

1

System Analysis And DataBase

قواعد بياناتنظم ول تحلي: المادة اسم

مسائي –: الثانية المرحلة

المادة : جنان رضا مطر مدرس

العلمي : مدرس مساعد اللقب

2

System Analysis And

DataBase

3

Chapter one
System analysis

 Introduction
 Characteristics of a System

 Elements of a System

 Types of systems

 What Is an Information System?

 System Development Life Cycle SDLC

4

System analysis

1.1 Introduction:

 The term system is derived from the Greek word systema, which

means an organized relationship among functioning units or

components. A system exists because it is designed to achieve one or

more objectives. We come into daily contact with the transportation

system, the telephone system, the accounting system, the production

system, and, for over two decades, the computer system. Similarly, we

talk of the business system and of the organization as a system

consisting of interrelated departments (subsystems) such as production,

sales, personnel, and an information system.

The study of systems concepts, then, has three basic implications:

1. A system must be designed to achieve a predetermined objective.

2. Interrelationships and interdependence must exist among the

components.

3. The objectives of the organization as a whole have a higher priority

than the objectives of its subsystems.

1.2 Characteristics of a System

Our definition of a system suggests some characteristics that are present

in all systems: organization (order), interaction, interdependence,

integration and a central objective.

1.2.1 Organization

Organization implies structure and order. It is the arrangement of

components that helps to achieve objectives.

1.2.2 Interaction

Interaction refers to the manner in which each component functions

with other components of the system.

5

1.2.3 Interdependence

Interdependence means that parts of the organization or computer

system depend on one another. They are coordinated and linked

together according to a plan. In summary, no subsystem can function in

isolation because it is dependent on the data (inputs) it receives from

other subsystems to perform its required tasks.

1.2.4 Integration

Integration refers to the holism of systems. Synthesis follows analysis to

achieve the central objective of the organization. Integration is

concerned with how a system is tied together. It is more than sharing a

physical part or location. It means that parts of the system work

together within the system even though each part performs a unique

function. Successful integration will typically produce a synergistic effect

and greater total impact than if each component works separately.

1.2.5 Central objective

The last characteristic of a system is its central objective. Objectives may

be real or stated. Although a stated objective may be the real objective,

it is not uncommon for an organization to state one objective and

operate to achieve another. The important point is that users must know

the central objective of a computer application early in the analysis for a

successful design and conversion. Political as well as organizational

considerations often cloud the real objective. This means that the

analyst must work around such obstacles to identify the real objective of

the proposed change.

1.3 Elements of a System

In most cases, systems analysts operate in a dynamic environment

where change is a way of life. The environment may be a business firm, a

business application, or a computer system. To reconstruct a system, the

following key elements must be considered:

6

1. Outputs and inputs.

2. Processor(s).

3. Control.

4. Feedback.

5. Environment.

6. Boundaries and interface.

1.3.1 Outputs and Inputs

A major objective of a system is to produce an output that has value to

its user. Whatever the nature of the output (goods, services, or

information), it must be in line with the expectations of the intended

user. Inputs are the elements (material, human resources, and

information) that enter the system for processing. Output is the

outcome of processing. A system feeds on input to produce output in

much the same way that a business brings in human, financial, and

material resources to produce goods and services. It is important to

point out here that determining the output is a first step in

specifying the nature, amount, and regularity of the input needed to

operate a system.

1.3.2 Processor(s)

The processor is the element of a system that involves the actual

transformation of input into output. It is the operational component of a

system. Processors may modify the input totally or partially, depending

on the specifications of the output. This means that as the output

specifications change so does the processing. In some cases, input is also

modified to enable the processor to handle the transformation.

1.3.3 Control

The control element guides the system. It is the decision – making

subsystem that controls the pattern of activities governing input,

processing, and output. In an organizational context, management as a

decision – making body controls the inflow, handling and outflow of

activities that affect the welfare of the business. In a computer system,

7

the operating system and accompanying software influence the behavior

of the system. Output specifications determine what and how much

input is needed to keep the system in balance. In systems analysis,

knowing the attitudes of the individual who controls the area for which a

computer is being considered can make a difference between the

success and failure of the installation. Management support is required

for securing control and supporting the objective of the proposed

change.

1.3.4 Feedback

Control in a dynamic system is achieved by feedback. Feedback

measures output against a standard in some form of cybernetic

procedure that includes communication and control. Output information

is fed back to the input and / or to management (Controller) for

deliberation. After the output is compared against performance

standards, changes can result in the input or processing and

consequently, the output. Feedback may be positive or negative, routing

or informational. Positive feedback reinforces the performance of the

system. It is routine in nature. Negative feedback generally provides the

controller with information for action. In systems analysis, feedback is

important in different ways. During analysis, the user may be told that

the problems in a given application verify the initial concerns and justify

the need for change. Another form of feedback comes after the system

is implemented. The user informs the analyst about the performance of

the new installation. This feedback often results in enhancements to

meet the user’s requirements.

1.3.5 Environment

The environment is the “supra system” within which an organization

operates. It is the source of external elements that impinge on the

system. In fact, it often determines how a system must function. For

example, the organization’s environment, consisting of vendors,

competitors, and others, may provide constraints and, consequently,

influence the actual performance of the business.

8

1.3.6 Boundaries and interface

A system should be defined by its boundaries – the limits that identify its

components, processes and interrelationship when it interfaces with

another system. For example, a teller system in a commercial bank is

restricted to the deposits, withdrawals and related activities of

customers checking and savings accounts. It may exclude mortgage

foreclosures, trust activities, and the like.

Each system has boundaries that determine its sphere of influence and

control.

The following Figure 1.1 is a graphical representation of Functions of an

information system.

Figure 1.1: Functions of an information system

1.4 Types of systems

The frame of reference within which one views a system is related to the

use of the systems approach for analysis. Systems have been classified in

different ways. Common classifications are:

(1) physical or abstract

(2) open or closed

 (3) “man – made” information systems.

9

1.4.1 Physical or abstract systems

Physical systems are tangible entities that may be static or dynamic in

operation. For example, the physical parts of the computer center are

the officers, desks, and chairs that facilitate operation of the computer.

They can be seen and counted; they are static. In contrast, a

programmed computer is a dynamic system. Data, programs, output,

and applications change as the user’s demands or the priority of the

information requested changes. Abstract systems are conceptual or non-

physical entities. They may be as straightforward as formulas of

relationships among sets of variables or models – the abstract

conceptualization of physical situations. A model is a representation of a

real or a planned system. The use of models makes it easier for the

analyst to visualize relationships in the system under study. The

objective is to point out the significant elements and the key

interrelationships of a complex system.

1.4.2 Open or Closed Systems

Another classification of systems is based on their degree of

independence. An open system has many interfaces with its

environment. It permits interaction across its boundary; it receives

inputs from and delivers outputs to the outside. An information system

falls into this category, since it must adapt to the changing demands of

the user. In contrast, a closed system is isolated from environmental

influences. In reality

1.4.3 Man – Made Information Systems

Ideally, information reduces uncertainty about a state or event. For

example, information that the wind is calm reduces the uncertainty that

the boat trip will be pleasant. An information system is the basis for

interaction between the user and the analyst. It provides instruction,

commands and feedback. It determines the nature of the relationships

among decision-makers. In fact, it may be viewed as a decision center

for personnel at all levels. From this basis, an information system may be

defined as a set of devices, procedures and operating systems designed

10

around user based criteria to produce information and communicate it

to the user for planning, control and performance. In systems analysis, it

is important to keep in mind that considering an alternative system

means improving one or more of these criteria. Many practitioners fail

to recognize that a business has several information systems; each is

designed for a purpose and works to accommodate data flow,

communications, decision making, control and effectiveness.

1.5 What Is an Information System?

 An information system can be defined technically as a set of

interrelated components that collect (or retrieve), process, store, and

distribute information to support decision making and control in an

organization. In addition to supporting decision making, coordination,

and control, information systems may also help managers and workers

analyze problems, visualize complex subjects, and create new products.

Three activities in an information system produce the information that

organizations need to make decisions, control operations, analyze

problems, and create new products or services. These activities are

input, processing, Input captures or collects raw data from within the

organization or from its external environment. Processing converts this

raw input into a more meaningful form. Output transfers the processed

information to the people who will use it or to the activities for which it

will be used. Information systems also require feedback, which is output

that is returned to appropriate members of the organization to help

them evaluate or correct the input stage.

The following Figure 1.2 is a graphical representation of Components of

Information System

11

Figure 1. 2 Components of Information System

1.6 System Development Life Cycle SDLC

Information system development involves various activities performed

together. The figure 1.3 suggest that the SDLC phases proceed in a

logical path from start to finish.

Figure 1.3 The Systems Development Life Cycle

12

The stages involved during System Life Cycle are ::

1.6.1Planning

The planning phase is the fundamental process of understanding why an

information system should be built and determining how the project

team will go about building it. It has two steps:

1.During project initiation, the system’s business value to the

organization is identified—how will it lower costs or increase revenues?

Most ideas for new systems come from outside the IS area (from the

marketing department, accounting department, etc.) in the form of a

system request. A system request presents a brief summary of a business

need, and it explains how a system that supports the need will create

business value. The IS department works together with the person or

department generating the request (called the project sponsor) to

conduct a feasibility analysis.

The feasibility analysis examines key aspects of the proposed

project:

■ The technical feasibility (Can we build it?)

■ The economic feasibility (Will it provide business value?)

■ The organizational feasibility (If we build it, will it be used?)

The system request and feasibility analysis are presented to an

information systems approval committee (sometimes called a steering

committee), which decides whether the project should be undertaken.

2. Once the project is approved, it enters project management. During

project management, the project manager creates a work plan, staffs

the project, and puts techniques in place to help the project team

control and direct the project through the entire SDLC. The deliverable

for project management is a project plan that describes how the project

team will go about developing the system.

1.6.2Analysis

The analysis phase answers the questions of who will use the system,

what the system will do, and where and when it will be used. During this

phase, the project team investigates any current system(s), identifies

13

improvement. opportunities, and develops a concept for the new

system. This phase has three steps:

1. An analysis strategy is developed to guide the project team’s efforts.

Such a strategy usually includes a study of the current system (called the

as-is system) and its problems, and envisioning ways to design a new

system (called the to-be system).

2. The next step is requirements gathering (e.g., through interviews,

group workshops, or questionnaires). The analysis of this information—

in conjunction with input from the project sponsor and many other

people—leads to the development of a concept for a new system. The

system concept is then used as a basis to develop a set of business

analysis models that describes how the business will operate if the new

system were developed. The set typically includes models that represent

the data and processes necessary to support the underlying business

process.

3. The analyses, system concept, and models are combined into a

document called the system proposal, which is presented to the project

sponsor and other key decision makers (e.g., members of the approval

committee) who will decide whether the project should continue to

move forward. The system proposal is the initial deliverable that

describes what business requirements the new system should meet.

Because it is really the first step in the design of the new system, some

experts argue that it is inappropriate to use the term analysis as the

name for this phase; some argue a better name would be analysis and

initial design. Because most organizations continue to use the name

analysis for this phase, we will use it in this book as well. It is important

to remember, however, that the deliverable from the analysis phase is

both an analysis and a high-level initial design for the new system

1.6.3 Design

The design phase decides how the system will operate in terms of the

hardware, software, and network infrastructure that will be in place; the

14

user interface, forms, and reports that will be used; and the specific

programs, databases, and files that will be needed. Although most of the

strategic decisions about the system are made in the development of

the system concept during the analysis phase, the steps in the design

phase determine exactly how the system will operate. The design phase

has four steps:

1. The design strategy must be determined. This clarifies whether the

system will be developed by the company’s own programmers, whether

its development will be outsourced to another firm (usually a consulting

firm), or whether the company will buy an existing software package.

2. This leads to the development of the basic architecture design for the

system that describes the hardware, software, and network

infrastructure that will be used. In most cases, the system will add to or

change the infrastructure that already exists in the organization. The

interface design specifies how the users will move through the system

(e.g., by navigation methods such as menus and on-screen buttons) and

the forms and reports that the system will use.

3. The database and file specifications are developed. These define

exactly what data will be stored and where they will be stored.

4. The analyst team develops the program design, which defines the

programs that need to be written and exactly what each program will

do.

This collection of deliverables (architecture design, interface design,

database and file specifications, and program design) is the system

specification that is used by the programming team for implementation.

