
Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 1

 Objects and Classes

1.1 A Simple Class

The first program contains a class and two objects of that class. Although it’s

simple, the program demonstrates the syntax and general features of classes in C++.

Here’s the listing for the SMALLOBJ program:

// smallobj

#include <iostream.h>

class smallobj //define a class

{

 private:

 int somedata; //class data

 public:

 void setdata(int d) //member function to set data

 { somedata = d; }

 void showdata() //member function to display data

 { cout << “Data is “ << somedata << endl; }

};

int main()

{ smallobj s1, s2; //define two objects of class smallobj

 s1.setdata(1066); //call member function to set data

 s2.setdata(1776);

 s1.showdata(); //call member function to display data

 s2.showdata();

 return 0;

}

The class smallobj defined in this program contains one data item and two

member functions. The two member functions provide the only access to the data item

from outside the class. The first member function sets the data item to a value, and the

second displays the value. Each of the two objects is given a value, and each displays its

value.

Here’s the output of the program:

Data is 1066 ← object s1 displayed this

Data is 1776 ← object s2 displayed this

Placing data and functions together into a single unit is a central idea in object-

oriented programming. This is shown in Figure 1 below:

z
Typewritten text
Zainab Khyioon

z
Typewritten text
&

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 2

FIGURE 1 Classes contain data and functions.

1.1.1 private and public

The body of the class contains two keywords: private and public. What is their

purpose?A key feature of object-oriented programming is data hiding. This term means

that data is concealed within a class so that it cannot be accessed mistakenly by functions

outside the class. The primary mechanism for hiding data is to put it in a class and make

it private. Private data or functions can only be accessed from within the class. Public

data or functions, on the other hand, are accessible from outside the class. This is shown

in Figure 2.

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 3

1.1.2 Class Data

The smallobj class contains one data item: somedata, which is of type int. The data

items within a class are called data members. There can be any number of data members

in a class, just as there can be any number of data items in a structure. The data member

somedata follows the keyword private, so it can be accessed from within the class, but

not from outside.

1.1.3 Member Functions

Member functions are functions that are included within a class. (In some object-

oriented languages, are called methods). There are two member functions in smallobj:

setdata() and showdata().Because setdata() and showdata() follow the keyword public,

they can be accessed from outside the class. Figure 3 shows the syntax of a class

definition.

FIGURE 3 Syntax of a class definition.

1.1.4 Using the Class

Now that the class is defined, let’s see how main() makes use of it. We’ll see how

objects are defined, and, once defined, how their member functions are accessed.

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 4

1.1.5 Defining Objects

The first statement in main() smallobj s1, s2; defines two objects, s1 and s2, of

class smallobj. The definition of the class smallobj does not create any objects. It only

describes how they will look when they are created. Defining an object is similar to

defining a variable of any data type: Space is set aside for it in memory. Defining objects

in this way means creating them. This is also called instantiating them.

 1.1.6 Calling Member Functions

The next two statements in main() call the member function setdata():

s1.setdata(1066);

s2.setdata(1776);

Why the object names s1 and s2 are connected to the function names with a

period? This syntax is used to call a member function that is associated with a specific

object. Because setdata() is a member function of the smallobj class, it must always be

called in connection with an object of this class. It doesn’t make sense to say

setdata(1066); by itself, because a member function is always called to act on a specific

object, not on the class in general. To use a member function, the dot operator (the

period) connects the object name and the member function.

The first call to setdata() s1.setdata(1066); executes the setdata() member function

of the s1 object. This function sets the variable somedata in object s1 to the value 1066.

The second call s2.setdata(1776); causes the variable somedata in s2 to be set to 1776.

Now we have two objects whose somedata variables have different values, as shown in

Figure 4.

FIGURE 4 Two objects of class smallobj.

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 5

Similarly, the following two calls to the showdata() function will cause the two objects to

display their values:

s1.showdata();

s 2.showdata();

1.1.7 Messages

Some object-oriented languages refer to calls to member functions as messages.

Thus the call s1.showdata(); can be thought of as sending a message to s1 telling it to

show its data. Talking about messages emphasizes that objects are discrete entities and

that we communicate with them by calling their member functions.

