
Lecture 5 object oriented programming Khalida Ali Ahmed

1

5.3 Overloaded Functions

An overloaded function appears to perform different activities

depending on the kind of data sent to it. It performs one operation

on one kind of data but another operation on a different kind.

5.3.1 Different Numbers of Arguments Example:

The starline() function printed a line using 45 asterisks.

The repchar() function used a character and a line length that were

both specified when the function was called.

The charline() function that always prints 45 characters but that

allows the calling program to specify the character to be printed.

These three functions—starline(), repchar(), and charline()—

perform similar activities but have different names.

For programmers using these functions, that means three names to

remember and three places to look them up if they are listed

alphabetically in an application’s.

It would be better to use the same name for all three functions, even

though they each have different arguments.

Here’s a program, OVERLOAD, that makes this possible:

#include <iostream.h>

void repchar(); //declarations

void repchar(char);

void repchar(char, int);

int main()

{ repchar();

 repchar(‘=’);

 repchar(‘+’, 20);

 return 0;

}

void repchar()

{

for(int j=0; j<45; j++)

cout << ‘*’; // always prints asterisk

cout << endl;

}

void repchar(char ch)

{

for(int j=0; j<45; j++) // always loops 45 times

cout << ch; // prints specified character

cout << endl;

}

// repchar()

// displays specified number of copies of specified character

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

2

void repchar(char ch, int n)

{for(int j=0; j<n; j++) // loops n times

cout << ch; // prints specified character

cout << endl;

}

This program prints out three lines of characters. Here’s the output:

**

===============================

++++++++++++++++++++

The compiler, seeing several functions with the same name but

different numbers of arguments. Which one of these functions will be

called depends on the number of arguments supplied in the call.

 Figure below shows this process:

5.3.3 Different Kinds of Arguments

In the OVERLOAD example we created several functions with

the same name but different numbers of arguments. The compiler

can also distinguish between overloaded functions with the same

number of arguments, provided their type is different. Here’s a

program, that uses an overloaded function to display a quantity in

feet-and-inches format. The single argument to the function can be

either a structure of type Distance or a simple variable of type float.

Different functions are used depending on the type of argument.
#include <iostream.h>

struct Distance

{ int feet; float inches; };

void engldisp(Distance);

void engldisp(float);

int main()

{

Distance d1; float d2;

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

3

cout << “\nEnter feet: “;

cin >> d1.feet;

cout << “Enter inches: “;

cin >> d1.inches;

cout << “Enter distance in inches:“;

cin >> d2;

cout << “\nd1 = “;

engldisp(d1);

cout << “\nd2 = “;

engldisp(d2);

cout << endl;

return 0;

}

void engldisp(Distance dd) //parameter dd of type Distance

{ cout << dd.feet << “\’-” << dd.inches << “\””; }

void engldisp(float dd) //parameter dd of type float

{

int feet = static_cast<int>(dd / 12);

float inches = dd - feet*12;

cout << feet << “\’-” << inches << “\””;

}

Here’s some sample interaction with the program:

Enter feet: 5

Enter inches: 10.5

Enter entire distance in inches: 76.5

d1 = 5’-10.5”

d2 = 6’-4.5”

5.4 Scope and Storage Class

The scope of a variable determines which parts of the program

can access it, and its storage class determines how long it stays in

existence. Two different kinds of scope are important here: local and

file.

• Variables with local scope are visible only within a block.

• Variables with file scope are visible throughout a file.

A block is the code between an opening brace and a closing brace.

Thus a function body is a block.

There are two storage classes: automatic and static.

• Variables with storage class automatic exist during the lifetime of

the function in which they’re defined.

• Variables with storage class static exist for the lifetime of the

program.

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

4

5.4.1 Local Variables

All the variables we’ve used in example programs have been

defined inside the function in which they are used: (That is, the

definition occurs inside the braces that delimit the function body).

void somefunc()

{ int somevar; //variables defined within the function body

 float othervar;

}

Variables may be defined inside main() or inside other functions; the

effect is the same, since main() is a function. Variables defined within

a function body are called local variables

because they have local scope. However, they are also sometimes

called automatic variables, because they have the automatic storage

class.

