Chapter Two
The Metric Spaces
Definition:

Let X be a non-empty set and d: X X X — R is called the
distance function satisfy the following conditions:

a) d(x,y) >0, forall x,y € X

b) d(x,y) =0 iff x=y

c) d(x,y) = d(y,x) for all x,y € x

d) d(x,y) < d(x,2) + d(z,y) (Triangle inequality) then (x,d) is
called metric space.

Example:

let d:RXR ——=R defined by d(x,y) = |x-y|, for all X,y € R show
that (R,d) is a metric space

Sol:

1) d(x,y) = [x-y| > 0, for all X,y € R (By def. of absolutely value)
2)d(xy)=0

SIx-y|=0
& x-y=0
SX=yY
3) d(xy) = [ x-y |
= |- (y-x)|
=[-1] . ly-x|
= ly-x|
= d(y,x)
4) d(x,y) = [x-yl|
= |X-z+z-Y|
< [x-zl+[z-y|

< d(xy) +d(zy)



~ (R,d) is a metric space

Lemma 2.1 : (Cauchy- Schwarz inequality)

For any real numbers ay, ay, ..., an, by, by, ..., b, we have

ab+..+ab) < a2+ -+ a2 .\b?+ -+ b2
1 n 1

Lemma 2.2 : Minkowski inequality

For any real numbers ay, ay, ..., ay, by, by, ..., b, we have

J(ag +b)2 + (az + by)2 + -+ (ap + by,)?

< \/af+---+ a,%+\/b12+---+ b}

Example :
Let d:R"XR"—>R defined by

d((X1,X2, ..., Xn), (Y1.Y2, ... ¥n)) = \/Z?=1(xi —¥;)?

where X= (X1, Xa,..., Xn) and Y=(Y1,Ya,. .., yn)

sol:
1) (Xi _yi)Z > O,Vi = 1,2, e, n

n
= ) (- y)? 20
i=1

n
= > -2 20
i=1

= d(x,y) =20,Vx,y € R"
2)d(x,y) =0,Vx,y €R"



n

= > @-wr=0

i=1

n
o ) G-y =0
i=1

@)(Xi,yi)2 =0,vi=12,..,n
Xi=y ,Vi=12,..n
= (Xl,Xg,..., Xn) = (yl,yg,. ey yn)
S X=Y
3) d(xy) = VXiL1 (x; — yi)?
- \/Z?:l(Yi - xi)z
= d(y.x)
4) let x= (Xq,..., Xn), Y= Y1,.-., ¥n), 2= (Z4,..., z,) ER
d(x,y) = V211 G — ¥1)?
= 2 (g — 2z + 2, — yy)?
< \/Z?=1(xi —z;)% + \/Z?=1(Zi —¥;)?
[By minkowski inequality]
<d(x,z) +d(z,y)
~ d is metric on R"

.~ (R™",d)is a metric space which is called n-dimensional
Euclidean space

Example:
Let d:R*XR* >R defined by d(x,y)= |X1-y1| + [Xo-Y5|
where x= (X1, X,) and y=(y1,>)

Sol:

1) v Ixg —yil +Ix2 —y2[ =0
~d(x,y) =0



2) d(x,y) =0
S X~y H % —y2l =0
S |xy -yl =0and |[x; —y,| =0
S x=yand X, =Y,
= X=Y
3) d(xy) =[x —y1| + |x2 — y2l
==y — x|+ [=(y2 — x2)|
= |=1lly; — x¢| + |-1]ly2 — x|
=ly: —x1| + |y, — X2l
=d(y,x)
4) letz = (z,2,) € R?

d(x,y) = |x; =yl + [x2 — 2l

Xy — 2z + 2y — 1| + |x2 — 2, + 2, — y,

Xy — z1| + |21 = y1l + |xp — z5| + |25 =y,

(Ixy = z1] + |x3 — z51) + (|21 — 1| + |22 — ¥21)
<d(x,z) +d(z,y)

~ d is a metric on R?