At the end of the design phase, the feasibility analysis and project plan

are reexamined and revised, and another decision is made by the project

sponsor and approval committee about whether to terminate the

project or continue.

1.6.4 Implementation

The final phase in the SDLC is the implementation phase, during which

the system is actually built (or purchased, in the case of a packaged

15

software design and installed). This is the phase that usually gets the

most attention, because for most systems it is the longest and most

expensive single part of the development process. This phase has three

steps:

1. System construction is the first step. The system is built and tested to

ensure that it performs as designed. Since the cost of fixing bugs can be

immense, testing is one of the most critical steps in implementation.

Most organizations spend more time and attention on testing than on

writing the programs in the first place.

2. The system is installed. Installation is the process by which the old

system is turned off and the new one is turned on. There are several

approaches that may be used to convert from the old to the new

system. One of the most important aspects of conversion is the training

plan, used to teach users how to use the new system and help manage

the changes caused by the new system.

3. The analyst team establishes a support plan for the system. This plan

usually includes a formal or informal post-implementation review, as

well as a systematic way for identifying major and minor changes

needed for the system.

There is an implied phase is usually a subset of all the stages as in the

modern SDLC models it is test phase, the testing activities are mostly

involved in all the stages of SDLC. However this stage refers to the

testing only stage of the product where products defects are reported,

tracked, fixed and retested, until the product reaches the quality

standards defined.

The following Figure 1.4 is a graphical representation of the various

stages of a typical SDLC.

Figure 1.4 Various stages of SDLC

16

Chapter 2

Database and Database

Management System

(DBMS)

1. Introduction
2. Database management system

(DBMS)

3. Advantages of DBMS

4. Architecture of DBMS

5. Importance of DBMS

6. Components of DBS environment

7. Data independence

8. Instance , schema and mapping

9. ACID test

 2.1 Introduction

17

 A database is a collection of information that is organized so that it can

easily be accessed, managed, and updated. In one view, databases can

be classified according to types of content: bibliographic, full-text,

numeric, and images.

In computing, databases are sometimes classified according to their

organizational approach. The most prevalent approach is the relational

database, a tabular database in which data is defined so that it can be

reorganized and accessed in a number of different ways. A distributed

database is one that can be dispersed or replicated among different

points in a network. An object-oriented programming database is one

that is congruent with the data defined in object classes and subclasses.

Computer databases typically contain aggregations of data records or

files, such as sales transactions, product catalogs and inventories, and

customer profiles. Typically, a database manager provides users the

capabilities of controlling read/write access, specifying report

generation, and analyzing usage. Databases and database managers are

prevalent in large mainframe systems, but are also present in smaller

distributed workstation and mid-range systems such as the AS/400 and

on personal computers. SQL(Structured Query Language) is a standard

language for making interactive queries from and updating a database

such as IBM's DB2, Microsoft's SQL Server, and database products

from Oracle, Sybase, and Computer Associates.

2.1.1 Database System Applications

Databases are widely used. Here are some representative applications:

• Banking: For customer information, accounts, and loans, and banking

transactions.

• Airlines: For reservations and schedule information. Airlines were

among the first to use databases in a geographically distributed

manner—terminals situated around the world accessed the central

database system through phone lines and other data networks.

• Universities: For student information, course registrations, and grades.

http://searchsqlserver.techtarget.com/definition/relational-database
http://searchsqlserver.techtarget.com/definition/relational-database
http://searchsoa.techtarget.com/definition/object-oriented-programming
http://searchdatacenter.techtarget.com/definition/mainframe
http://searchmobilecomputing.techtarget.com/definition/workstation
http://searchsqlserver.techtarget.com/definition/SQL
http://searchdatacenter.techtarget.com/definition/DB2
http://searchsqlserver.techtarget.com/definition/SQL-Server
http://searchoracle.techtarget.com/definition/Oracle
http://searchenterpriselinux.techtarget.com/definition/Sybase

18

• Credit card transactions: For purchases on credit cards and generation

of monthly statements.

• Telecommunication: For keeping records of calls made, generating

monthly bills, maintaining balances on prepaid calling cards, and storing

information about the communication networks.

• Finance: For storing information about holdings, sales, and purchases

of financial instruments such as stocks and bonds.

• Sales: For customer, product, and purchase information.

• Manufacturing: For management of supply chain and for tracking

production of items in factories, inventories of items in

warehouses/stores, and orders for items.

• Human resources: For information about employees, salaries, payroll

taxes and benefits, and for generation of paychecks.

2.1.2 Database Administrator
One of the main reasons for using DBMSs is to have central control of

both the data and the programs that access those data. A person who

has such central control over the system is called a database

administrator (DBA). The functions of a DBA include:

• Schema definition. The DBA creates the original database schema by

executing a set of data definition statements in the DDL.

• Storage structure and access-method definition.

• Schema and physical-organization modification. The DBA carries out

changes to the schema and physical organization to reflect the changing

needs of the organization, or to alter the physical organization to

improve performance.

• Granting of authorization for data access. By granting different types

of authorization, the database administrator can regulate which parts of

the database various users can access. The authorization information is

kept in a special system structure that the database system consults

whenever someone attempts to access the data in the system.

• Routine maintenance. Examples of the database administrator’s

routine maintenance activities are:

 Periodically backing up the database, either onto tapes or onto

remote servers, to prevent loss of data in case of disasters such as

flooding.

19

 Ensuring that enough free disk space is available for normal

operations, and upgrading disk space as required.

 Monitoring jobs running on the database and ensuring that

performance is not degraded by very expensive tasks submitted

by some users.

2.2 Database management system (DBMS)

A database-management system (DBMS) is a collection of interrelated

data and a set of programs to access those data. The collection of data,

usually referred to as the database, contains information relevant to an

enterprise. The primary goal of a DBMS is to provide a way to store and

retrieve database information that is both convenient and efficient.

Database systems are designed to manage large bodies of information.

Management of data involves both defining structures for storage of

information and providing mechanisms for the manipulation of

information. In addition, the database system must ensure the safety of

the information stored, despite system crashes or attempts at

unauthorized access. If data are to be shared among several users, the

system must avoid possible anomalous results.

 2.2.1 Advantages of DBMS
1. Database Development: It allows organizations to place control of

database development in the hands of database administrators

(DBAs) and other specialists.

2. Data independence: Application programs should be as independent

as possible from details of data representation and storage. The

DBMS can provide an abstract view of the data to insulate application

code from such details.

3. Efficient data access: A DBMS utilizes a variety of sophisticated

techniques to store and retrieve data efficiently. It allows different

user application programs to easily access the same database.

Instead of having to write computer programs to extract information,

user can ask simple questions in a query language

4. Data integrity and security: If data is always accessed through the

DBMS, the DBMS can enforce :

20

• Integrity constraints on the data. For example, before inserting salary

information for an employee, the DBMS can check that the

department budget is not exceeded.

• Also, the DBMS can enforce access controls that govern what data is

visible to different classes of users.

5. Crash recovery: the DBMS protects users from the effects of system

failures.

6. Data administration and Concurrent access: When several users

share the data(more than one user access the database at the same

time), DBMS schedules concurrent accesses to the data in such a

manner that users can think of the data as being accessed by only

one user at a time.

2.2.2 The Three-Schema Architecture
The goal of the three-schema architecture, is to separate the user

applications from the physical database. In this architecture, schemas

can be defined at the following three levels:

1. The internal level has an internal schema, which describes the

physical storage structure of the database. The internal schema uses a

physical data model and describes the complete details of data storage

and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the

structure of the whole database for a community of users. The

conceptual schema hides the details of physical storage structures and

concentrates on describing entities, data types, relationships, user

operations, and constraints.

Usually, a representational data model is used to describe the

conceptual schema when a database system is implemented. This

implementation conceptual schema is often based on a conceptual

schema design in a high-level data model.

3.The external or view level includes a number of external schemas or

user views. Each external schema describes the part of the database that

a particular user group is interested in and hides the rest of the database

from that user group.

21

The following Figure 2.1 is a graphical representation of three level of

architecture.

Figure 2.1 The three level of architecture

The processes of transforming requests and results between levels are

called mappings.

2.3 Data Independence
The three-schema architecture can be used to explain the concept of

data independence, which can be defined as the capacity to change the

schema at one level of a database system without having to change the

schema at the next higher level. We can define two types of data

independence:

22

1. Logical data independence is the capacity to change the conceptual

schema without having to change external schemas or application

programs. We may change the conceptual schema to expand the

database (by adding a record type or data item), or to reduce the

database (by removing a record type or data item). In the latter case,

external schemas that refer only to the remaining data should not be

affected. Only the view definition and the mappings need be changed in

a DBMS that supports logical data independence. Application programs

that reference the external schema constructs must work as before,

after the conceptual schema undergoes a logical reorganization.

Changes to constraints can be applied also to the conceptual schema

without affecting the external schemas or application programs.

2. Physical data independence is the capacity to change the internal

schema without having to change the conceptual (or external) schemas.

Changes to the internal schema may be needed because some physical

files had to be reorganized—for example, by creating additional access

structures—to improve the performance of retrieval or update. If the

same data as before remains in the database, we should not have to

change the conceptual schema.

2.4 Components of Database System Environment

The term database system refers to an organization of components that

define and regulate the collection, storage, management, and use of

data within a database environment. From a general management point

of view, the database system is composed of the five major parts shown

in the following Figure 2.2: hardware, software, people, procedures, and

data.

23

Figure 2.2 Components of database system environment

1. Hardware.

Hardware refers to all of the system’s physical devices; for example,

computers (PCs, workstations, servers, and supercomputers), storage

devices, printers, network devices (hubs, switches, routers, fiber

optics),and other devices (automated teller machines, ID readers, and so

on).

2. Software.

Although the most readily identified software is the DBMS itself, to make

the database system function fully, three types of software are needed:

operating system software, DBMS software, and application programs

and utilities.

a. Operating system software:

manages all hardware components and makes it possible for all other software

to run on the computers. Examples of operating system software include

Microsoft Windows, Linux, MacOS, UNIX, and MVS.

b. DBMS software:

manages the database within the database system. Some examples of DBMS

software include Microsoft’s SQL Server, Oracle Corporation’s Oracle, Sun’s

MySQL, and IBM’s DB2.

c. Application programs and utility software:

Are used to access and manipulate data in the DBMS and to manage the

24

3. People.

This component includes all users of the database system. On the basis

of primary job functions, five types of users can be identified in a

database system: system administrators, database administrators,

database designers, system analysts and programmers, and end users.

Each user type, described below, performs both unique and

complementary functions.

1. System administrators oversee the database system’s general

operations.

2. Database administrators, also known as DBAs, manage the DBMS

and ensure that the database is functioning properly.

3. Database designers design the database structure. They are, in

effect, the database architects. If the database design is poor, even

the best application programmers and the most dedicated DBAs

cannot produce a useful database environment. Because

organizations strive to optimize their data resources, the database

25

designer’s job description has expanded to cover new dimensions

and growing responsibilities.

4. System analysts and programmers design and implement the

application programs. They design and create the data entry screens,

reports, and procedures through which end users access and

manipulate the database’s data.

 5.End users are

the people who use the application programs to run the organization’s

daily operations. For example, salesclerks, supervisors, managers, and

directors are all classified as end users. High-level end users employ the

information obtained from the database to make tactical and strategic

business decisions.

4. Procedures.

Procedures are the instructions and rules that govern the design and use

of the database system. Procedures are a critical, although occasionally

forgotten, component of the system. Procedures play an important role

in a company because they enforce the standards by which business is

conducted within the organization and with customers. Procedures are

also used to ensure that there is an organized way to monitor and audit

both the data that enter the database and the information that is

generated through the use of those data.

5. Data.

The word data covers the collection of facts stored in the database.

Because data are the raw material from which information is generated,

the determination of what data are to be entered into the database and

how those data are to be organized is a vital part of the database

designer’s job.

The following Figure 2.3 is a graphical representation of Database

system.

26

Figure 2.3 Database system

2.5 Instance , schema and mapping

Databases change over time as information is inserted and deleted. The

collection of information stored in the database at a particular moment

is called an instance of the database. The overall design of the database

is called the database schema. Schemas are changed infrequently, if at

all.

The concept of database schemas and instances can be understood by

analogy to a program written in a programming language. A database

schema corresponds to the variable declarations (along with associated

type definitions) in a program. Each variable has a particular value at a

(Database (DB) + DBMS → Database System (DBS))

27

given instant. The values of the variables in a program at a point in time

correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the

levelsof abstraction:

 Physical schema describes the database design at the physical

level.