1.2 Widget Parts as Objects
// widget part as an object

#include <iostream.h>

class part //define class

{

 private:

int modelnumber; //ID number of widget

int partnumber; //ID number of widget part

float cost; //cost of part

 public:

void setpart(int mn, int pn, float c) //set data

{

modelnumber = mn;

partnumber = pn;

cost = c;

}

void showpart() //display data

{

cout << “Model “ << modelnumber;

cout << “, part “ << partnumber;

cout << “, costs $” << cost << endl;

}

};

 main()

{ part part1; //define object of class part

 part1.setpart(6244, 373, 217.55); //call member function

 part1.showpart(); //call member function

}

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 6

In this example only one object of type part is created: part1. The member

function setpart() sets the three data items in this part to the values 6244, 373, and

217.55. The member function showpart() then displays these values. Here’s the output:

Model 6244, part 373, costs $217.55

1.2.1 C++ Objects as Data Types

Here’s another kind of entity C++ objects can represent: variables of a user-

defined data type.

// englobj.cpp

// objects using English measurements

#include <iostream.h>

class Distance //English Distance class

{ private:

int feet;

float inches;

 public:

void setdist(int ft, float in) //set Distance to args

{ feet = ft; inches = in; }

void getdist() //get length from user

{

cout << “\nEnter feet: “; cin >> feet;

cout << “Enter inches: “; cin >> inches;

}

void showdist() //display distance

{ cout << feet << “\’-” << inches << ‘\”’; }

};

main()

{

Distance dist1, dist2; //define two lengths

dist1.setdist(11, 6.25); //set dist1

dist2.getdist(); //get dist2 from user

cout << “\ndist1 = “; dist1.showdist();

cout << “\ndist2 = “; dist2.showdist();

cout << endl;

}

In main(),two objects of class Distance are define: dist1 and dist2. The first is given

a value using the setdist() member function with the arguments 11 and 6.25, and the

second is given a value that is supplied by the user. Here’s a sample interaction with the

program:

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 7

Enter feet: 10

Enter inches: 4.75

dist1 = 11’-6.25” ← provided by arguments

dist2 = 10’-4.75” ← input by the user

1.3 Constructors

The ENGLOBJ example shows two ways that member functions can be used to

give values to the data items in an object. Sometimes, however, it’s convenient if an

object can initialize itself when it’s first created, without requiring a separate call to a

member function. Automatic initialization is carried out using a special member

function called a constructor. A constructor is a member function that is executed

automatically whenever an object is created.

1.3.1 A Counter Example

This example, COUNTER, provides a counter variable that can be modified only

through its member functions.

 // counter.cpp

// object represents a counter variable

#include <iostream.h>

class Counter

{ private:

 int count; //count

 public:

 Counter (): count (0) //constructor

 { /*empty body*/ }

 void inc_count() //increment count

 { count++; }

 int get_count() //return count

 { return count; }

};

 main()

{

 Counter c1, c2; //define and initialize

 cout << “\nc1=” << c1.get_count(); //display

 cout << “\nc2=” << c2.get_count();

 c1.inc_count(); //increment c1

 c2.inc_count(); //increment c2

 c2.inc_count(); //increment c2

 cout << “\nc1=” << c1.get_count(); //display again

 cout << “\nc2=” << c2.get_count();

 cout << endl;

}

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 8

The Counter class has one data member: count, of type unsigned int (since the

count is always positive). It has three member functions: the constructor Counter(),

which we’ll look at in a moment; in c_count(), which adds 1 to count; and get_count(),

which returns the current value of count.

1.3.2 Automatic Initialization

When an object of type Counter is first created, we want its count to be initialized

to 0. It’s more reliable and convenient, especially when there are a great many objects of

a given class, to cause each object to initialize itself when it’s created. In the Counter

class, the constructor Counter() does this. This function is called automatically whenever

a new object of type Counter is created. Thus in main() the statement:

Counter c1, c2;

creates two objects of type Counter. As each is created, its constructor, Counter(), is

executed. This function sets the count variable to 0. So the effect of this single statement

is to not only create two objects, but also to initialize their count variables to 0.

1.3.3 Same Name as the Class

Aspects of constructor functions: First, it has exactly the same name (Counter in

this example) as the class of which they are members. This is one way the compiler

knows they are constructors. Second, no return type is used for constructors. Why not?

