breadth-

first tree computed by BFS can depend on the ordering within

adjacency lists.

20.2-6

Give an example of a directed graph G = (V, E), a source vertex s ∈ V,

and a set of tree edges Eπ ⊆ E such that for each vertex v ∈ V, the

unique simple path in the graph (V, Eπ) from s to v is a shortest path in

G, yet the set of edges Eπ cannot be produced by running BFS on G, no

matter how the vertices are ordered in each adjacency list.

20.2-7

There are two types of professional wrestlers: “faces” (short for

“babyfaces,” i.e., “good guys”) and “heels” (“bad guys”). Between any

pair of professional wrestlers, there may or may not be a rivalry. You are

given the names of n professional wrestlers and a list of r pairs of

wrestlers for which there are rivalries. Give an O(n + r)-time algorithm

that determines whether it is possible to designate some of the wrestlers

as faces and the remainder as heels such that each rivalry is between a

face and a heel. If it is possible to perform such a designation, your

algorithm should produce it.

★ 20.2-8

The diameter of a tree T = (V, E) is defined as max {δ(u, v) : u, v ∈ V},

that is, the largest of all shortest-path distances in the tree. Give an

efficient algorithm to compute the diameter of a tree, and analyze the

running time of your algorithm.

20.3 Depth-first search

As its name implies, depth-first search searches “deeper” in the graph

whenever possible. Depth-first search explores edges out of the most

recently discovered vertex v that still has unexplored edges leaving it.

Once all of v’s edges have been explored, the search “backtracks” to

explore edges leaving the vertex from which v was discovered. This

process continues until all vertices that are reachable from the original

source vertex have been discovered. If any undiscovered vertices remain,

then depth-first search selects one of them as a new source, repeating the

search from that source. The algorithm repeats this entire process until

it has discovered every vertex.3

As in breadth-first search, whenever depth-first search discovers a

vertex v during a scan of the adjacency list of an already discovered

vertex u, it records this event by setting v’s predecessor attribute v.π to u.

Unlike breadth-first search, whose predecessor subgraph forms a tree,

depth-first search produces a predecessor subgraph that might contain

several trees, because the search may repeat from multiple sources.

Therefore, we define the predecessor subgraph of a depth-first search

slightly differently from that of a breadth-first search: it always includes

all vertices, and it accounts for multiple sources. Specifically, for a

depth-first search the predecessor subgraph is Gπ = (V, Eπ), where

Eπ = {(v.π, v) : v ∈ V and v.π ≠ NIL}.

The predecessor subgraph of a depth-first search forms a depth-first

forest comprising several depth-first trees. The edges in Eπ are tree

edges.

Like breadth-first search, depth-first search colors vertices during the

search to indicate their state. Each vertex is initially white, is grayed

when it is discovered in the search, and is blackened when it is finished,

that is, when its adjacency list has been examined completely. This

technique guarantees that each vertex ends up in exactly one depth-first

tree, so that these trees are disjoint.

Besides creating a depth-first forest, depth-first search also

timestamps each vertex. Each vertex v has two timestamps: the first

timestamp v.d records when v is first discovered (and grayed), and the

second timestamp v.f records when the search finishes examining v’s

adjacency list (and blackens v). These timestamps provide important

information about the structure of the graph and are generally helpful

in reasoning about the behavior of depth-first search.

The procedure DFS on the facing page records when it discovers

vertex u in the attribute u.d and when it finishes vertex u in the attribute

u.f. These timestamps are integers between 1 and 2 |V|, since there is one

discovery event and one finishing event for each of the |V| vertices. For

every vertex u,

Vertex u is WHITE before time u.d, GRAY between time u.d and time

u.f, and BLACK thereafter. In the DFS procedure, the input graph G

may be undirected or directed. The variable time is a global variable

used for timestamping. Figure 20.4 illustrates the progress of DFS on

the graph shown in Figure 20.2 (but with vertices labeled by letters

rather than numbers).