 Logical schema describes the database design at the logical level.

 A database may also have several schemas at the view level,

sometimes called subschemas, which describe different views of

the database.

Employee-schema=(emp-id, emp-name, salary,sex,department).

Of these, the logical schema is by far the most important, in terms of its

effect on application programs, since programmers construct

applications by using the logical schema. The physical schema is hidden

beneath the logical schema, and can usually be changed easily without

affecting application programs. Application programs are said to exhibit

physical data independence if they do not depend on the physical

schema, and thus need not be rewritten if the physical schema changes.

The processes of transforming requests and results between levels are

called mappings.

2.6 ACID Model

ACID (Atomicity, Consistency, Isolation, Durability) is a set of

properties that guarantee database transactions are processed

reliably. A transaction a single logical operation on the data is

called a transaction. For example, a transfer of funds from one

bank account to another, even though that might involve multiple

changes (such as debiting one account and crediting another), is a

single transaction.

 The ACID model is one of the oldest and most important

concepts of database theory. There are four goals that every

28

database management system should be achieved: atomicity,

consistency, isolation and durability. No database can be

considered reliable if the database fails to meet any of these four

goals.Jim Gray defined these properties of a reliable transaction

system in the late 1970s and developed technologies to

automatically achieve them.

2.6.1 Characteristics of ACID Test

1- Atomicity

Atomicity requires that database modifications must follow an

"all or nothing" rule. Each transaction is said to be atomic. If one

part of the transaction fails, the entire transaction fails and the

database state is unchanged. It is important that the database

management system maintain the atomic nature of transactions

in spite of any DBMS, operating system or hardware failure.

2- Consistency

Consistency states that only valid data will be written to the

database. If a transaction is executed that violates the database’s

consistency rules, the entire transaction will be rolled back and

the database will be restored to the state consistent with those

rules. if a transaction successfully executes, it will take the

database from one state that is consistent with the rul es to

another state that is also consistent with the rules.

3- Isolation

Isolation requires that multiple transactions occurring at the same

time not impact each other’s execution. For example, if salaam

issues a transaction against a database at the same time that layla

issues a different transaction; both transactions should operate on

the database in an isolated manner. The database should either

perform salaam’s entire transaction before executing layla’s or

vice- versa. That leads to prevents salaam’s transaction from

reading intermediate data produced as a side effect of part of

http://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)

29

layla’s transaction that will not eventually be committed to the

database. The isolation property does not ensure which

transaction will execute first, but it will not interfere with each

other. Isolation is helped to decrease the speed of this type of

concurrency management. To respect the isolation property is

better to use a serial model where no two transactions can occur

on the same data at the same time and where the result is

predictable.

2.7 Database Design
 Database design is the process of producing a detailed data model of a

database , this data model which can then be used to create a database.

The term database design can be used to describe many different parts of

the design , it can be thought of as the logical design of the base data

structures used to store the data. In the relational model these are the

tables and view

The Design Process

The design process consists of the following steps:

1. Determine the purpose of your database ‐ This helps prepare you for the

remaining steps.

2. Find and organize the information required ‐ Gather all of the types of

information you might want to record in the database, such as product

name and order number.

3. Divide the information into tables ‐ Divide your information items into

major entities or subjects, such as Products or Orders. Each subject then

becomes a table.

4. Turn information items into columns ‐ Decide what information you want

to store in each table. Each item becomes a field, and is displayed as a

column in the table. For example, an Employees table might include fields

such as Last Name and Hire Date.

5. Specify primary keys ‐ Choose each table’s primary key. The primary key is

a column that is used to uniquely identify each row. An example might be

Product ID or Order ID.

30

6. Set up the table relationships ‐ Look at each table and decide how the

data in one table is related to the data in other tables. Add fields to tables or

create new tables to clarify the relationships, as necessary.

7. Refine your design ‐ Analyze your design for errors. Create the tables and

add a few records of sample data. See if you can get the results you want

from your tables. Make adjustments to the design, as needed.

8. Apply the normalization rules ‐ Apply the data normalization rules to see

if your tables are structured correctly. Make adjustments to the tables, as

needed.

2.8 Database Model

A database model refers to the logical structure, representation or

layout of a database and how the data will be stored, managed and

processed within it. It helps in designing a database and serves as

blueprint for application developers and database administrators in

creating a database.

A database model is primarily a type of data model. Depending on the

model in use, a database model can include entities, their relationships,

data flow, tables and more. For example, within a hierarchal database

mode, the data model organizes data in the form of a tree-like structure

having parent and child segments.

Some of the popular database models include relational models,

hierarchical models, flat file models, object oriented models, entity

relationship models and network models.

In history of database design, three models have been in use.

 Hierarchical Model

 Network Model

 Relational Model

2.8.1 Hierarchical Model

31

In this model each entity has only one parent but can have several

children . At the top of hierarchy there is only one entity which is

called Root.

Figure 2.4 Hierarchical Model

2.8.2 Network Model

In the network model, entities are organized in a graph, in which some

entities can be accessed through several path

Figure 2.5 Network Model

32

2.8.3 Relational Model

In this model, data is organized in two-dimensional tables

called relations. The tables or relation are related to each other.

Figure 2.6 Relational Model

33

Chapter 3

RELATIONAL DATABASE

MANAGEMENT SYSTEM

(RDBMS)

1. Introduction

2. RDBMS Concepts

3. Database Keys

34

3.1 Introduction

A relational database management system (RDBMS) is a database

engine/system based on the relational model specified by Edgar F.

Codd--the father of modern relational database design--in 1970.

Most modern commercial and open-source database applications are

relational in nature. The most important relational database features

include an ability to use tables for data storage while maintaining and

enforcing certain data relationships.

In 1970, Edgar F. Codd, a British computer scientist with IBM, published

“A Relational Model of Data for Large Shared Data Banks.” At the time,

the renowned paper attracted little interest, and few understood how

Codd’s groundbreaking work would define the basic rules for relational

data storage, which can be simplified as:

1. Data must be stored and presented as relations, i.e., tables that have

relationships with each other, e.g., primary/foreign keys.

2. To manipulate the data stored in tables, a system should provide

relational operators - code that enables the relationship to be tested

between two entities.

Codd later published another paper that outlined the 12 rules that all

databases must follow to qualify as relational. Many modern database

systems do not follow all 12 rules, but these systems are considered

relational because they conform to at least two of the 12rules.

Most modern commercial and open-source database systems are

relational in nature and include well-known applications, e.g., Oracle DB

(Oracle Corporation); SQL Server (Microsoft) and MySQL and Postgres

(open source).

3.2 RDBMS Concepts

 RDBMS is used to manage Relational database. Relational database is a

collection of organized set of tables from which data can be accessed

easily. Relational Database is most commonly used database. It consists

of number of tables and each table has its own primary key.

35

3.2.1 What is Table ?

In Relational database, a table is a collection of data elements organized

in terms of rows and columns. A table is also considered as convenient

representation of relations. But a table can have duplicate tuples while a

true relation cannot have duplicate tuples. Table is the most simplest

form of data storage. Below is an example of Employee table.

ID Name Age Salary

1 Adam 34 13000

2 Alex 28 15000
3 Stuart 20 18000

4 Ross 42 19020

3.2.2 What is a Record ?

A single entry in a table is called a Record or Row. A Record in a table

represents set of related data. For example, the above Employee table

has 4 records. Following is an example of single record.

1 Adam 34 13000

3.2.3 What is Field ?

A table consists of several records(row), each record can be broken into

several smaller entities known as Fields. The above Employee table

consist of four fields, ID, Name, Age and Salary.

3.2.4 What is a Column ?

In Relational table, a column is a set of value of a particular type. The

term Attribute is also used to represent a column. For example, in

Employee table, Name is a column that represent names of employee.

Name

Adam

36

Alex

Stuart

Ross

3.3 Database Keys

3.3.1 Introduction

For the purposes of clarity we will refer to keys in terms of RDBMS tables

but the same definition, principle and naming applies equally to Entity

Modeling and Normalization.

Keys are, as their name suggests, a key part of a relational database and

a vital part of the structure of a table. They ensure each record within a

table can be uniquely identified by one or a combination of fields within

the table. They help enforce integrity and help identify the relationship

between tables. There are three main types of keys, candidate keys,

primary keys and foreign keys. There is also an alternative key or

secondary key that can be used, as the name suggests, as a secondary or

alternative key to the primary key

3.3.2 Super Key

A Super key is any combination of fields within a table that uniquely

identifies each record within that table.

3.3.3 Candidate Key

A candidate is a subset of a super key. A candidate key is a single field or

the least combination of fields that uniquely identifies each record in the

table. The least combination of fields distinguishes a candidate key from

a super key. Every table must have at least one candidate key but at the

same time can have several.

37

Student Id firstName lastName courseId
L0002345 Jim Black C002

L0001254 James Harradine A004

L0002349 Amanda Holland C002

L0001198 Simon McCloud S042

L0023487 Peter Murray P301

L0018453 Anne Norris S042

As an example we might have a student_id that uniquely identifies the

students in a student table. This would be a candidate key. But in the

same table we might have the student’s first name and last name that

also, when combined, uniquely identify the student in a student table.

These would both be candidate keys.

In order to be eligible for a candidate key it must pass certain criteria.

 It must contain unique values

 It must not contain null values

 It contains the minimum number of fields to ensure uniqueness

 It must uniquely identify each record in the table

Once your candidate keys have been identified you can now select one

to be your primary key

3.3.4 Primary Key

A primary key is a candidate key that is most appropriate to be the main

reference key for the table. As its name suggests, it is the primary key of

reference for the table and is used throughout the database to help

establish relationships with other tables. As with any candidate key the

primary key must contain unique values, must never be null and

uniquely identify each record in the table.

Candidate Keys

38

As an example, a student id might be a primary key in a student table, a

department code in a table of all departments in an organisation. This

module has the code DH3D 35 that is no doubt used in a database

somewhere to identify RDBMS as a unit in a table of modules. In the

table below we have selected the candidate key student_id to be our

most appropriate primary key.

 primary key

Student Id firstName lastName courseId

L0002345 Jim Black C002
L0001254 James Harradine A004

L0002349 Amanda Holland C002

L0001198 Simon McCloud S042

L0023487 Peter Murray P301

L0018453 Anne Norris S042

Primary keys are mandatory for every table each record must have a

value for its primary key. When choosing a primary key from the pool of

candidate keys always choose a single simple key over a composite key.

3.3.5 Foreign Key

A foreign key is generally a primary key from one table that appears as a

field in another where the first table has a relationship to the second. In

other words, if we had a table A with a primary key X that linked to a

table B where X was a field in B, then X would be a foreign key in B.

An example might be a student table that contains the course_id the

student is attending. Another table lists the courses on offer with

course_id being the primary key. The 2 tables are linked through

course_id and as such course_id would be a foreign key in the student

table.

Student Id firstName lastName courseId

L0002345 Jim Black C002

L0001254 James Harradine A004

L0002349 Amanda Holland C002

39

foreign keys

Relationship

3.3.6 Secondary Key or Alternative Key

A table may have one or more choices for the primary key. Collectively

these are known as candidate keys as discuss earlier. One is selected as

the primary key. Those not selected are known as secondary keys or

alternative keys.

For example in the table showing candidate keys above we identified

two candidate keys, studentId and firstName + lastName. The studentId

would be the most appropriate for a primary key leaving the other

candidate key as secondary or alternative key. It should be noted for the

other key to be candidate keys, we are assuming you will never have a

person with the same first and last name combination. As this is unlikely

we might consider fistName+lastName to be a suspect candidate key as

it would be restrictive of the data you might enter. It would seem a

shame to not allow John Smith onto a course just because there was

already another John Smith.

3.3.7 Simple Key

Any of the keys described before (ie primary, secondary or foreign) may

comprise one or more fields, for example if firstName and lastName was

our key this would be a key of two fields where as studentId is only one.

A simple key consists of a single field to uniquely identify a record. In

addition the field in itself cannot be broken down into other fields, for

L0001198 Simon McCloud S042

courseld courseName

A004 Accounts

C002 Computing

P301 History
S042 Short course

Primary keys

40

example, studentId, which uniquely identifies a particular student, is a

single field and therefore is a simple key. No two students would have

the same student number.