Since the constructor is called automatically by the system, there’s no program for it to

return anything to; a return value wouldn’t make sense. This is the second way the

compiler knows they are constructors.

1.3.4 Initialize List

One of the most common tasks a constructor carries out is initializing data

members. In the Counter class the constructor must initialize the count member to 0. If

multiple members must be initialized, they’re separated by commas. The result is the

initializer list:

Some Class() : m1(7), m2(33), m2(4) ← initializer list

 { }

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 9

1.3.5 Counter Output

The main() part of this program exercises the Counter class by creating two

counters, c1 and c2. It causes the counters to display their initial values, which—as

arranged by the constructor—are 0. It then increments c1 once and c2 twice, and again

causes the counters to display themselves (non-criminal behavior in this context). Here’s

the output:

c1=0

c2=0

c1=1

c2=2

As you can see, the constructor is executed twice—once for c1 and once for c2—when the

statement Counter c1, c2; is executed in main().

1.4 Destructors

We’ve seen that a special member function—the constructor—is called

automatically when an object is first created. You might guess that another function is

called automatically when an object is destroyed. This is indeed the case. Such a function

is called a destructor. A destructor has the same name as the constructor (which is the

same as the class name) but is preceded by a tilde:

class Foo

{

private:

int data;

public:

Foo() : data(0) //constructor (same name as class)

 ~Foo() //destructor (same name with tilde)

 { }

};

Like constructors, destructors do not have a return value. They also take no

arguments (the assumption being that there’s only one way to destroy an object). The

most common use of destructors is to deallocate memory that was allocated for the

object. If we allocate memory when we create an object, it’s reasonable to deallocate the

memory when the object is no longer needed.

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 10

Exercises

1. Create a class that imitates part of the functionality of the basic data type int. Call the

class Int (note different capitalization). The only data in this class is an int variable.

Include member functions to initialize an Int to 0, to initialize it to an int value, to

display it (it looks just like an int), and to add two Int values.

Write a program that exercises this class by creating one uninitialized and two initialized

Int values, adding the two initialized values and placing the response in the uninitialized

value, and then displaying this result.(Instead of having z=x+y, and x,y and z are int , we

could have z.add(x,y) and x,y and z are of type Int.)

Solutions to Exercises

1.

// ex6_1.cpp

// uses a class to model an integer data type

#include <iostream.h>

class Int //(not the same as int)

{

 private:

 int i;

 public:

 Int() //create an Int

 { i = 0; }

 Int(int ii) //create and initialize an Int

 { i = ii; }

 void add(Int i2, Int i3) //add two Ints

 { i = i2.i + i3.i; }

 void display() //display an Int

 { cout << i; }

 };

 int main()

 { Int Int1(7); //create and initialize an Int

 Int Int2(11); //create and initialize an Int

 Int Int3; //create an Int

 Int3.add(Int1, Int2); //add two Ints

 cout << “\nInt3 = “; Int3.display(); //display result

 cout << endl;

 return 0;

 }

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 11

1.5 Objects as Function Arguments

Our next program adds some new aspects of classes: constructor overloading,

defining member functions outside the class, and—perhaps most importantly—objects

as function arguments. Here’s the listing for ENGLCON:

// englcon.cpp

// constructors, adds objects using member function

#include <iostream.h>

 class Distance //English Distance class

 { private:

 int feet;

 float inches;

 public: //constructor (no args)

 Distance() : feet(0), inches(0.0)

 { }

 Distance(int ft, float in) : feet(ft), inches(in) //constructor (two args)

 { }

 void getdist() //get length from user

 {

 cout << "\nEnter feet: "; cin >> feet;

 cout << "Enter inches: "; cin >> inches;

 }

 void showdist() //display distance

 { cout << feet << "\'-" << inches << '\"';}

 void Distance::add_dist(Distance d2, Distance d3)

 { inches = d2.inches + d3.inches; //add the inches

 feet = 0; //(for possible carry)

 if(inches >= 12.0) //if total exceeds 12.0,

 { //then decrease inches

 inches -= 12.0; //by 12.0 and

 feet++; //increase feet

 } //by 1

 feet += d2.feet + d3.feet;