~ (R?,d)is a metric space

Example:
Let X be a non-empty set defined d: X*X - R by d(x,y) =
{O ifx=y
1 ifx+y
Sol:
1) d(x,y) =0
2)d(x,y) =0iffx=y
3) d(x,y) =d(y,x)
1 =1 ifx+y
0= 0 ifx=y
4)d(x,y) <d(x,z)+d(z,y)
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1) ifx+y+z

1<1+1

2) ifx#+Fyx=z&y#*2z
1<0+1

3) ifx+yx+z&y=z
1<1+0

4) x=y&x+#2z,y+zZ
0<1+1

5 x=y=z
0<0+0

Letcla, b] =

{f:[a,b] = R be a cont. function},define d: c[a, b] * c[a, b] —
Rasd(f,g9) =

f;lf(x) — g(x)|dx show that (c[a, b],d)is M.s.

EXc. :

Let x = R? we define d:R? * R? - R by d(x,y) = max.{|x; —
yil, 12, — ¥21} (R?, d)a metric space?

Definition:

Let (x,d) be a metric space and let x, € X, r € R,v > 0
B.(xy) ={x € X:d(x,xy) <r}

Is called a ball of radius r and center x,.
(Neighborhood of x, with radius r)

D, (x¢) = {x € X:d(x,xy) <r} is called disk with radius r and
center x,.



Example:
Let (R,d) be a metric space where d(x,y) =[x —y|,Vx,y €ER

B, (xy) = {x € R:d(xy,x) <}
={x ER:|x — xy| <71}
={x€ER:xg—1<x<x9+7}

=(x0—r,x0+7‘) & I I I

Xg—T Xo Xot+71

v

D, (xy) = {x € R:d(x,x,) <1}
={x€ER:|x—xy| <1}
={x€ER:xg—Tr<x<xy+T71}

= [xo — 7, %9 + 7]

[ |

Xg—T Xo Xo

Example:

Let (R%,d) be a metric space where d: R?+«R? > R s.t. d is a
usual distance

B, (xy) = {x € R%:d(x,x,) <7}
= {x € R%:\/(x —x0)? + (y — y0)? <1}
={x ER*: (x —x0)* + (y —¥0)* < r?}
D,(xy) = {x € R>:d(x,x,) <71}
={x €R%:\J(x—x0)2+(y—y)2 <7
={x ER*:(x —x0)*+ (Y —yo)* <
Example:




Let (R™ d) be a metric space where d:R" * R - R s.t. d is a
usual distance on R™

B.(xy) ={x € R™:d(x,xq) <1}

= {x = (x1,%x3, .., Xp) €
Rn:\/(x1 —X02)% + (X3 —x02)2 + 4+ (xy — xgp)%2 <71

= {001, X2, 0, Xy) € R™: (21 — X01)% + - + (x5, — Xon)? < 77}
Where XO == (x01,x02, ...,xOn)

D, (x) = (Exc.)

Define:

Let (x,d) be a metric space and A € X, an element P € A is called
interier point if 3B, (p)s.t.B,.(p) € A, and all interier points of A
denoted by A°

Ex. : let (R,d) be a metric space where A = (0,1),B =[—-1,1],c =
Z

Find 4°, B?, C°

Sol: A° = (0,1),B° = (—1,1)and C° = ¢
A°Vx e A - (x—€,x+€E)C A

B°Yx€B - 3e>0s.t.(x—€,x+€) € B
1eB,4€e>0s.t.(1—€,1+€) S B
—1€B,Ae>0s.t.(—1—€,—-14+€) S B
COvVxeC —3e>0s.t.(x—€,x+€) £ C
Definition:

Let (x,d) be a metric space and A € X, A is called an open set if
V P € Athere exists r > 0 (r € R) such that B,.(p) € A.



i.e. Ais open set iff A° = A.