3.3.8 Compound Key

A compound key consists of more than one field to uniquely identify a

record. A compound key is distinguished from a composite key because

each field, which makes up the primary key, is also a simple key in its

own right. An example might be a table that represents the modules a

student is attending. This table has a studentId and a moduleCode as its

primary key. Each of the fields that make up the primary key are simple

keys because each represents a unique reference when identifying a

student in one instance and a module in the other.

3.3.9 Composite Key

A composite key consists of more than one field to uniquely identify a

record. This differs from a compound key in that one or more of the

attributes, which make up the key, are not simple keys in their own

right. Taking the example from compound key, imagine we identified a

student by their firstName + lastName. In our table representing

students on modules our primary key would now be firstName +

lastName + moduleCode. Because firstName + lastName represent a

unique reference to a student, they are not each simple keys, they have

to be combined in order to uniquely identify the student. Therefore the

key for this table is a composite key.

3.4 Database Schema

When we talk about a database, we must differentiate between the
database schema, which is the logical design of the database, and a
database instance, which is a snapshot of the data in the database at a
given instant in time.
The concept of a relation corresponds to the programming-language
notion of a variable. The concept of a relation schema corresponds to
the programming-language notion of type definition.
It is convenient to give a name to a relation schema, just as we give
names to type definitions in programming languages. We adopt the

41

convention of using lowercase names for relations, and names beginning
with an uppercase letter for relation schemas. Following this notation,
we use Account-schema to denote the relation schema for relation
account. Thus,
Account-schema = (account-number, branch-name, balance)
We denote the fact that account is a relation on Account-schema by
account(Account-schema)
In general, a relation schema consists of a list of attributes and their
corresponding domains.
The concept of a relation instance corresponds to the programming
language notion of a value of a variable. The value of a given variable
may change with time; similarly the contents of a relation instance may
change with time as the relation is updated. However, we often simply
say “relation” when we actually mean “relation instance.”
As an example of a relation instance, consider the branch relation of
Figure 3.3. The schema for that relation is
Branch-schema = (branch-name, branch-city, assets)
Note that the attribute branch-name appears in both Branch-schema
and Accountschema.
This duplication is not a coincidence. Rather, using common attributes in
relation schemas is one way of relating tuples of distinct relations. For
example, suppose we wish to find the information about all of the
accounts maintained in branches

Branch-name Branch-city Assets

Brighton Brooklyn 7100000

Downtown Brooklyn 9000000

Mianus Horseneck 400000

Northtown Rye 3700000

Perryridge Horseneck 1700000
Powanl Bennington 300000

Redwood Paloalto 2100000

Round hill Horseneck 8000000

Figure 3.3 The branch relation.

located in Brooklyn. We look first at the branch relation to find the
names of all the branches located in Brooklyn. Then, for each such
branch, we would look in the account relation to find the information
about the accounts maintained at that branch.
This is not surprising—recall that the primary key attributes of a strong
entity set appear in the table created to represent the entity set, as well

42

as in the tables created to represent relationships that the entity set
participates in.
Let us continue our banking example. We need a relation to describe
information about customers. The relation schema is
Customer-schema = (customer-name, customer-street, customer-city)
Figure 3.4 shows a sample relation customer (Customer-schema). Note
that we have omitted the customer-id attribute, which we used Chapter
2, because now we want to have smaller relation schemas in our running
example of a bank database. We assume that the customer name
uniquely identifies a customer—obviously this may not be true in the
real world, but the assumption makes our examples much easier to read.

Customer-name Customer-street Customer-city

Adams Spring Pitsfield

Brooks Senator Brooklyn

Curry North Rye
Glenn Sandhill Woodside

Green Walnut Stamford

Hayes Main Harrison

johnson Alma Paloalto

Jones Main Harrison

Figure 3.4 The customer relation.

43

Chapter 4

Entity-Relationship
Diagram (ERD)

44

4.1 Introduction

An entity-relationship diagram (ERD) is a data modeling technique that
graphically illustrates an information system’s entities and the
relationships between those entities. An ERD is a conceptual and
representational model of data used to represent the entity framework
infrastructure.

Steps involved in creating an ERD include:

1. Identifying and defining the entities
2. Determining all interactions between the entities
3. Analyzing the nature of interactions/determining the cardinality of

the relationships
4. Creating the ERD

An entity-relationship diagram (ERD) is crucial to creating a good
database design. It is used as a high-level logical data model, which is
useful in developing a conceptual design for databases.

An entity is a real-world item or concept that exists on its own. Entities
are equivalent to database tables in a relational database, with each row
of the table representing an instance of that entity.

An attribute of an entity is a particular property that describes the
entity. A relationship is the association that describes the interaction
between entities. Cardinality, in the context of ERD, is the number of
instances of one entity that can, or must, be associated with each
instance of another entity. In general, there may be one-to-one, one-to-
many, or many-to-many relationships.

For example, let us consider two real-world entities, an employee and
his department. An employee has attributes such as an employee
number, name, department number, etc. Similarly, department number
and name can be defined as attributes of a department. A department
can interact with many employees, but an employee can belong to only
one department, hence there can be a one-to-many relationship,
defined between department and employee.

4.2 Components of E-R Diagram

45

Entity relational diagram (ER Diagram) is used to represent the
requirement analysis at the conceptual design stage. the database is
designed from the ER Diagram or we can say that ER Diagram is
converted to the database.

Each entity in the ER Diagram corresponds to a table in the database.

The attributes of any an entity correspond to field of a table.

The ER Diagram is converted to the database.

The elements of an ERD are:

1. ENTITIES

Entities are objects or concepts that represent important data.

They are typically nouns, e.g. customer, supervisor, location, or

promotion.

 Strong entities exist independently from other entity types. They
always possess one or more attributes that uniquely distinguish
each occurrence of the entity.

 Weak entities depend on some other entity type. They don't
possess unique attributes (also known as a primary key) and have
no meaning in the diagram without depending on another entity.
This other entity is known as the owner.

 Associative entities are entities that associate the instances of
one or more entity types. They also contain attributes that are
unique to the relationship between those entity instances.

46

2. RELATIONSHIPS

 Relationships are meaningful associations between or among
entities. They are usually verbs, e.g. assign, associate, or track. A
relationship provides useful information that could not be
discerned with just the entity types.

 Weak relationships, or identifying relationships, are connections
that exist between a weak entity type and its owner.

 Ternary Relationship, Relationship of degree three.

3. ATTRIBUTES

 Attributes are characteristics of either an entity, a many-to-many
relationship, or a one-to-one relationship.

 Multivalued attributes are those that are capable of taking on
more than one value.

 Derived attributes are attributes whose value can be calculated
from related attribute values.

 Composite attributes are represented by ellipses that are
connected with an ellipse. they are further divided in a tree like
structure. Every node is then connected to its attribute

 Key attribute represents the main characteristic of an Entity. It is

used to represent Primary key. Ellipse with underlying lines

represent Key Attribute.

47

4.3 Binary Relationship and Cardinality

A relationship where two entities are participating is called a binary
relationship. Cardinality is the number of instance of an entity from a
relation that can be associated with the relation.

 One-to-one − When only one instance of an entity is associated with
the relationship, it is marked as '1:1'. The following image reflects
that only one instance of each entity should be associated with the
relationship. It depicts one-to-one relationship.

 One-to-many − When more than one instance of an entity is
associated with a relationship, it is marked as '1:N'. The following
image reflects that only one instance of entity on the left and more
than one instance of an entity on the right can be associated with the
relationship. It depicts one-to-many relationship.

Key

Attribute

Attribute

Attribute

composite

Attribute

48

 Many-to-one − When more than one instance of entity is associated
with the relationship, it is marked as 'N:1'. The following image
reflects that more than one instance of an entity on the left and only
one instance of an entity on the right can be associated with the
relationship. It depicts many-to-one relationship.

 Many-to-many − The following image reflects that more than one
instance of an entity on the left and more than one instance of an
entity on the right can be associated with the relationship. It depicts
many-to-many relationship.

Consider the entity-relationship diagram in Figure 4.1, which consists of

two entity sets, customer and loan, related through a binary relationship

set borrower. The attributes associated with customer are customer-id,

49

customer-name, customer-street, and customer-city. The attributes

associated with loan are loan-number and amount. In Figure

4.1, attributes of an entity set that are members of the primary key are

underlined.

The relationship set borrower may be many-to-many, one-to-many,

many-to-one, or one-to-one. To distinguish among these types, we draw

either a directed line (→)or an undirected line (—) between the

relationship set and the entity set in question.

• A directed line from the relationship set borrower to the entity set loan

specifies that borrower is either a one-to-one or many-to-one

relationship set, from customer to loan; borrower cannot be a many-to-

many or a one-to-many relationship

set from customer to loan.

Figure 4.1 E-R diagram corresponding to customers and loans.

An undirected line from the relationship set borrower to the entity set

loan specifies that borrower is either a many-to-many or one-to-many

relationship set from customer to loan.

Returning to the E-R diagram of Figure 4.1, we see that the relationship

set borrower is many-to-many. If the relationship set borrower were

one-to-many, from customer to loan, then the line from borrower to

customer would be directed, with an arrow pointing to the customer

entity set (Figure 4.2a). Similarly, if the relationship set borrower

50

were many-to-one from customer to loan, then the line from borrower

to loan would have an arrow pointing to the loan entity set (Figure 4.2b).

Finally, if the relationship set borrower were one-to-one, then both lines

from borrower would have arrows:

Figure 4.2 Relationships. (a) one to many. (b) many to one. (c) one-to-

one.

51

Figure 4.3 also illustrates a multivalued attribute phone-number,

depicted by a double ellipse, and a derived attribute age, depicted by a

dashed ellipse.

Figure 4.3 E-R diagram with composite, multivalued, and derived

attributes.

Nonbinary relationship sets can be specified easily in an E-R diagram.

Figure 4.4 consists of the three entity sets employee, job, and branch,

related through the relationship set works-on.

We can specify some types of many-to-one relationships in the case of

nonbinary relationship sets. Suppose an employee can have at most one

job in each branch (for example, Jones cannot be a manager and an

auditor at the same branch). This constraint can be specified by an arrow

pointing to job on the edge from works-on.

We permit at most one arrow out of a relationship set, since an E-R

diagram with two or more arrows out of a nonbinary relationship set can

be interpreted in two ways.

52

Figure 4.4 E-R diagram with a ternary relationship.

4.5 Reduction of an E-R Schema to Tables

We can represent a database that conforms to an E-R database schema

by a collection of tables. For each entity set and for each relationship set

in the database, there is a unique table to which we assign the name of

the corresponding entity set or relationship set. Each table has multiple

columns, each of which has a unique name.

Both the E-R model and the relational-database model are abstract,

logical representations of real-world enterprises. Because the two

models employ similar design principles, we can convert an E-R design

into a relational design. Converting a database representation from an E-

R diagram to a table format is the way we arrive at a relational-database

design from an E-R diagram. Although important differences exist

between a relation and a table, informally, a relation can be considered

to be a table of values. The constraints specified in an E-R diagram, such

as primary keys and cardinality constraints, are mapped to constraints

on the tables generated from the E-R diagram.

Example :

There is an entity:

 customer-schema=(customer-id,name,address,city-state-

ZIP,discount).

1.Transforming an entity to a relation – E/R Diagram.

2.Transforming an entity to a relation – relational .

53

CUSTOMER

Discount City –State-Zip Address Name Customer –ID

5% Austin,TX2888 123 Oak St. Contemporary Designs 1273

3% Bloomington ,IN5482 18 Hoosier Dr. Casual Comer 6390

54

Chapter 5

Normalization

1. Introduction

2. First normal form 1NF

3. Second normal form 2NF

4. Third normal form 3NF

55

5.1 What is Normalization?

Normalization is a process in which we systematically examine relations

for anomalies and, when detected, remove those anomalies by splitting

up the relation into two new, related, relations.

Normalization is an important part of the database development

process: Often during normalization, the database designers get their

first real look into how the data are going to interact in the database.

Finding problems with the database structure at this stage is strongly

preferred to finding problems further along in the development process

because at this point it is fairly easy to cycle back to the conceptual

model (Entity Relationship model) and make changes.

Normalization can also be thought of as a trade-off between data

redundancy and performance. Normalizing a relation reduces data

redundancy but introduces the need for joins when all of the data is

required by an application such as a report query.

Recall, the Relational Model consists of the elements: relations, which

are made up of attributes.

