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Fundamentals of Thermodynamics 

Lecture 5: Enthalpy and Specific Heat 

 
References: An Introduction to Atmospheric Thermodynamics, Tsonis 

Introduction to Theoretical Meteorology, Hess 

Physical Chemistry (4th edition), Levine 

Thermodynamics and an Introduction to Thermostatistics, Callen 

 

ENTHALPY 

 U and V are not the only state variables that we can use to characterize a 

thermodynamic system. We can choose other variables that can be related to U 

and V, such as T, p, or S. 

 One commonly used state variable is called enthalpy, and is defined as 

𝐻 ≡  𝑈 +  𝑝𝑉 
[Enthalpy is the measurement of energy in a thermodynamic system. The quantity of enthalpy equals 

to the total content of heat of a system, equivalent to the system’s internal energy plus the product of 

volume and pressure.] 

 The differential of H is given as 𝑑𝐻 =  𝑑𝑈 +  𝑝𝑑𝑉 +  𝑉𝑑𝑝. This makes it 

possible to write the first law of thermodynamics as 

𝑑𝐻 =  𝑑𝑄 + 𝑉𝑑𝑝                 (1) 

 

Why Bother With Enthalpy? 

 

 The reason enthalpy is convenient to use is that for constant pressure processes, 

dp = 0  and so dH = dQ. 

o Since many thermodynamic processes in the atmosphere occur at constant 

pressure, change in enthalpy and heat are equivalent and are used 

interchangeably in such processes. 

 From the first form of the first law, dU = dQ – pdV, we see that at constant 

volume, dU = dQ. 

o For constant volume processes, heat and change in internal energy are 

interchangeable. 

 One other important aspect of enthalpy is that in an isobaric process (constant 

pressure): 

dW = dU − dH  
 

which states that the work is the difference in the changes of internal energy and 

enthalpy. 
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Heat Capacities and Specific Heats 

 

 Heat capacity refers to the amount of heat required to raise the temperature of a 

substance by one degree. Heat capacity is defined in terms of either a constant 

volume process or a constant pressure process, 

𝐶𝑣 ≡ (
𝜕𝑄

𝜕𝑇
)

𝑣
                         (2) 

 

𝐶𝑝 ≡ (
𝜕𝑄

𝜕𝑇
)

𝑝
                         (3) 

 From the two forms of the first law we can show that 

(
𝜕𝑄

𝜕𝑇
)

𝑣
= (

𝜕𝑈

𝜕𝑇
)

𝑣
 

 

(
𝜕𝑄

𝜕𝑇
)

𝑝
= (

𝜕𝐻

𝜕𝑇
)

𝑝
 

so that the definitions for heat capacity can also be written as 

𝐶𝑣 ≡ (
𝜕𝑈

𝜕𝑇
)

𝑣
                         (4) 

𝐶𝑝 ≡ (
𝜕𝐻

𝜕𝑇
)

𝑝
                         (5) 

 
 The units of heat capacity are J K−1. 

 

 Heat capacity is an extensive property. Its intensive counterpart is called specific 

heat, and is defined as 

 

𝑐𝑣 ≡
𝐶𝑣

𝑚
= (

𝜕𝑢

𝜕𝑇
)

𝑣
                         (6) 

 

𝑐𝑝 ≡
𝐶𝑝

𝑚
= (

𝜕ℎ

𝜕𝑇
)

𝑣
                         (7) 

 

 The units of specific heat are J K−1 kg−1. 

 

 Heat capacities and specific heats are not constant, but are functions of T and p. 

 

 

 

 



3 

 

Relation Between Cv and Cp 

 To see the relation between Cv and Cp , we start with the relation: 

𝐶𝑝 − 𝐶𝑣 = (
𝜕𝐻

𝜕𝑇
)

𝑝
− (

𝜕𝑈

𝜕𝑇
)

𝑣
              (8) 

From the definition of enthalpy, 

H =U + pV  

we take the partial derivative with respect to T at constant pressure to get 
 

(
𝜕𝐻

𝜕𝑇
)

𝑝
= (

𝜕𝑈

𝜕𝑇
)

𝑝
+ 𝑝 (

𝜕𝑉

𝜕𝑇
)

𝑝
           (9) 

Substituting (9) into (8) we get 
 

𝐶𝑝 − 𝐶𝑣 = (
𝜕𝑈

𝜕𝑇
)

𝑝
+ 𝑝 (

𝜕𝑉

𝜕𝑇
)

𝑝
− (

𝜕𝑈

𝜕𝑇
)

𝑣

           (10) 

The differential of U is 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑇
)

𝑣
𝑑𝑇 + (

𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉 

Dividing by dT gives 
𝑑𝑈

𝑑𝑇
= (

𝜕𝑈

𝜕𝑇
)

𝑣
+ (

𝜕𝑈

𝜕𝑉
)

𝑇

𝑑𝑉

𝑑𝑇
 

 

and assuming constant pressure we get 

(
𝑑𝑈

𝑑𝑇
)

𝑝
= (

𝜕𝑈

𝜕𝑇
)

𝑣

+ (
𝜕𝑈

𝜕𝑉
)

𝑇
(

𝑑𝑉

𝑑𝑇
)