DFS(G)

 1 for each vertex u ∈ G.V

 2 u.color = WHITE

 3 u.π = NIL

 4 time = 0

 5 for each vertex u ∈ G.V

 6 if u.color == WHITE

 7 DFS-VISIT(G, u)

DFS-VISIT(G, u)

 1 time = time + 1 // white vertex u has just been discovered

 2u.d = time

 3u.color = GRAY

 4 for each vertex v in G.Adj[u]// explore each edge (u, v)

 5 if v.color == WHITE

 6 v.π = u

 7 DFS-VISIT(G, v)

 8 time = time + 1

 9u.f = time

10u.color = BLACK // blacken u; it is finished

The DFS procedure works as follows. Lines 1–3 paint all vertices

white and initialize their π attributes to NIL. Line 4 resets the global

time counter. Lines 5–7 check each vertex in V in turn and, when a

white vertex is found, visit it by calling DFS-VISIT. Upon every call of

DFS-VISIT(G, u) in line 7, vertex u becomes the root of a new tree in

the depth-first forest. When DFS returns, every vertex u has been

assigned a discovery time u.d and a finish time u.f.

In each call DFS-VISIT(G, u), vertex u is initially white. Lines 1–3

increment the global variable time, record the new value of time as the

discovery time u.d, and paint u gray. Lines 4–7 examine each vertex v

adjacent to u and recursively visit v if it is white. As line 4 considers each

vertex v ∈ Adj[u], the depth-first search explores edge (u, v). Finally,

after every edge leaving u has been explored, lines 8–10 increment time,

record the finish time in u.f, and paint u black.

The results of depth-first search may depend upon the order in which

line 5 of DFS examines the vertices and upon the order in which line 4

of DFS-VISIT visits the neighbors of a vertex. These different visitation

orders tend not to cause problems in practice, because many

applications of depth-first search can use the result from any depth-first

search.

Figure 20.4 The progress of the depth-first-search algorithm DFS on a directed graph. Edges are

classified as they are explored: tree edges are labeled T, back edges B, forward edges F, and cross

edges C. Timestamps within vertices indicate discovery time/finish times. Tree edges are

highlighted in blue. Orange highlights indicate vertices whose discovery or finish times change

and edges that are explored in each step.

What is the running time of DFS? The loops on lines 1–3 and lines

5–7 of DFS take Θ(V) time, exclusive of the time to execute the calls to

DFS-VISIT. As we did for breadth-first search, we use aggregate

analysis. The procedure DFS-VISIT is called exactly once for each

vertex v ∈ V, since the vertex u on which DFS-VISIT is invoked must

be white and the first thing DFS-VISIT does is paint vertex u gray.

During an execution of DFS-VISIT(G, v), the loop in lines 4–7 executes

|Adj[v]| times. Since Σv∈V |Adj[v]| = Θ(E) and DFS-VISIT is called once

per vertex, the total cost of executing lines 4–7 of DFS-VISIT is Θ(V +

E). The running time of DFS is therefore Θ(V + E).

Properties of depth-first search

Depth-first search yields valuable information about the structure of a

graph. Perhaps the most basic property of depth-first search is that the

predecessor subgraph Gπ does indeed form a forest of trees, since the

structure of the depth-first trees exactly mirrors the structure of

recursive calls of DFS-VISIT. That is, u = v.π if and only if DFS-

VISIT(G, v) was called during a search of u’s adjacency list.

Additionally, vertex v is a descendant of vertex u in the depth-first forest

if and only if v is discovered during the time in which u is gray.

Another important property of depth-first search is that discovery

and finish times have parenthesis structure. If the DFS-VISIT procedure

were to print a left parenthesis “(u” when it discovers vertex u and to

print a right parenthesis “u)” when it finishes u, then the printed

expression would be well formed in the sense that the parentheses are

properly nested. For example, the depth-first search of Figure 20.5(a)

corresponds to the parenthesization shown in Figure 20.5(b). The

following theorem provides another way to characterize the parenthesis

structure.

Theorem 20.7 (Parenthesis theorem)

In any depth-first search of a (directed or undirected) graph G = (V, E),

for any two vertices u and v, exactly one of the following three

conditions holds:

the intervals [u.d, u.f] and [v.d, v.f] are entirely disjoint, and neither

u nor v is a descendant of the other in the depth-first forest,

the interval [u.d, u.f] is contained entirely within the interval [v.d,

v.f], and u is a descendant of v in a depth-first tree, or

the interval [v.d, v.f] is contained entirely within the interval [u.d,

u.f], and v is a descendant of u in a depth-first tree.