A relation is a set of attributes with values for each attribute such that:

a. Each attribute (column) value must be a single value only.

b. All values for a given attribute (column) must be of the

same data type.

c. Each attribute (column) name must be unique.

d. The order of attributes (columns) is insignificant

e. No two tuples (rows) in a relation can be identical.

f. The order of the tuples (rows) is insignificant.

Normalization Benefits:

1. Facilitates data integration.
2. Reduces data redundancy.
3. Provides a robust architecture for retrieving and maintaining data.
4. Compliments data modeling.
5. Reduces the chances of data anomalies occurring.

56

5.2 Problem Without Normalization

Without Normalization, it becomes difficult to handle and update the

database, without facing data loss. Insertion, Updating and Deletion

Anomalies are very frequent if Database is not Normalized. To

understand these anomalies let us take an example of Student table.

S_id S_Name S_Address Subject_opted

401 Adam Noida Bio

402 Alex Panipat Maths

403 Stuart Jammu Maths

404 Adam Noida Physics

 Updating Anomaly : To update address of a student who occurs

twice or more than twice in a table, we will have to

update S_Address column in all the rows, else data will become

inconsistent.

 Insertion Anomaly : Suppose for a new admission, we have a Student

id(S_id), name and address of a student but if student has not opted

for any subjects yet then we have to insert NULL there, leading to

Insertion Anamoly.

 Deletion Anomaly : If (S_id) 401 has only one subject and

temporarily he drops it, when we delete that row, entire student

record will be deleted along with it.

57

5.3 Functional Dependencies
The single most important concept in relational schema design theory is

that of a functional dependency.

A functional dependency is a constraint between two sets of attributes

from the database. Suppose that our relational database schema has n

attributes A1, A2, ..., An.

If we think of the whole database as being described by a single

universal relation schema R = {A1, A2, ... , An}.

A functional dependency, denoted by X → Y, between two sets of

attributes X and Y that are subsets of R, such that any two tuples t1 and

t2 in r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y].

This means that the values of the Y component of a tuple in r depend on,

or are determined by, the values of the X component;

We say that the values of the X component of a tuple uniquely (or

functionally) determine the values of the Y component.

We say that there is a functional dependency from X to Y, or that Y is

functionally dependent on X.

Functional dependency is represented as FD or f.d. The set of attributes

X is called the left-hand side of the FD, and Y is called the right-hand

side.

X functionally determines Y in a relation schema R if, and only if,

whenever two tuples of r(R) agree on their X-value, they must

necessarily agree on their Y-value.

If a constraint on R states that there cannot be more than one tuple with

a given X-value in any relation instance r(R)—that is, X is a candidate key

of R— this implies that X →Y for any subset of attributes Y of R.

If X is a candidate key of R, then X →R.

If X→Y in R, this does not imply that Y→X in R.

A functional dependency is a property of the semantics or meaning of

the attributes.

Whenever the semantics of two sets of attributes in R indicate that a

functional dependency should hold, we specify the dependency as a

constraint.

58

Example :

The following FDs may hold because the four tuples in the
current extension have no violation of these constraints:

B C; C B; {A, B} C; {A, B} D; and {C, D} B
However, the following do not hold because we already have
violations of them in the given extension:

A B (tuples 1 and 2 violate this constraint);

B A (tuples 2 and 3 violate this constraint);

DC (tuples 3 and 4 violate it).

5.3.1 Fully functional dependency (composite key)
If attribute B is functionally dependent on a composite key A but not on

any subset of that composite key, the attribute B is fully functionally

dependent on A.

5.3.2 Partial Dependency:
When there is a functional dependence in which the determinant is only

part of the primary key, then there is a partial dependency.

For example if (A, B)  (C, D) and B C and (A, B) is the primary key,

then the functional dependence B C is a partial dependency.

5.3.3 Transitive Dependency:

When there are the following functional dependencies such that XY,

Y Z and X is the primary key, then XZ is a transitive dependency

because X determines the value of Z via Y.

Whenever a functional dependency is detected amongst nonprime,

there is a transitive dependency.

59

The advantage of removing transitive dependency is,

 Amount of data duplication is reduced.

 Data integrity achieved.

5.4 Normalization of Relations
The normalization process, as first proposed by Codd (1972a),takes a

relation schema through a series of tests to certify whether it satisfies a

certain normal form.

The process, which proceeds in a top-down fashion by evaluating each

relation against the criteria for normal forms and decomposing relations

as necessary, can thus be considered as relational design by analysis.

Initially, Codd proposed three normal forms, which he called first,

second, and third normal form.

5.4.1 How do you divide your tables?

The basic rule is that each table should describe one type of things,

each row in the table should contain about one such thing, and the

data we stored for each thing should exist in only one row.

This can often be sufficient to know. If one follows this basic rule, ones

databases will get a good design and one avoids problems with

redundancy, things that will not be possible to store, and tables that is

hard to understand.

However, sometimes it is difficult to actually know what kind of “things”

it is that one would like to store and which data that is related to them.

Then we can take use of the theory of normalization.

It helps us to see exactly how different columns within a table are

related and shows us how to divide the table to avoid our problems.

Therefore we will start looking at the different normal forms that the

theory of normalization describes. Normal forms are conditions that

tables should fulfill. The simplest form is the first normal form and by

adding more conditions one can define the second normal form, third

normal form and further on.

60

5.4.2 The First Normal Form (1NF)

A database is in first normal form if it satisfies the following

conditions:

1. All the key attributes are defined.

2. There are no repeating groups in the table.

3. The value of record must be atomic.

4. All attributes are dependent on the primary key.

Example1: Consider the following table stud :

stud

STU-ID L-NAME F-NAME

001 Smith John

002 Smith Susan
003 Beal Fred

004 Thomoson Marie

005 Tom Jake

002 Smith Susan

004 Thomoson Marie

003 Beal Fred

To bring this table to first normal form, we delete the duplication row,

and now we have the following table stud1:

Stud1

STU-ID L-NAME F-NAME

001 Smith John

002 Smith Susan

003 Beal Fred

004 Thomoson Marie

005 Tom Jake

Example2: Consider the following table student:

61

Student

STU-ID CNAME GRADE

001 English , Italian A
002 German , English B

003 Italian C

To bring this table to first normal form, we convert data to atomic

value , and now we have the following table student1:

Student1

STU-ID CNAME GRADE

001 English A

001 Italian A

002 German B

002 English B

003 Italian C

5.4.3 Second Normal Form (2NF)

A database is in second normal form if it satisfies the following

conditions:

 It is in first normal form

 All non-key attributes are fully functional dependent on the

primary key

In a table, if attribute B is functionally dependent on A, but is not

functionally dependent on a proper subset of A, then B is considered

fully functional dependent on A. Hence, in a 2NF table, all non-key

 attributes cannot be dependent on a subset of the primary key. Note

that if the primary key is not a composite key, all non-key attributes are

always fully functional dependent on the primary key.

 A table that is in 1st normal form and contains only a single key as the

primary key is automatically in 2nd normal form.

62

Example: Consider the following example:

This table has a composite primary key [Customer ID, Store ID]. The non-

key attribute is [Purchase Location]. In this case, [Purchase Location]

only depends on [Store ID], which is only part of the primary key.

Therefore, this table does not satisfy second normal form.

To bring this table to second normal form, we break the table into two

tables, and now we have the following:

What we have done is to remove the partial functional dependency that

we initially had. Now, in the table [TABLE_STORE], the column [Purchase

Location] is fully dependent on the primary key of that table, which is

[Store ID].

63

5.4.4 Third Normal Form (3NF)

A database is in third normal form if it satisfies the following conditions:

 It is in second normal form

 There is no transitive functional dependency

By transitive functional dependency, we mean we have the following

relationships in the table: A is functionally dependent on B, and B is

functionally dependent on C. In this case, C is transitively dependent on

A via B.

Consider the following example:

In the table able, [Book ID] determines [Genre ID], and [Genre ID]

determines [Genre Type].

Therefore, [Book ID] determines [Genre Type] via [Genre ID] and we

have transitive functional dependency, and this structure does not

satisfy third normal form.

To bring this table to third normal form, we split the table into two as

follows:

64

Now all non-key attributes are fully functional dependent only on the

primary key. In [TABLE_BOOK], both [Genre ID] and [Price] are only

dependent on [Book ID]. In [TABLE_GENRE], [Genre Type] is only

dependent on [Genre ID].

Exercises:

5.1 List all functional dependencies satisfied by the relation of the

following Figure:

5.2 List all functional dependencies satisfied by the relation of the

following Figure:

Id Name Gender Age

1 Orlando Male 35

2 John Male 35
3 Jane Female 31

4 Jane Female 30

A B C

a1 b1 c1

a1 b1 c2

a2 b1 c1

a2 b1 c3

65

5.3 Using Normalization convert this table to 1NF,2NF,3NF.

5.4 Using Normalization convert this table to 1NF,2NF,3NF.

5.5 Using Normalization convert this table to 1NF,2NF,3NF.

Street Zipcode City Length

Rydsvagen 58248 Linkoping 19km

Mardtorpsgatan 58248 Linkoping 0.7km
Storgatan 58223 Linkoping 1.5km

Storgatan 64631 Gnesta 0.014km

5.6 Using Normalization convert this table to 1NF,2NF,3NF.

Student Course-id Grade Address

Erik CIS331 A 80Ericsson Av.
Sven CIS331 B 12Olafson ST.

Inge CIS331 C 192Odin Blvd

Hildur CIS362 A 212 Reyjavik ST.

Student Age Subject

Adam 15 Biology, Maths

Alex 14 Maths

Stuart 17 Maths

66

Chapter 6

Structure Query

Language (SQL)

1. Introduction SQL

2. Data Definition Language (DDL)

3. Data Manipulation Language (DML)

4. Data Control Language (DCL)

67

Structured Query Language(SQL)

6.1 Introduction
Structured Query Language (SQL) is a standard computer language for
relational database management and data manipulation. SQL is used to
query, insert, update and modify data. Most relational databases
support SQL, which is an added benefit for database administrators
(DBAs), as they are often required to support databases across several
different platforms.

First developed in the early 1970s at IBM by Raymond Boyce and Donald
Chamberlin, SQL was commercially released by Relational Software Inc.
(now known as Oracle Corporation) in 1979. The current standard SQL
version is voluntary, vendor-compliant and monitored by the American
National Standards Institute (ANSI). Most major vendors also have
proprietary versions that are incorporated and built on ANSI SQL, e.g.,
SQL*Plus (Oracle), and Transact-SQL (T-SQL) (Microsoft).

One of the most fundamental DBA rites of passage is learning SQL, which
begins with writing the first SELECT statement or SQL script without a
graphical user interfaces (GUI). Increasingly, relational databases use
GUIs for easier database management, and queries can now be
simplified with graphical tools, e.g., drag-and-drop wizards. However,
learning SQL is imperative because such tools are never as powerful as
SQL.

 6.2 What can SQL do?
1. SQL can execute queries against a database .

2. SQL can retrieve data from a database .

3. SQL can insert records in a database .

4. SQL can update records in a database.

5. SQL can delete records from a database.
6. SQL can create new databases .

7. SQL can create new tables in a database.

8. SQL can create stored procedures in a database.

9. SQL can create views in a database .

10. SQL can set permissions on tables, procedures, and views .

68

6.3 Database Languages

A database system provides a data definition language to specify the
database schema and a data manipulation language to express
database queries and updates and a data control language to configure
security access to relational databases . In practice, the data definition
and data manipulation languages are not two separate languages;
instead they simply form parts of a single database language, such as the
widely used SQL language.

6.3.1 Data Definition Language (DDL)

The SQL DDL allows specification of not only a set of relations, but also
information about each relation, including
• The schema for each relation
• The domain of values associated with each attribute
• The integrity constraints
• The set of indices to be maintained for each relation
• The security and authorization information for each relation
• The physical storage structure of each relation on disk

Data Definition Language (DDL): statements are used to define the
database structure or schema. Some examples:

o CREATE - to create objects in the database.
o ALTER - alters the structure of the database.
o DROP - delete objects from the database.
o TRUNCATE - remove all records from a table, including all spaces

allocated for the records are removed.
o COMMENT - add comments to the data dictionary.
o RENAME - rename an object.