5.4.2 Scope

A variable’s scope, also called visibility, describes the locations

within a program from which it can be accessed. It can be referred to

in statements in some parts of the program; but in others, attempts to

access it lead to an unknown variable error message. The scope of a

variable is that part of the program where the variable is visible.

Variables defined within a function are only visible, meaning they

can only be accessed, from within the function in which they are

defined.

Suppose you have two functions in a program:
void somefunc()

{

int somevar; //local variables

float othervar;

somevar = 10; //OK

othervar = 11; //OK

nextvar = 12; //illegal: not visible in somefunc()

}

void otherfunc()

{

int nextvar; //local variable

somevar = 20; //illegal: not visible in otherfunc()

othervar = 21; //illegal: not visible in otherfunc()

nextvar = 22; //OK

}

The variable nextvar is invisible in function somefunc(), and the

variables somevar and othervar are invisible in otherfunc().

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

5

5.4.3 Global Variables

The next kind of variable is global. While local variables are

defined within functions, global variables are defined outside of any

function. A global variable is visible to all the functions in a file.

More precisely, it is visible to all those functions that follow the

variable’s definition in the listing. Usually you want global variables

to be visible to all functions, so you put their declarations at the

beginning of the listing.

Here’s a program, in which three functions all access a global variable.

// demonstrates global variables

#include <iostream.h>

#include <conio.h> //for getch()

char ch = ‘a’; //global variable ch

void getachar();

void putachar();

int main()

{ while(ch != ‘\r’) //main() accesses ch

{ getachar();

 putachar();

}

cout << endl;

return 0;

}

void getachar() //getachar() accesses ch

{ ch = getch();}

void putachar() //putachar() accesses ch

{ cout << ch; }

5.5 Fundamentals

This program, REPLAY, creates an array of four integers

representing the ages of four people. It then asks the user to enter

four values, which it places in the array. Finally, it displays all four

values.

// replay.cpp

// gets four ages from user, displays them

#include <iostream.h>

int main()

{

int age[4]; //array ‘age’ of 4 int

for(int j=0; j<4; j++) //get 4 ages

{cout << “Enter an age: “;

cin >> age[j]; //access array element}

for(j=0; j<4; j++) //display 4 ages

cout << “You entered “ << age[j] << endl;

return 0;}}

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

6

Here’s a sample interaction with the program:

Enter an age: 44

Enter an age: 16

Enter an age: 23

Enter an age: 68

You entered 44

You entered 16

You entered 23

You entered 68

5.5.1 Defining Arrays

Syntax of array definition

5.5.2 Array Elements

The items in an array are called elements (in contrast to the

items in a structure, which are called members). As we noted, all the

elements in an array are of the same type; only the values vary.

Figure bellow shows the elements of the array age.

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

7

Array elements.

5.5.3 Accessing Array Elements

In the REPLAY example we access each array element twice.

The first time, we insert a value into the array, with the line

cin >> age[j];

The second time, we read it out with the line

cout << “\nYou entered “ << age[j];

In both cases the expression for the array element is age[j].This

consists of the name of the array, followed by brackets delimiting a

variable j. Which of the four array elements is specified by this

expression depends on the value of j; age[0] refers to the first

element, age[1] to the second, age[2] to the third, and age[3] to the

fourth. The variable (or constant) in the brackets is called the array

index.

5.5.4 Averaging Array Elements
Here’s another example of an array at work. This one, SALES,

invites the user to enter a series of six values representing widget

sales for each day of the week (excluding Sunday), and then

calculates the average of these values. We use an array of type double

so that monetary values can be entered.

// sales.cpp

// averages a weeks’s widget sales (6 days)

#include <iostream.h>

int main()

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

8

{

const int SIZE = 6; //size of array

double sales[SIZE]; //array of 6 variables

cout << “Enter widget sales for 6 days\n”;

for(int j=0; j<SIZE; j++) //put figures in array

cin >> sales[j];

double total = 0;

for(j=0; j<SIZE; j++) //read figures from array

total += sales[j]; //to find total

double average = total / SIZE; // find average

cout << “Average = “ << average << endl;

return 0;}

Here’s some sample interaction with SALES:

Enter widget sales for 6 days

352.64

867.70

781.32

867.35

746.21

189.45

Average = 634.11

A new detail in this program is the use of a const variable for the array size and

loop limits. This variable is defined at the start of the listing: const

int SIZE = 6;

5.6 Arrays as Class Member Data

Arrays can be used as data items in classes. Let’s look at an

example that models a common computer data structure: the stack.