 } //add the feet

 };

main()

 { Distance dist1, dist3; //define two lengths

 Distance dist2(11, 6.25); //define and initialize dist2

 dist1.getdist(); //get dist1 from user

 dist3.add_dist(dist1, dist2); //dist3 = dist1 + dist2 //display all lengths

 cout << "\ndist1 = "; dist1.showdist();

 cout << "\ndist2 = "; dist2.showdist();

 cout << "\ndist3 = "; dist3.showdist();

 cout << endl; }

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 12

This program starts with a distance dist2 set to an initial value and adds to it a

distance dist1, whose value is supplied by the user, to obtain the sum of the distances. It

then displays all three distances:

Enter feet: 17

Enter inches: 5.75

dist1 = 17’-5.75”

dist2 = 11’-6.25”

dist3 = 29’-0”

1.6 Overloaded Constructors

It’s convenient to be able to give variables of type Distance a value when they are

first created. That is, we would like to use definitions like:

 Distance width(5, 6.25);

which defines an object, width, and simultaneously initializes it to a value of 5 for feet

and 6.25 for inches. To do this we write a constructor like this:

 Distance(int ft, float in) : feet(ft), inches(in) { }

This sets the member data feet and inches to whatever values are passed as arguments to

the constructor. So far so good. However, we also want to define variables of type

Distance without initializing them, as we did in ENGLOBJ.

 Distance dist1, dist2;

In that program there was no constructor, but our definitions worked just fine.

How could they work without a constructor? Because an implicit no-argument

constructor is built into the program automatically by the compiler, and it’s this

constructor that created the objects, even though we didn’t define it in the class.

This no-argument constructor is called the default constructor. Often we want to

initialize data members in the default (no-argument) constructor as well. If we let the

default constructor do it, we don’t really know what values the data members may be

given. If we care what values they may be given, we need to explicitly define the

constructor. In ENGLECON we show how this looks:

Distance() : feet(0), inches(0.0) //default constructor { }

The data members are initialized to constant values, in this case the integer value 0

and the float value 0.0, for feet and inches respectively. Now we can use objects

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 13

initialized with the no-argument constructor and be confident that they represent no

distance (0 feet plus 0.0 inches) rather than some arbitrary value.

Since there are now two explicit constructors with the same name, Distance(), we

say the constructor is overloaded. Which of the two constructors is executed when an

object is created depends on how many arguments are used in the definition:

Distance length; // calls first constructor

Distance width(11, 6.0); // calls second constructor

1.7 Member Functions Defined Outside the Class

In ENGLCON the add_dist() function is defined following the class definition.

//add lengths d2 and d3

void Distance::add_dist(Distance d2, Distance d3)

{

 inches = d2.inches + d3.inches; //add the inches

 feet = 0; //(for possible carry)

 if(inches >= 12.0) //if total exceeds 12.0,

 { //then decrease inches

 inches -= 12.0; //by 12.0 and

 feet++; //increase feet

 } //by 1

 feet += d2.feet + d3.feet; //add the feet

}

The declarator in this definition contains some unfamiliar syntax. The

function name, add_dist(), is preceded by the class name, Distance, and a new

symbol—the double colon (::). This symbol is called the scope resolution

operator. It is a way of specifying what something is associated with.

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 14

The scope resolution operator

1.8 Objects as Arguments

Now we can see how ENGLCON works. The distances dist1 and dist3 are created

using the default constructor (the one that takes no arguments).

The distance dist2 is created with the constructor that takes two arguments, and is

initialized to the values passed in these arguments. A value is obtained for dist1 by

calling the member function getdist(), which obtains values from the user.

Now we want to add dist1 and dist2 to obtain dist3. The function call in main()

dist3.add_dist(dist1, dist2); does this. The two distances to be added, dist1 and dist2, are

supplied as arguments to add_dist().

The object name is supplied as the argument. Since add_dist() is a member

function of the Distance class, it can access the private data in any object of class

Distance supplied to it as an argument, using names like dist1.inches and dist2.feet.Close

examination of add_dist() emphasizes some important truths about member functions.