69

6.3.2 Data Manipulation Language(DML)

A data-manipulation language (DML) is a language that enables users to
access or manipulate data as organized by the appropriate data model.
Data manipulation is
• The retrieval of information stored in the database
• The insertion of new information into the database
• The deletion of information from the database
• The modification of information stored in the database
There are basically two types:

• Procedural DMLs require a user to specify what data are needed and
how to get those data.
• Declarative DMLs (also referred to as nonprocedural DMLs) require a
user to specify what data are needed without specifying how to get
those data.
Declarative DMLs are usually easier to learn and use than are procedural
DMLs.
However, since a user does not have to specify how to get the data, the
database system has to figure out an efficient means of accessing data.
The DML component of the SQL language is nonprocedural.
A query is a statement requesting the retrieval of information. The
portion of a DML that involves information retrieval is called a query
language. Although technically incorrect, it is common practice to use
the terms query language and data manipulation
language synonymously.

Data Manipulation Language (DML) statements are used for managing data
within schema objects. Some examples:

 SELECT - retrieve data from the a database.

 INSERT - insert data into a table.

 UPDATE - updates existing data within a table.

 DELETE - deletes all records from a table, the space for the records
remain.

 MERGE - UPSERT operation (insert or update).

 CALL - call a PL/SQL or Java subprogram.

 EXPLAIN PLAN - explain access path to data.

 LOCK TABLE - control concurrency.

70

6.3.3 Data Control Language:

Data Control Language (DCL) :statement is a subset of the Structured
Query Language (SQL) that allows database administrators to configure
security access to relational databases. Some examples:

o GRANT - gives user's access privileges to database.
o REVOKE - withdraw access privileges given with the GRANT command.

6.4 SQL - Data Types

SQL data type is an attribute that specifies type of data of any object.
Each column, variable and expression has related data type in SQL.

You would use these data types while creating your tables. You would
choose a particular data type for a table column based on your
requirement.

The SQL standard supports a variety of built-in domain types, including:
• char(n): A fixed-length character string with user-specified length n.
The full form, character, can be used instead.
• varchar(n): A variable-length character string with user-specified
maximum length n. The full form, character varying, is equivalent.
• int: An integer (a finite subset of the integers that is machine
dependent). The full form, integer, is equivalent.
• smallint: A small integer (a machine-dependent subset of the integer
domain type).
• numeric(p, d): A fixed-point number with user-specified precision. The
number consists of p digits (plus a sign), and d of the p digits are to the
right of the decimal point. Thus, numeric(3,1) allows 44.5 to be stored
exactly, but neither 444.5 or 0.32 can be stored exactly in a field of this
type.
• real, double precision: Floating-point and double-precision floating-
point numbers with machine-dependent precision.
• float(n): A floating-point number, with precision of at least n digits.
• date: A calendar date containing a (four-digit) year, month, and day of
the month.
• time: The time of day, in hours, minutes, and seconds. A variant,
time(p), can be used to specify the number of fractional digits for

71

seconds (the default being 0). It is also possible to store time zone
information along with the time.
• timestamp: A combination of date and time. A variant, timestamp(p),
can be used to specify the number of fractional digits for seconds (the
default here being 6).
Date and time values can be specified like this:
date ’2001-04-25’
time ’09:30:00’
timestamp ’2001-04-25 10:29:01.45’
Dates must be specified in the format year followed by month followed
by day, as shown. The seconds field of time or timestamp can have a
fractional part, as in the timestamp above. We can use an expression of
the form cast e as t to convert a character string (or string valued
expression) e to the type t, where t is one of date, time,
or timestamp. The string must be in the appropriate format as
illustrated at the beginning of this paragraph.
To extract individual fields of a date or time value d, we can use extract
(field from d), where field can be one of year, month, day, hour, minute,
or second.

72

6.4.1 SQL Data Type Quick Reference

However, different databases offer different choices for the data type
definition.

The following table shows some of the common names of data types
between the various database platforms:

Data type Access SQL Server Oracle MySQL PostgreSQL

Boolean Yes/No Bit Byte N/A Boolean

Integer Number
(integer)

Int Number Int
Integer

Int
Integer

Float Number
(single)

Float
Real

Number Float Numeric

Currency Currency Money N/A N/A Money

string
(fixed)

N/A Char Char Char Char

string
(variable)

Text (<256)
Memo
(65k+)

Varchar Varchar
Varchar2

Varchar Varchar

binary
object

OLE Object
Memo

Binary (fixed
up to 8K)
Varbinary
(<8K)
Image (<2GB)

Long
Raw

Blob
Text

Binary
Varbinary

 Note: Data types might have different names in different database. And

even if the name is the same, the size and other details may be

different! Always check the documentation!

6.5 Data Definition Language (DDL) command

6.5.1. Create Command

 create is a DDL command used to create a table or a database.

6.5.1.1 Creating a Database

73

To create a database in RDBMS, create command is uses. Following is
the Syntax,

create database database-name;

Example for Creating Database

create database Test;

The above command will create a database named Test.

6.5.1.2 Creating a Table

create command is also used to create a table. We can specify names
and data types of various columns along. Following is the Syntax,

create table table-name

{

 column-name1 datatype1,

 column-name2 datatype2,

 column-name3 datatype3,

 column-name4 datatype4

};

create table command will tell the database system to create a new
table with given table name and column information.

Example for creating Table

create table Student(id int, name varchar, age int);

The above command will create a new table Student in database system
with 3 columns, namely id, name and age.

6.5.2 Alter command

alter command is used for alteration of table structures. There are
various uses of alter command, such as,

 to add a column to existing table

74

 to rename any existing column

 to change data type of any column or to modify its size.

 alter is also used to drop a column.

6.5.2.1 To Add Column to existing Table

Using alter command we can add a column to an existing table.
Following is the Syntax,

alter table table-name add(column-name datatype);

Here is an Example for this,

alter table Student add(address char);

The above command will add a new column address to
the Student table

6.5.2.2 To Add Multiple Column to existing Table

Using alter command we can even add multiple columns to an existing
table. Following is the Syntax,

alter table table-name add(column-name1 datatype1, column-name2 d
atatype2, column-name3 datatype3);

Here is an Example for this,

alter table Student add(father-name varchar(60), mother-name varchar(
60), dob date);

The above command will add three new columns to the Student table

6.5.2.3 To Add column with Default Value

alter command can add a new column to an existing table with default
values. Following is the Syntax,

alter table table-name add(column-name1 datatype1 default data);

75

Here is an Example for this,

alter table Student add(dob date default '1-Jan-99');

The above command will add a new column with default value to
the Student table

6.5.2.4 To Modify an existing Column

alter command is used to modify data type of an existing column .
Following is the Syntax,

alter table table-name modify(column-name datatype);

Here is an Example for this,

alter table Student modify(address varchar(30));

The above command will modify address column of the Student table

6.5.2.5 To Rename a column

Using alter command you can rename an existing column. Following is
the Syntax,

alter table table-name rename old-column-name to column-name;

Here is an Example for this,

alter table Student rename address to Location;

The above command will rename address column to Location.

6.5.2.6 To Drop a Column

alter command is also used to drop columns also. Following is the
Syntax,

alter table table-name drop(column-name);

Here is an Example for this,

alter table Student drop(address);

The above command will drop address column from the Student table

6.5.3 Truncate Command

truncate command removes all records from a table. But this command
will not destroy the table's structure. When we apply truncate command
on a table its Primary key is initialized. Following is its Syntax,

76

truncate table table-name

Here is an Example explaining it.

truncate table Student;

The above query will delete all the records of Student table.

truncate command is different from delete command. delete command
will delete all the rows from a table whereas truncate command re-
initializes a table(like a newly created table).

For eg. If you have a table with 10 rows and an auto_increment primary
key, if you use delete command to delete all the rows, it will delete all
the rows, but will not initialize the primary key, hence if you will insert
any row after using delete command, the auto_increment primary key
will start from 11. But in case of truncatecommand, primary key is re-
initialized.

6.5.4 Drop command

drop query completely removes a table from database. This command
will also destroy the table structure. Following is its Syntax,

drop table table-name

Here is an Example explaining it.

drop table Student;

The above query will delete the Student table completely. It can also be
used on Databases. For Example, to drop a database,

 drop database Test;

The above query will drop a database named Test from the system.

6.5.5 Rename query

rename command is used to rename a table. Following is its Syntax,

rename table old-table-name to new-table-name

77

Here is an Example explaining it.

rename table Student to Student-record;

The above query will rename Student table to Student-record.

 6.6 Data Manipulation Language(DML) command

Data Manipulation Language (DML) statements are used for managing

data in database. DML commands are not auto-committed. It means

changes made by DML command are not permanent to database, it can

be rolled back.

6.6.1) INSERT command

Insert command is used to insert data into a table. Following is its

general syntax,

INSERT into table-name values(data1,data2,..)

Lets see an example,

Consider a table Student with following fields.

S_id S_Name age

INSERT into Student values(101,'Adam',15);

The above command will insert a record into Student table.

S_id S_Name age

101 Adam 15

Example to Insert NULL value to a column

Both the statements below will insert NULL value into age column of the

Student table.

INSERT into Student(id,name) values(102,'Alex');

Or,

78

INSERT into Student values(102,'Alex',null);

The above command will insert only two column value other column is

set to null.

S_id S_Name age

101 Adam 15

102 Alex

Example to Insert Default value to a column

INSERT into Student values(103,'Chris',default)

S_id S_Name age

101 Adam 15

102 Alex

103 Chris 14

Suppose the age column of student table has default value of 14.

Also, if you run the below query, it will insert default value into the age

column, whatever the default value may be.

INSERT into Student values(103,'Chris')

6.6.2) UPDATE command

Update command is used to update a row of a table. Following is its

general syntax,

UPDATE table-name set column-name = value where condition;

Let's see an example,

update Student set age=18 where s_id=102;

79

S_id S_Name age

101 Adam 15

102 Alex 18

103 Chris 14

Example to Update multiple columns

UPDATE Student set s_name='Abhi',age=17 where s_id=103;

The above command will update two columns of a record.

S_id S_Name age

101 Adam 15

102 Alex 18

103 Abhi 17

6.6.3) Delete command

Delete command is used to delete data from a table. Delete command

can also be used with condition to delete a particular row. Following is

its general syntax,

DELETE from table-name;

Example to Delete all Records from a Table

DELETE from Student;

The above command will delete all the records from Student table.

80

Example to Delete a particular Record from a Table

Consider the following Student table

S_id S_Name age

101 Adam 15

102 Alex 18

103 Abhi 17

DELETE from Student where s_id=103;

The above command will delete the record where s_id is 103

from Student table.

S_id S_Name age

101 Adam 15

102 Alex 18

6.7 WHERE clause

Where clause is used to specify condition while retrieving data from
table. Where clause is used mostly with Select, Update and Delete query.
If condition specified by where clause is true then only the result from
table is returned.

Syntax for WHERE clause

SELECT column-name1,

 column-name2,

 column-name3,

 column-nameN

from table-name WHERE [condition];

81

Example using WHERE clause

Consider a Student table,

s_id s_Name Age address

101 Adam 15 Noida

102 Alex 18 Delhi

103 Abhi 17 Rohtak

104 Ankit 22 Panipat

Now we will use a SELECT statement to display data of the table, based
on a condition, which we will add to the SELECT query using WHERE
clause.

SELECT s_id,

 s_name,

 age,

 address

from Student WHERE s_id=101;

s_id s_Name Age address

101 Adam 15 Noida

6.8 SELECT Query

Select query is used to retrieve data from a tables. It is the most used

SQL query. We can retrieve complete tables, or partial by mentioning

conditions using WHERE clause.

Syntax of SELECT Query

SELECT column-name1, column-name2, column-name3, column-nameN
from table-name;

82

Example for SELECT Query

Conside the following Student table,

S_id S_Name Age address

101 Adam 15 Noida

102 Alex 18 Delhi

103 Abhi 17 Rohtak

104 Ankit 22 Panipat

SELECT s_id, s_name, age from Student.

The above query will fetch information of s_id, s_name and age column

from Student table

S_id S_Name Age

101 Adam 15

102 Alex 18

103 Abhi 17

104 Ankit 22

Example to Select all Records from Table

A special character asterisk * is used to address all the data(belonging

to all columns) in a query. SELECT statement uses * character to

retrieve all records from a table.

SELECT * from student;

The above query will show all the records of Student table, that means it

will show complete Student table as result.

83

S_id S_Name Age address

101 Adam 15 Noida

102 Alex 18 Delhi

103 Abhi 17 Rohtak

104 Ankit 22 Panipat

Example to Select particular Record based on Condition

SELECT * from Student WHERE s_name = 'Abhi';

103 Abhi 17 Rohtak

Example to Perform Simple Calculations using Select Query

Conside the following Employee table.