𝑝
 

or 

(
𝜕𝑈

𝜕𝑇
)

𝑝
= (

𝜕𝑈

𝜕𝑇
)

𝑣

+ (
𝜕𝑈

𝜕𝑉
)

𝑇
(

𝜕𝑉

𝜕𝑇
)

𝑝
             (11) 

 

Substituting this into (10) gives 

𝐶𝑝 − 𝐶𝑣 = [(
𝜕𝑈

𝜕𝑉
)

𝑇
+ 𝑝 ] (

𝜕𝑉

𝜕𝑇
)

𝑝
               (12) 

In terms of specific heats this is 

𝑐𝑝 − 𝑐𝑣 = [(
𝜕𝑢

𝜕𝛼
)

𝑇
+ 𝑝 ] (

𝜕𝛼

𝜕𝑇
)

𝑝
               (13) 

(
𝜕𝑈

𝜕𝑉
)

𝑇
 [or (

𝜕𝑢

𝜕𝛼
)

𝑇
] is called the internal pressure, and is due to forces between the 

molecules of the substance. 

 For gases, Cp is greater than Cv. This is because in a constant pressure process 

some of the heat added will be used to do work as the system expands, so the 

internal energy cannot increase as much as in a constant volume process. 
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Specific Heats for Ideal Gases 

 Recall that the specific heat at constant volume was defined as 

𝐶𝑣 ≡ (
𝜕𝑢

𝜕𝑇
)

𝑣
 

and the specific heat at constant pressure was defined as 

𝐶𝑝 ≡ (
𝜕ℎ

𝜕𝑇
)

𝑝
 

o Since the internal energy and enthalpy of an ideal gas depend only on 

temperature, then for an ideal gas we don’t have to write the specific heats as 

partial derivatives, but can instead use full derivatives 

𝑐𝑣 ≡
𝑑𝑢

𝑑𝑇
 

𝑐𝑝 ≡
𝑑ℎ

𝑑𝑇
 

 

o From the expressions for the internal energy of ideal gases, we then get that 

 

 

 

 

 

 

 

 The expression relating the specific heats at constant pressure and at constant 

volume is also greatly simplified for an ideal gas. The general expression  

[Eqn. (13)] becomes, for an ideal gas, 

 

𝑐𝑝 − 𝑐𝑣 = �́�              (14) 

 

which tells us that 

 

 

 

 

 

 

 99% of the atmosphere is composed of diatomic molecules (N2 and O2), and has 

a specific gas constant of 287.1 J kg−1 K−1. This leads to values of cv and cp of 

718 J kg−1 K−1 and 1005 J kg−1 K−1. These values are extremely close to the 

measured values for the atmosphere. 

 

 

𝑐𝑣 =
3

2
�́� ;    𝑚𝑜𝑛𝑎𝑡𝑜𝑚𝑖𝑐 𝑔𝑎𝑠 

 

𝑐𝑣 =
5

2
�́� ;    𝑑𝑖𝑎𝑡𝑜𝑚𝑖𝑐 𝑔𝑎𝑠 

𝑐𝑝 =
5

2
�́� ;    𝑚𝑜𝑛𝑎𝑡𝑜𝑚𝑖𝑐 𝑔𝑎𝑠 

𝑐𝑝 =
7

2
�́� ;    𝑑𝑖𝑎𝑡𝑜𝑚𝑖𝑐 𝑔𝑎𝑠 
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The First Law of Thermodynamics for Ideal Gases 

 

 The specific heats for ideal gasses are 

𝑐𝑣 =
𝑑𝑢

𝑑𝑇
 

 

𝑐𝑝 =
𝑑ℎ

𝑑𝑇
 

 

From these we can write 

𝑑𝑢 = 𝑐𝑣𝑑𝑇 

𝑑ℎ = 𝑐𝑝𝑑𝑇 

Using these expressions in the first law of thermodynamics results in the following two 

forms for the first law 

 

 

 

 

 

 We are often most interested in how the thermodynamic variables change with 

time. By dividing the first law by dt we get 
 

 

 

 

 

 

 

 

Exercises 

1. Show that for an ideal gas 

𝑐𝑝 − 𝑐𝑣 = [(
𝜕𝑢

𝜕𝛼
)

𝑇
+ 𝑝 ] (

𝜕𝛼

𝜕𝑇
)

𝑝
 

reduces to 

𝑐𝑝 − 𝑐𝑣 = �́� 

2. Show that for an ideal gas  

𝐶𝑝 − 𝐶𝑣 = 𝑛𝑅 

. 

𝑐𝑣𝑑𝑇 = 𝑑𝑞 − 𝑝𝑑𝛼 

𝑐𝑝𝑑𝑇 = 𝑑𝑞 + 𝛼𝑑𝑝 
First Law of Thermodynamics for Ideal Gas 

𝑐𝑣

𝑑𝑇

𝑑𝑡
=

𝑑𝑞

𝑑𝑡
− 𝑝

𝑑𝛼

𝑑𝑡
 

𝑐𝑝

𝑑𝑇

𝑑𝑡
=

𝑑𝑞

𝑑𝑡
+ 𝛼

𝑑𝑝

𝑑𝑡
 

First Law of Thermodynamics for Ideal Gas 