A member function is always given access to the object for which it was called: the object

connected to it with the dot operator. But it may be able to access other objects. In the

following statement in ENGLCON, what objects can add_dist() access?

dist3.add_dist(dist1, dist2);

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 15

Besides dist3, the object for which it was called, it can also access dist1 and dist2,

because they are supplied as arguments. Notice that the result is not returned by the

function. The return type of add_dist() is void. The result is stored automatically in the

dist3 object. Figure bellow shows the two distances dist1 and dist2 being added together,

with the result stored in dist3.

1.9 The Default Copy Constructor

We’ve seen two ways to initialize objects. A no-argument constructor can initialize

data members to constant values, and a multi-argument constructor can initialize data

members to values passed as arguments. Let’s mention another way to initialize an

object: you can initialize it with another object of the same type. Surprisingly, you don’t

need to create a special constructor for this; one is already built into all classes. It’s

called the default copy constructor. It’s a one argument constructor whose argument is

an object of the same class as the constructor. The ECOPYCON program shows how

this constructor is used.

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 16

// ecopycon.cpp

// initialize objects using default copy constructor

#include <iostream.h>

class Distance //English Distance class

{

 private:

 int feet;

 float inches;

public:

 //constructor (no args)

 Distance() : feet(0), inches(0.0)

 { }

 //Note: no one-arg constructor

 //constructor (two args)

 Distance(int ft, float in) : feet(ft), inches(in)

 { }

 void getdist() //get length from user

 {

 cout << “\nEnter feet: “; cin >> feet;

 cout << “Enter inches: “; cin >> inches;

 }

 void showdist() //display distance

 { cout << feet << “\’-” << inches << ‘\”’; }

};

int main()

{

 Distance dist1(11, 6.25); //two-arg constructor

 Distance dist2(dist1); //one-arg constructor

 Distance dist3 = dist1; //also one-arg constructor

 //display all lengths

 cout << “\ndist1 = “; dist1.showdist();

 cout << “\ndist2 = “; dist2.showdist();

 cout << “\ndist3 = “; dist3.showdist();

 cout << endl;

 return 0;

}

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 17

1.9.1 Returning Objects from Functions

In the ENGLCON example, we saw objects being passed as arguments to

functions. Now we’ll see an example of a function that returns an object. We’ll modify

the ENGLCON program to produce ENGLRET:

// englret.cpp

// function returns value of type Distance

#include <iostream.h>

class Distance //English Distance class

{ private:

 int feet;

 float inches;

 public: //constructor (no args)

 Distance() : feet(0), inches(0.0)

 { } //constructor (two args)

 Distance(int ft, float in) : feet(ft), inches(in)

 { }

 void getdist() //get length from user

 {

 cout << "\nEnter feet: "; cin >> feet;

 cout << "Enter inches: "; cin >> inches; }

 void showdist() //display distance

 { cout << feet << "\'-" << inches << '\"'; } //Distance add_dist(Distance);

 //add this distance to d2, return the sum

 Distance Distance::add_dist(Distance d2)

 { Distance temp; //temporary variable

 temp.inches = inches + d2.inches; //add the inches

 if (temp.inches >= 12.0) //if total exceeds 12.0,

 { temp.inches -= 12.0;

 temp.feet = 1; }

 temp.feet += feet + d2.feet; //add the feet

 return temp; }

};

int main()

{ Distance dist1, dist3; //define two lengths

 Distance dist2(11, 6.25); //define, initialize dist2

 dist1.getdist(); //get dist1 from user

 dist3 = dist1.add_dist(dist2); //dist3 = dist1 + dist2 //display all lengths

 cout << "\ndist1 = "; dist1.showdist();

 cout << "\ndist2 = "; dist2.showdist();

 cout << "\ndist3 = "; dist3.showdist();

 cout << endl;

 return 0;

}

z
Typewritten text
Zainab Khyioon

Lecture 4 Object Oriented Programming Lecturer khalida Ali Ahmed

 18

The result isstored in temp and accessed as temp.feet and temp.inches. The temp

object is then returned by the function using the statement return temp; and the

statement in main() assigns it to dist3. Notice that dist1 is not modified; it simply supplies

data to add_dist(). Figure bellow shows how this looks.

Result returned from the temporary object

z
Typewritten text
Zainab Khyioon