Eid Name Age Salary

101 Adam 26 5000

102 Ricky 42 8000

103 Abhi 22 10000

104 Rohan 35 5000

SELECT eid, name, salary+3000 from Employee;

The above command will display a new column in the result, showing

3000 added into existing salaries of the employees.

Eid Name salary+3000

101 Adam 8000

84

102 Ricky 11000

103 Abhi 13000

104 Rohan 8000

6.9 Like clause

Like clause is used as condition in SQL query. Like clause compares data

with an expression using wildcard operators. It is used to find similar

data from the table.

Wildcard operators

There are two wildcard operators that are used in like clause.

 Percent sign % : represents zero, one or more than one character.

 Underscore sign _ : represents only one character.

Example of LIKE clause

Consider the following Student table.

s_id s_Name Age

101 Adam 15

102 Alex 18

103 Abhi 17

SELECT * from Student where s_name like 'A%';

The above query will return all records where s_name starts with

character 'A'.

85

s_id s_Name Age

101 Adam 15

102 Alex 18

103 Abhi 17

Example:

SELECT * from Student where s_name like '_d%';

The above query will return all records from Student table

where s_name contain 'd' as second character.

s_id s_Name Age

101 Adam 15

Example:

SELECT * from Student where s_name like '%x';

The above query will return all records from Student table

where s_name contain 'x' as last character.

s_id s_Name Age

102 Alex 18

86

6.9 Order By Clause

Order by clause is used with Select statement for arranging retrieved

data in sorted order. The Order byclause by default sort data in

ascending order. To sort data in descending order DESC keyword is used

withOrder by clause.

Syntax of Order By

SELECT column-list|* from table-name order by asc|desc;

Example using Order by

Consider the following Emp table,

Eid Name Age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SELECT * from Emp order by salary;

The above query will return result in ascending order of the salary.

Eid Name Age salary

403 Rohan 34 6000

402 Shane 29 8000

405 Tiger 35 8000

87

401 Anu 22 9000

404 Scott 44 10000

Example of Order by DESC

Consider the Emp table described above,

SELECT * from Emp order by salary DESC;

The above query will return result in descending order of the salary.

Eid Name age Salary

404 Scott 44 10000

401 Anu 22 9000

405 Tiger 35 8000

402 Shane 29 8000

403 Rohan 34 6000

6.10 HAVING Clause

having clause is used with SQL Queries to give more precise condition for
a statement. It is used to mention condition in Group based SQL
functions, just like WHERE clause.

Syntax for having will be,

select column_name, function(column_name)

FROM table_name

88

WHERE column_name condition

GROUP BY column_name

HAVING function(column_name) condition

Example of HAVING Statement

Consider the following Sale table.

oid order_name previous_balance customer

11 ord1 2000 Alex

12 ord2 1000 Adam

13 ord3 2000 Abhi

14 ord4 1000 Adam

15 ord5 2000 Alex

Suppose we want to find the customer whose previous_balance sum is
more than 3000.

We will use the below SQL query,

SELECT *

from sale group customer

having sum(previous_balance) > 3000

Result will be,

oid order_name previous_balance customer

11 ord1 2000 Alex

89

6.11 Distinct keyword

The distinct keyword is used with Select statement to retrieve unique
values from the table. Distinct removes all the duplicate records while
retrieving from database.

Syntax for DISTINCT Keyword

SELECT distinct column-name from table-name;

Example

Consider the following Emp table.

Eid Name Age Salary

401 Anu 22 5000

402 Shane 29 8000

403 Rohan 34 10000

404 Scott 44 10000

405 Tiger 35 8000

select distinct salary from Emp;

The above query will return only the unique salary from Emp table

salary

5000

8000

10000

90

6.12 AND & OR operator

AND and OR operators are used with Where clause to make more
precise conditions for fetching data from database by combining more
than one condition together.

6.12.1 AND operator

AND operator is used to set multiple conditions with Where clause.

Example of AND

Consider the following Emp table

Eid Name Age Salary

401 Anu 22 5000

402 Shane 29 8000

403 Rohan 34 12000

404 Scott 44 10000

405 Tiger 35 9000

SELECT * from Emp WHERE salary < 10000 AND age > 25

The above query will return records where salary is less than 10000 and
age greater than 25.

Eid Name Age Salary

402 Shane 29 8000

405 Tiger 35 9000

91

6.12.2 OR operator

OR operator is also used to combine multiple conditions
with Where clause. The only difference between AND and OR is their
behavior. When we use AND to combine two or more than two
conditions, records satisfying all the condition will be in the result. But in
case of OR, at least one condition from the conditions specified must be
satisfied by any record to be in the result.

Example of OR

Consider the following Emp table

Eid Name Age Salary

401 Anu 22 5000

402 Shane 29 8000

403 Rohan 34 12000

404 Scott 44 10000

405 Tiger 35 9000

SELECT * from Emp WHERE salary > 10000 OR age > 25

The above query will return records where either salary is greater than
10000 or age greater than 25.

402 Shane 29 8000

403 Rohan 34 12000

404 Scott 44 10000

405 Tiger 35 9000

92

6.13 SQL Constraints

SQl Constraints are rules used to limit the type of data that can go into a

table, to maintain the accuracy and integrity of the data inside table.

Constraints can be divided into following two types,

 Column level constraints : limits only column data

 Table level constraints : limits whole table data

Constraints are used to make sure that the integrity of data is

maintained in the database. Following are the most used constraints

that can be applied to a table.

 NOT NULL

 UNIQUE

 PRIMARY KEY

 FOREIGN KEY

 CHECK

 DEFAULT

6.13.1 NOT NULL Constraint

NOT NULL constraint restricts a column from having a NULL value.

Once NOT NULL constraint is applied to a column, you cannot pass a null

value to that column. It enforces a column to contain a proper value.

One important point to note about NOT NULL constraint is that it cannot

be defined at table level.

Example using NOT NULL constraint

93

CREATE table Student(s_id int NOT NULL, Name varchar(60), Age int);

The above query will declare that the s_id field of Student table will not

take NULL value.

6.13.2 UNIQUE Constraint

UNIQUE constraint ensures that a field or column will only have unique

values. A UNIQUE constraint field will not have duplicate data. UNIQUE

constraint can be applied at column level or table level.

Example using UNIQUE constraint when creating a Table (Table Level)

CREATE table Student(s_id int NOT NULL UNIQUE, Name varchar(60), Ag
e int);

The above query will declare that the s_id field of Student table will only

have unique values and won't take NULL value.

Example using UNIQUE constraint after Table is created (Column Level)

ALTER table Student add UNIQUE(s_id);

The above query specifies that s_id field of Student table will only have

unique value.

6.13.3 Primary Key Constraint

Primary key constraint uniquely identifies each record in a database. A

Primary Key must contain unique value and it must not contain null

value. Usually Primary Key is used to index the data inside the table.

Example using PRIMARY KEY constraint at Table Level

94

CREATE table Student (s_id int PRIMARY KEY, Name varchar(60) NOT NU
LL, Age int);

The above command will creates a PRIMARY KEY on the s_id .

Example using PRIMARY KEY constraint at Column Level

ALTER table Student add PRIMARY KEY (s_id);

The above command will creates a PRIMARY KEY on the s_id .

6.13.4 Foreign Key Constraint

FOREIGN KEY is used to relate two tables. FOREIGN KEY constraint is also

used to restrict actions that would destroy links between tables. To

understand FOREIGN KEY, let's see it using two table.

Customer_Detail Table :

c_id Customer_Name address

101 Adam Noida

102 Alex Delhi

103 Stuart Rohtak

Order_Detail Table :

Order_id Order_Name c_id

10 Order1 101

11 Order2 103

12 Order3 102

In Customer_Detail table, c_id is the primary key which is set as foreign

key in Order_Detail table. The value that is entered in c_id which is set

as foreign key in Order_Detail table must be present

95

in Customer_Detailtable where it is set as primary key. This prevents

invalid data to be inserted into c_id column of Order_Detailtable.

Example using FOREIGN KEY constraint at Table Level

CREATE table Order_Detail(order_id int PRIMARY KEY,

order_name varchar(60) NOT NULL,

c_id int FOREIGN KEY REFERENCES Customer_Detail(c_id));

In this query, c_id in table Order_Detail is made as foriegn key, which is a

reference of c_id column of Customer_Detail.

Example using FOREIGN KEY constraint at Column Level

ALTER table Order_Detail add FOREIGN KEY (c_id) REFERENCES Custome
r_Detail(c_id);

Behavior of Foreign Key Column on Delete

There are two ways to maintain the integrity of data in Child table, when

a particular record is deleted in main table. When two tables are

connected with Foreign key, and certain data in the main table is

deleted, for which record exit in child table too, then we must have

some mechanism to save the integrity of data in child table.

96

 On Delete Cascade : This will remove the record from child table, if

that value of foreign key is deleted from the main table.

 On Delete Null : This will set all the values in that record of child

table as NULL, for which the value of foreign key is selected from the

main table.

 If we don't use any of the above, then we cannot delete data from

the main table for which data in child table exists. We will get an

error if we try to do so.

ERROR : Record in child table exist

6.13.4 CHECK Constraint

CHECK constraint is used to restrict the value of a column between a

range. It performs check on the values, before storing them into the

database. Its like condition checking before saving data into a column.

Example using CHECK constraint at Table Level

create table Student(s_id int NOT NULL CHECK(s_id > 0),

Name varchar(60) NOT NULL,

Age int);

The above query will restrict the s_id value to be greater than zero.

Example using CHECK constraint at Column Level

ALTER table Student add CHECK(s_id > 0);

6.14 SQL Functions

SQL provides many built-in functions to perform operations on data.
These functions are useful while performing mathematical calculations,

97

string concatenations, sub-strings etc. SQL functions are divided into two
categories,

 Aggregate Functions

 Scalar Functions

6.14.1 Aggregate Functions

These functions return a single value after calculating from a group of
values. Following are some frequently used Aggregate functions.

1) AVG()

Average returns average value after calculating from values in a numeric
column.

Its general Syntax is,

SELECT AVG(column_name) from table_name

Example using AVG()

Consider following Emp table

Eid Name Age Salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find average of salary will be,

SELECT avg(salary) from Emp;

98

Result of the above query will be,

avg(salary)

8200

2) COUNT()

Count returns the number of rows present in the table either based on
some condition or without condition.

Its general Syntax is,

SELECT COUNT(column_name) from table-name

Example using COUNT()

Consider following Emp table

Eid Name Age Salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to count employees, satisfying specified condition is,

SELECT COUNT(name) from Emp where salary = 8000;

Result of the above query will be,

count(name)

2

99

Example of COUNT(distinct)

Consider following Emp table

Eid Name Age Salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query is,

SELECT COUNT(distinct salary) from emp;

Result of the above query will be,

count(distinct salary)

4

3) FIRST()

First function returns first value of a selected column

Syntax for FIRST function is,

SELECT FIRST(column_name) from table-name

Example of FIRST()

Consider following Emp table

Eid Name Age Salary

100

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query

SELECT FIRST(salary) from Emp;

Result will be,

first(salary)

9000

4) LAST()

LAST return the return last value from selected column

Syntax of LAST function is,

SELECT LAST(column_name) from table-name

Example of LAST()

Consider following Emp table

Eid Name Age Salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

101

404 Scott 44 10000

405 Tiger 35 8000

SQL query will be,

SELECT LAST(salary) from emp;

Result of the above query will be,

last(salary)

8000

5) MAX()

MAX function returns maximum value from selected column of the
table.

Syntax of MAX function is,

SELECT MAX(column_name) from table-name

Example of MAX()

Consider following Emp table

Eid Name Age Salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find Maximum salary is,

SELECT MAX(salary) from emp;

102

Result of the above query will be,

MAX(salary)

10000

6) MIN()

MIN function returns minimum value from a selected column of the
table.

Syntax for MIN function is,

SELECT MIN(column_name) from table-name

Example of MIN()

Consider following Emp table,

Eid Name Age Salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find minimum salary is,

SELECT MIN(salary) from emp;

Result will be,

MIN(salary)

8000

103

7) SUM()

SUM function returns total sum of a selected columns numeric values.

Syntax for SUM is,

SELECT SUM(column_name) from table-name

Example of SUM()

Consider following Emp table

Eid Name Age Salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find sum of salaries will be,

SELECT SUM(salary) from emp;

Result of above query is,

SUM(salary)

41000

6.14.2 Scalar Functions

Scalar functions return a single value from an input value. Following are
some frequently used Scalar Functions.