Proof We begin with the case in which u.d < v.d. We consider two

subcases, according to whether v.d < u.f. The first subcase occurs when

v.d < u.f, so that v was discovered while u was still gray, which implies

that v is a descendant of u. Moreover, since v was discovered after u, all

of its outgoing edges are explored, and v is finished, before the search

returns to and finishes u. In this case, therefore, the interval [v.d, v.f] is

entirely contained within the interval [u.d, u.f]. In the other subcase, u.f

< v.d, and by inequality (20.4), u.d < u.f < v.d < v.f, and thus the

intervals [u.d, u.f] and [v.d, v.f] are disjoint. Because the intervals are

disjoint, neither vertex was discovered while the other was gray, and so

neither vertex is a descendant of the other.

Figure 20.5 Properties of depth-first search. (a) The result of a depth-first search of a directed

graph. Vertices are timestamped and edge types are indicated as in Figure 20.4. (b) Intervals for

the discovery time and finish time of each vertex correspond to the parenthesization shown.

Each rectangle spans the interval given by the discovery and finish times of the corresponding

vertex. Only tree edges are shown. If two intervals overlap, then one is nested within the other,

and the vertex corresponding to the smaller interval is a descendant of the vertex corresponding

to the larger. (c) The graph of part (a) redrawn with all tree and forward edges going down

within a depth-first tree and all back edges going up from a descendant to an ancestor.

The case in which v.d < u.d is similar, with the roles of u and v

reversed in the above argument.

▪

Corollary 20.8 (Nesting of descendants’ intervals)

Vertex v is a proper descendant of vertex u in the depth-first forest for a

(directed or undirected) graph G if and only if u.d < v.d < v.f < u.f.

Proof Immediate from Theorem 20.7.

▪

The next theorem gives another important characterization of when

one vertex is a descendant of another in the depth-first forest.

Theorem 20.9 (White-path theorem)

In a depth-first forest of a (directed or undirected) graph G = (V, E),

vertex v is a descendant of vertex u if and only if at the time u.d that the

search discovers u, there is a path from u to v consisting entirely of white

vertices.

Proof ⇒: If v = u, then the path from u to v contains just vertex u,

which is still white when u.d receives a value. Now, suppose that v is a

proper descendant of u in the depth-first forest. By Corollary 20.8, u.d <

v.d, and so v is white at time u.d. Since v can be any descendant of u, all

vertices on the unique simple path from u to v in the depth-first forest

are white at time u.d.

⇐: Suppose that there is a path of white vertices from u to v at time

u.d, but v does not become a descendant of u in the depth-first tree.

Without loss of generality, assume that every vertex other than v along

the path becomes a descendant of u. (Otherwise, let v be the closest

vertex to u along the path that doesn’t become a descendant of u.) Let w

be the predecessor of v in the path, so that w is a descendant of u (w and

u may in fact be the same vertex). By Corollary 20.8, w.f ≤ u.f. Because v

must be discovered after u is discovered, but before w is finished, u.d <

v.d < w.f ≤ u.f. Theorem 20.7 then implies that the interval [v.d, v.f] is

contained entirely within the interval [u.d, u.f]. By Corollary 20.8, v

must after all be a descendant of u.

▪

Classification of edges

You can obtain important information about a graph by classifying its

edges during a depth-first search. For example, Section 20.4 will show

that a directed graph is acyclic if and only if a depth-first search yields

no “back” edges (Lemma 20.11).

The depth-first forest Gπ produced by a depth-first search on graph

G can contain four types of edges:

1. Tree edges are edges in the depth-first forest Gπ. Edge (u, v) is a

tree edge if v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an

ancestor v in a depth-first tree. We consider self-loops, which

may occur in directed graphs, to be back edges.

3. Forward edges are those nontree edges (u, v) connecting a vertex

u to a proper descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in

the same depth-first tree, as long as one vertex is not an ancestor

of the other, or they can go between vertices in different depth-

first trees.

In Figures 20.4 and 20.5, edge labels indicate edge types. Figure 20.5(c)

also shows how to redraw the graph of Figure 20.5(a) so that all tree

and forward edges head downward in a depth-first tree and all back

edges go up. You can redraw any graph in this fashion.

The DFS algorithm has enough information to classify some edges

as it encounters them. The key idea is that when an edge (u, v) is first

explored, the color of vertex v says something about the edge:

1. WHITE indicates a tree edge,

2. GRAY indicates a back edge, and

3. BLACK indicates a forward or cross edge.

The first case is immediate from the specification of the algorithm. For

the second case, observe that the gray vertices always form a linear

chain of descendants corresponding to the stack of active DFS-VISIT

invocations. The number of gray vertices is 1 more than the depth in the

depth-first forest of the vertex most recently discovered. Depth-first

search always explores from the deepest gray vertex, so that an edge that

reaches another gray vertex has reached an ancestor. The third case

handles the remaining possibility. Exercise 20.3-5 asks you to show that

such an edge (u, v) is a forward edge if u.d < v.d and a cross edge if u.d >

v.d.