A stack works like the spring-loaded devices that hold trays in

cafeterias. When you put a tray on top, the stack sinks down a little;

when you take a tray off, it pops up. The last tray placed on the stack

is always the first tray removed.

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

9

A stack

#include <iostream.h>

class Stack

{

private:

enum { MAX = 10 }; //(non-standard syntax)

int st[MAX]; //stack: array of integers

int top; //number of top of stack

public:

Stack() //constructor

{ top = 0; }

void push(int var) //put number on stack

{ st[++top] = var; }

int pop() //take number off stack

{ return st[top--]; }

};

int main()

{

Stack s1;

s1.push(11);

s1.push(22);

cout << “1: “ << s1.pop() << endl; //22

cout << “2: “ << s1.pop() << endl; //11

s1.push(33);

s1.push(44);

s1.push(55);

s1.push(66);

cout << “3: “ << s1.pop() << endl; //66

cout << “4: “ << s1.pop() << endl; //55

cout << “5: “ << s1.pop() << endl; //44

cout << “6: “ << s1.pop() << endl; //33

return 0;}

The size of the array used for the stack is specified by MAX, in the

statement

enum { MAX = 10 };

In keeping with the philosophy of encapsulation, it’s preferable

to define constants that will be used entirely within a class, as MAX is

here, within the class. Thus the use of global const variables for this

purpose is nonoptimal. Standard C++ mandates that we should be

able to declare MAX within the class as static const int MAX = 10;

This means that MAX is constant and applies to all objects in the

class. Unfortunately, some compilers, including the current version of

Microsoft Visual C++, do not allow this newly approved

construction.

Here’s the output:

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

10

1: 22

2: 11

3: 66

4: 55

5: 44

6: 33

5.6.1 Arrays of Objects

We’ve seen how an object can contain an array. We can also

reverse that situation and create an array of objects. We’ll look at

two situations: an array of English distances and a deck of cards.

5.6.2 Arrays of English Distances
The next program, ENGLARAY, demonstrates an array of

such objects.
#include <iostream.h>

class Distance //English Distance class

{private: int feet; float inches;

public:

void getdist() //get length from user

{cout << “\n Enter feet: “; cin >> feet;

cout << “ Enter inches: “; cin >> inches;}

void showdist() const //display distance

{ cout << feet << “\’-” << inches << ‘\”’; }

};

int main()

{Distance dist[100]; //array of distances

int n=0; //count the entries

char ans; //user response (‘y’ or ‘n’)

cout << endl;

do { //get distances from user

cout << “Enter distance number “ << n+1;

dist[n++].getdist(); //store distance in array

cout << “Enter another (y/n)?: “;

cin >> ans;

} while(ans != ‘n’); //quit if user types ‘n’

for(int j=0; j<n; j++) //display all distances

{cout << “\nDistance number “ << j+1 << “ is “;

dist[j].showdist();}

cout << endl;

return 0; }

Here’s a sample interaction when the user enters three distances:

Enter distance number 1

Enter feet: 5

Enter inches: 4

Enter another (y/n)? y

Enter distance number 2

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

11

Enter feet: 6

Enter inches: 2.5

Enter another (y/n)? y

Enter distance number 3

Enter feet: 5

Enter inches: 10.75

Enter another (y/n)? n

Distance number 1 is 5’-4”

Distance number 2 is 6’-2.5”

Distance number 3 is 5’-10.75”

5.6.3 Accessing Objects in an Array

Here’s how the showdist() member function of the jth element

of the array dist is invoked: dist[j].showdist();

As you can see, a member function of an object that is an array

element is accessed using the dot operator: The array name followed

by the index in brackets is joined, using the dot operator, to the

member function name followed by parentheses. This is similar to

accessing a structure (or class) data member, except that the function

name and parentheses are used instead of the data name. Notice that

when we call the getdist() member function to put a distance into the

array, we take the opportunity to increment the array index n:

dist[n++]. getdist();

Array of objects.