104

1) UCASE()

UCASE function is used to convert value of string column to Uppercase
character.

Syntax of UCASE,

SELECT UCASE(column_name) from table-name

Example of UCASE()

Consider following Emp table

Eid Name Age Salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query for using UCASE is,

SELECT UCASE(name) from emp;

Result is,

UCASE(name)

ANU

SHANE

ROHAN

SCOTT

105

TIGER

2) LCASE()

LCASE function is used to convert value of string column to Lowecase
character.

Syntax for LCASE is,

SELECT LCASE(column_name) from table-name

Example of LCASE()

Consider following Emp table

Eid Name Age Salary

401 anu 22 9000

402 shane 29 8000

403 rohan 34 6000

404 scott 44 10000

405 Tiger 35 8000

SQL query for converting string value to Lower case is,

SELECT LCASE(name) from emp;

Result will be,

LCASE(name)

anu

shane

rohan

106

scott

tiger

3) MID()

MID function is used to extract substrings from column values of string
type in a table.

Syntax for MID function is,

SELECT MID(column_name, start, length) from table-name

Example of MID()

Consider following Emp table

SQL query will be,

select MID(name,2,2) from emp;

Result will come out to be,

MID(name,2,2)

Nu

Eid Name Age Salary

401 anu 22 9000

402 shane 29 8000

403 rohan 34 6000

404 scott 44 10000

405 Tiger 35 8000

107

ha

oh

co

ig

4) ROUND()

ROUND function is used to round a numeric field to number of nearest
integer. It is used on Decimal point values. Syntax of Round function is,

SELECT ROUND(column_name, decimals) from table-name

Example of ROUND()

Consider following Emp table

Eid Name Age Salary

401 anu 22 9000.67

402 shane 29 8000.98

403 rohan 34 6000.45

404 scott 44 10000

405 Tiger 35 8000.01

SQL query is,

SELECT ROUND(salary) from emp;

Result will be,

108

ROUND(salary)

9001

8001

6000

10000

8000

6.15 Join in SQL

SQL Join is used to fetch data from two or more tables, which is joined to

appear as single set of data. SQL Join is used for combining column from

two or more tables by using values common to both tables. Join

Keyword is used in SQL queries for joining two or more tables. Minimum

required condition for joining table, is(n-1) where n, is number of tables.

A table can also join to itself known as, Self Join.

Types of Join

The following are the types of JOIN that we can use in SQL.

 Inner

 Outer

 Left

 Right

6.15.1 Cross JOIN or Cartesian Product

This type of JOIN returns the Cartesian product of rows of from the

tables in Join. It will return a table which consists of records which

109

combines each row from the first table with each row of the second

table.

Cross JOIN Syntax is,

SELECT column-name-list

from table-name1

CROSS JOIN

table-name2;

Example of Cross JOIN

The class table,

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

Cross JOIN query will be,

SELECT *

 from class,

 cross JOIN class_info;

The result table will look like,

ID NAME

1 abhi

2 adam

4 alex

110

ID NAME ID Address

1 abhi 1 DELHI

2 adam 1 DELHI

4 alex 1 DELHI

1 abhi 2 MUMBAI

2 adam 2 MUMBAI

4 alex 2 MUMBAI

1 abhi 3 CHENNAI

2 adam 3 CHENNAI

4 alex 3 CHENNAI

6.15.2 INNER Join or EQUI Join

This is a simple JOIN in which the result is based on matched data as per

the equality condition specified in the query.

Inner Join Syntax is,

SELECT column-name-list

from table-name1

INNER JOIN

table-name2

WHERE table-name1.column-name = table-name2.column-name;

Example of Inner JOIN

The class table,

111

ID NAME

1 abhi

2 adam

3 alex

4 anu

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

Inner JOIN query will be,

SELECT * from class, class_info where class.id = class_info.id;

The result table will look like,

6.15.3 Natural JOIN

Natural Join is a type of Inner join which is based on column having same

name and same data type present in both the tables to be joined.

Natural Join Syntax is,

SELECT *

from table-name1

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

112

NATURAL JOIN

table-name2;

Example of Natural JOIN

The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

Natural join query will be,

SELECT * from class NATURAL JOIN class_info;

The result table will look like,

ID NAME Address

1 abhi DELHI

2 adam MUMBAI

3 alex CHENNAI

In the above example, both the tables being joined have ID column(same

name and same data type), hence the records for which value of ID

113

matches in both the tables will be the result of Natural Join of these two

tables.

6.15.5 Outer JOIN

Outer Join is based on both matched and unmatched data. Outer Joins

subdivide further into,

 Left Outer Join

 Right Outer Join

 Full Outer Join

6.15.5.1 Left Outer Join

The left outer join returns a result table with the matched data of two

tables then remaining rows of the lefttable and null for the right table's

column.

Left Outer Join syntax is,

SELECT column-name-list

from table-name1

LEFT OUTER JOIN

table-name2

on table-name1.column-name = table-name2.column-name;

Left outer Join Syntax for Oracle is,

select column-name-list

from table-name1,

table-name2

on table-name1.column-name = table-name2.column-name(+);

Example of Left Outer Join

114

The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

5 ashish

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

Left Outer Join query will be,

SELECT * FROM class LEFT OUTER JOIN class_info ON (class.id=class_info
.id);

The result table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

115

4 anu null null

5 ashish null null

6.15.5.2 Right Outer Join

The right outer join returns a result table with the matched data of two

tables then remaining rows of the right table and null for the left table's

columns.

Right Outer Join Syntax is,

select column-name-list

from table-name1

RIGHT OUTER JOIN

table-name2

on table-name1.column-name = table-name2.column-name;

Right outer Join Syntax for Oracle is,

select column-name-list

from table-name1,

table-name2

on table-name1.column-name(+) = table-name2.column-name;

Example of Right Outer Join

The class table,

ID NAME

1 abhi

2 adam

3 alex

116

4 anu

5 ashish

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

Right Outer Join query will be,

SELECT * FROM class RIGHT OUTER JOIN class_info on (class.id=class_inf
o.id);

The result table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

null null 7 NOIDA

null null 8 PANIPAT

6.15.3 Full Outer Join

The full outer join returns a result table with the matched data of two

table then remaining rows of both left table and then the right table.

117

Full Outer Join Syntax is,

select column-name-list

from table-name1

FULL OUTER JOIN

table-name2

on table-name1.column-name = table-name2.column-name;

Example of Full outer join is,

The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

5 ashish

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

118

Full Outer Join query will be like,

SELECT * FROM class FULL OUTER JOIN class_info on (class.id=class_info.
id);

The result table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

4 anu null null

5 ashish null null

Null null 7 NOIDA

Null null 8 PANIPAT

6.16 SQL Alias

Alias is used to give an alias name to a table or a column. This is quite

useful in case of large or complex queries. Alias is mainly used for giving

a short alias name for a column or a table with complex names.

Syntax of Alias for table names,

SELECT column-name

from table-name

as alias-name

Following is an Example using Alias,

SELECT * from Employee_detail as ed;

Alias syntax for columns will be like,

SELECT

column-name as alias-name

fromtable-name

119

Example using alias for columns,

SELECT customer_id as cid from Emp;

Example of Alias in SQL Query

Consider the following two tables,

The class table,The class_info table,

Below is the Query to fetch data from both the tables using SQL Alias,

SELECT C.id, C.Name, Ci.Address from Class as C, Class_info as Ci where C
.id=Ci.id;

Result table look like,

ID Name Address

1 abhi DELHI

2 adam MUMBAI

3 alex CHENNAI

6.17 Set Operation in SQL

SQL supports few Set operations to be performed on table data. These
are used to get meaningful results from data, under different special
conditions.

ID Name

1 abhi

2 adam

3 alex

4 anu

5 ashish

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

120

6.17.1 Union

UNION is used to combine the results of two or more Select statements.
However it will eliminate duplicate rows from its result set. In case of
union, number of columns and data type must be same in both the
tables.

Example of UNION

The First table,

ID Name

1 abhi

2 adam

The Second table,

ID Name

2 adam

3 Chester

Union SQL query will be,

select * from First

UNION

121

select * from second

The result table will look like,

ID NAME

1 abhi

2 adam

3 Chester

Union All

This operation is similar to Union. But it also shows the duplicate rows.

Example of Union All

The First table,

ID NAME

1 abhi

2 adam

The Second table,

122

ID NAME

2 adam

3 Chester

Union All query will be like,

select * from First

UNION ALL

select * from second

The result table will look like,

ID NAME

1 abhi

2 adam

2 adam

3 Chester

6.17. Intersect

Intersect operation is used to combine two SELECT statements, but it
only returns the records which are common from both SELECT
statements. In case of Intersect the number of columns and data type
must be same. MySQL does not support INTERSECT operator.

123

Example of Intersect

The First table,

ID NAME

1 Abhi

2 adam

The Second table,

ID NAME

2 adam

3 Chester

Intersect query will be,

select * from First

INTERSECT

select * from second

The result table will look like

ID NAME

2 adam

124

6.17.4 Minus

Minus operation combines result of two Select statements and return
only those result which belongs to first set of result. MySQL does not
support INTERSECT operator.

Example of Minus

The First table,

ID NAME

1 Abhi

2 Adam

The Second table,

ID NAME

2 adam

3 Chester

Minus query will be,

select * from First

MINUS

select * from second

The result table will look like,

ID NAME

1 Abhi

125

6.18 SQL Sequence

Sequence is a feature supported by some database systems to produce
unique values on demand. Some DBMS like MySQL supports
AUTO_INCREMENT in place of Sequence. AUTO_INCREMENT is applied
on columns, it automatically increments the column value by 1 each
time a new record is entered into the table. Sequence is also somewhat
similar to AUTO_INCREMENT but its has some extra features.

Creating Sequence

Syntax to create sequences is,

CREATE Sequence sequence-name

start with initial-value

increment by increment-value

maxvalue maximum-value

cycle|nocycle

initial-value specifies the starting value of the Sequence, increment-
value is the value by which sequence will be incremented
and maxvalue specifies the maximum value until which sequence will
increment itself.cycle specifies that if the maximum value exceeds the
set limit, sequence will restart its cycle from the begining. No
cycle specifies that if sequence exceeds maxvalue an error will be
thrown.

Example to create Sequence

The sequence query is following

CREATE Sequence seq_1

start with 1

increment by 1

126

maxvalue 999

cycle ;

Example to use Sequence

The class table,

ID NAME

1 abhi

2 adam

4 alex

The sql query will be,

INSERT into class value(seq_1.nextval,'anu');

Result table will look like,

ID NAME

1 abhi

2 adam

4 Alex

1 Anu

Once you use nextval the sequence will increment even if you don't

Insert any record into the table.

6.19 SQL View

A view in SQL is a logical subset of data from one or more tables. View is

used to restrict data access.

Syntax for creating a View,

127

CREATE or REPLACE view view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition

Example of Creating a View

Consider following Sale table,

Oid order_name previous_balance Customer

11 ord1 2000 Alex

12 ord2 1000 Adam

13 ord3 2000 Abhi

14 ord4 1000 Adam

15 ord5 2000 Alex

SQL Query to Create View

CREATE or REPLACE view sale_view as select * from Sale where custome
r = 'Alex';

The data fetched from select statement will be stored in another object

called sale_view. We can use create seperately and replace too but

using both together works better.

Example of Displaying a View

Syntax of displaying a view is similar to fetching data from table using

Select statement.

SELECT * from sale_view;

128

6.19.1 Force View Creation

force keyword is used while creating a view. This keyword force to

create View even if the table does not exist. After creating a force View if

we create the base table and enter values in it, the view will be

automatically updated.

Syntax for forced View is,

CREATE or REPLACE force view view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition

6.19.2 Update a View

Update command for view is same as for tables.

Syntax to Update a View is,

UPDATE view-name

set value

WHERE condition;

If we update a view it also updates base table data automatically.

6.19.3 Read-Only View

We can create a view with read-only option to restrict access to the

view.

Syntax to create a view with Read-Only Access

CREATE or REPLACE force view view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition with read-only

129

The above syntax will create view for read-only purpose, we cannot

Update or Insert data into read-only view. It will throw an error.

Types of View

There are two types of view,

 Simple View

 Complex View

Simple View Complex View

Created from one table Created from one or more table

Does not contain functions Contain functions

Does not contain groups of data Contains groups of data