According to the following theorem, forward and cross edges never

occur in a depth-first search of an undirected graph.

Theorem 20.10

In a depth-first search of an undirected graph G, every edge of G is

either a tree edge or a back edge.

Proof Let (u, v) be an arbitrary edge of G, and suppose without loss of

generality that u.d < v.d. Then, while u is gray, the search must discover

and finish v before it finishes u, since v is on u’s adjacency list. If the first

time that the search explores edge (u, v), it is in the direction from u to v,

then v is undiscovered (white) until that time, for otherwise the search

would have explored this edge already in the direction from v to u. Thus,

(u, v) becomes a tree edge. If the search explores (u, v) first in the

direction from v to u, then (u, v) is a back edge, since there must be a

path of tree edges from u to v.

▪

Since (u, v) and (v, u) are really the same edge in an undirected

graph, the proof of Theorem 20.10 says how to classify the edge. When

searching from a vertex, which must be gray, if the adjacent vertex is

white, then the edge is a tree edge. Otherwise, the edge is a back edge.

The next two sections apply the above theorems about depth-first

search.

Figure 20.6 A directed graph for use in Exercises 20.3-2 and 20.5-2.

Exercises

20.3-1

Make a 3-by-3 chart with row and column labels WHITE, GRAY, and

BLACK. In each cell (i, j), indicate whether, at any point during a

depth-first search of a directed graph, there can be an edge from a

vertex of color i to a vertex of color j. For each possible edge, indicate

what edge types it can be. Make a second such chart for depth-first

search of an undirected graph.

20.3-2

Show how depth-first search works on the graph of Figure 20.6. Assume

that the for loop of lines 5–7 of the DFS procedure considers the

vertices in alphabetical order, and assume that each adjacency list is

ordered alphabetically. Show the discovery and finish times for each

vertex, and show the classification of each edge.

20.3-3

Show the parenthesis structure of the depth-first search of Figure 20.4.

20.3-4

Show that using a single bit to store each vertex color suffices by

arguing that the DFS procedure produces the same result if line 10 of

DFS-VISIT is removed.

20.3-5

Show that in a directed graph, edge (u, v) is

a. a tree edge or forward edge if and only if u.d < v.d < v.f < u.f,

b. a back edge if and only if v.d ≤ u.d < u.f ≤ v.f, and

c. a cross edge if and only if v.d < v.f < u.d < u.f.

20.3-6

Rewrite the procedure DFS, using a stack to eliminate recursion.

20.3-7

Give a counterexample to the conjecture that if a directed graph G

contains a path from u to v, and if u.d < v.d in a depth-first search of G,

then v is a descendant of u in the depth-first forest produced.

20.3-8

Give a counterexample to the conjecture that if a directed graph G

contains a path from u to v, then any depth-first search must result in v.d

≤ u.f.

20.3-9

Modify the pseudocode for depth-first search so that it prints out every

edge in the directed graph G, together with its type. Show what

modifications, if any, you need to make if G is undirected.

20.3-10

Explain how a vertex u of a directed graph can end up in a depth-first

tree containing only u, even though u has both incoming and outgoing

edges in G.

20.3-11

Let G = (V, E) be a connected, undirected graph. Give an O(V + E)-

time algorithm to compute a path in G that traverses each edge in E

exactly once in each direction. Describe how you can find your way out

of a maze if you are given a large supply of pennies.

20.3-12

Show how to use a depth-first search of an undirected graph G to

identify the connected components of G, so that the depth-first forest

contains as many trees as G has connected components. More precisely,

show how to modify depth-first search so that it assigns to each vertex v

an integer label v.cc between 1 and k, where k is the number of

connected components of G, such that u.cc = v.cc if and only if u and v

belong to the same connected component.

★ 20.3-13

A directed graph G = (V, E) is singly connected if u ⇝ v implies that G

contains at most one simple path from u to v for all vertices u, v ∈ V.

Give an efficient algorithm to determine whether a directed graph is

singly connected.

20.4 Topological sort

	VI Graph Algorithms
	20 Elementary Graph Algorithms
	20.1 Representations of graphs
	20.2 Breadth-first search
	20.3 Depth-first search
	20.4 Topological sort