5.7 String Variables

As with other data types, strings can be variables or constants.

We’ll look at these two entities before going on to examine more

complex string operations. Here’s an example that defines a single

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

12

string variable. It asks the user to enter a string, and places this

string in the string variable. Then it displays the string. Here’s the

listing for STRINGIN:

#include <iostream.h>

int main()

{const int MAX = 80; //max characters in string

char str[MAX]; //string variable str

cout << “Enter a string: “;

cin >> str; //put string in str

cout << “You entered: “ << str << endl;

return 0;}

The definition of the string variable str looks like (and is) the

definition of an array of type char:

 char str[MAX];

We use the extraction operator >> to read a string from the keyboard

and place it in the string variable str. This operator knows how to

deal with strings; it understands that they are arrays of characters. If

the user enters the string “Amanuensis” (one employed to copy

manuscripts) in this program, the array str will look something like

Figure bellow:

String stored in string variable.

5.7.1 String Constants

You can initialize a string to a constant value when you define

it. Here’s an example, STRINIT,

that does just that (with the first line of a Shakespearean sonnet):

#include <iostream.h>

int main()

{char str[] = “Farewell! thou art too dear for my possessing.”;

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

13

cout << str << endl;

return 0;}

5.7.2 Reading Embedded Blanks

If you tried the STRINGIN program with strings that

contained more than one word, you may have had an unpleasant

surprise. Here’s an example:

 Enter a string: Law is a bottomless pit.

 You entered: Law

Wher\e did the rest of the phrase (a quotation from the Scottish

writer John Arbuthnot, 1667– 1735) go? It turns out that the

extraction operator >> considers a space to be a terminating

character. Thus it will read strings consisting of a single word, but

anything typed after a space is thrown away. To read text containing

blanks we use another function, cin.get(). This syntax means a

member function get() of the stream class of which cin is an object.

The following example, BLANKSIN, shows how it’s used.
#include <iostream.h>

int main()

{

const int MAX = 80; //max characters in string

char str[MAX]; //string variable str

cout << “\nEnter a string: “;

cin.get(str, MAX); //put string in str

cout << “You entered: “ << str << endl;

return 0;

}

The first argument to cin::get() is the array address where the

string being input will be placed. The second argument specifies the

maximum size of the array, thus automatically avoiding buffer

overrun. Using this function, the input string is now stored in its

entirety.
Enter a string: Law is a bottomless pit.

 You entered: Law is a bottomless pit.

5.8 Strings as Class Members
Strings frequently appear as members of classes. The next

example, uses a string to hold the name of the widget part.
// strpart.cpp

// string used in widget part object

#include <iostream.h>

#include <cstring.h> //for strcpy()

class part

{private:

char partname[30]; //name of widget part

z
Typewritten text
& Zainab Khyioon

Lecture 5 object oriented programming Khalida Ali Ahmed

14

int partnumber; //ID number of widget part

double cost; //cost of part

public:

void setpart(char pname[], int pn, double c)

{strcpy(partname, pname);

partnumber = pn;

cost = c;}

void showpart() //display data

{cout << “\nName=” << partname;

cout << “, number=” << partnumber;

cout << “, cost=$” << cost;}

};

int main()

{

part part1, part2;

part1.setpart(“handle bolt”, 4473, 217.55); //set parts

part2.setpart(“start lever”, 9924, 419.25);

cout << “\nFirst part: “; part1.showpart(); //show parts

cout << “\nSecond part: “; part2.showpart();

cout << endl;

return 0;

}

This program defines two objects of class part and gives them

values with the setpart() member function. Then it displays them

with the showpart() member function. Here’s the output:

First part:

Name=handle bolt, number=4473, cost=$217.55

Second part:

Name=start lever, number=9924, cost=$419.25

z
Typewritten text
& Zainab Khyioon