Ex. : let (R,d) be a metric space, which of the following sets is
open: A = (0,1)is open set A° = (0,1) = A.

Theorem 2.1:

Every ball (neighborhood) is an open set proof: B,(x,) =
{xeX:d(y,xy) <r}

Lety € B.(xg) > d(y,xy) =7y <rtakee=r—r >0
T.P. Be(y) € By (xo)
Letz€ Bc(y) T.P. z€ B.(xp)
d(z,y) <e T.P. d(z,xy)<r
d(z,x¢) < d(z,y) +d(y, xp)
<€ +n
<r—-n-+n
<r
~d(z,xy) <r -z € B(xp)
= Be(y) S Br(xo)
Hence every point of B,(x,)is an interier point.
~ B.(xq)is an open set.
Remark: every open interval in R is an open set
Ex. : (a, ), (=, a), (a,c) ore open sets.
Sol: Vb #a,3d = |b — a
s.t. (b—€,b+€) c (a, )

(a, OO)O = (a, OO)



= (a, o0)is open set.

EX. :isA = [a, b)open set
Sol: forall x € (a,b) » IAn s. t.% <€ (x—€,x+€) S (a,b)

but for all ball (a—€,a+€) & [a, b)
=~ A° = (a,b)

~AY £ A

~ A is not open.

H={(x,y) ER*:x €R,y = 0}.

Is H open set in R%?

Sol : forall (x,y) € Hs.t.y > 0 — 3B, (x,y)s.t. Br((x,y)) CH
butify=0andx €R

- B.((x,y)) €H

Exc.: show that k = {(x,y) € R?>:x € R,y > 0} is open subset of
R2.

Ex.: the set of rational is not open set since any interval in Q with
center ge Q doesn't contain rationales only (by the density of

irrational)

Theorem 2.2: For any collection {G;};;; of open sets then
Uie;G; s open.

Proof: let x € U;¢;G;
— X € Gy ,for somek €1

Since Gy, is open set



~ X IS an interier point of Gy
~i.e.3AB,(x)s.t.B.(x) € Gy

=~ Br.(x) € Ui, G; is open set
Theorem 2-3:

The intersection of a finite number of open set is open.

Proof: let u;, u,, ..., u, be aset of finite number of open set.
T.P. N u; is open

Letx € N2,y

= x€eu;,Vi=12,...,n

wuy;isopen,Vi=12,..,n

~3r; > 0s.t. B,(x) Sy, Vi=12,..,n

Take r = min. {ry, 15, ..., 17, }

n

B.(x) C ﬂ ”

i=1
n

ﬂ u; Ls open.

i=1
Remark: the intersection of infinite number of open set needn't be
open, as the following example show:

Ex. : let (R, d) be a metric space

-11
vn € N,let A,, = (—,—)

n n
(40 =10

10



By Arch. Property.

IfEIO;tx,x>O,EIkENS.t.%<x
. 65(_1 1)
S X k’k

X & ﬂAn

n

By arch. Property.

fO#+xx,x<0=—-x>0=3t€eN s.t. %<—x

-1
= —>X
t

{0} is not open since Ve> 0
Be(0) = (—€,€) ¢ {0}

Proposition 2.4: let (x,d) be a metric space and A € X then A is
open iff A is a union of balls.

Proof: (=)suppose that A is an open set.
= Vx€A,3In >0 s.t.B. (x)SA

U B, (x) €A

XEA

(&=)let A= U B;, B;are balls

IEA

11



'+ every ball is an open set

= U B; is open set. [theorom 2.2]

i€A
Def. : Two metrics d and d;on the some set X are said to be
equivalent, if every open set in (x,d) is openin (x,d,).

Ex. : let (x,d) be a metric space and P be a function on X = X,
defined by p(x,y) = min.{1,d(x,y)},Vx,y € X

Sol:

1) wd(x,y) =0
~min.{1,d(x,y)} =0
= P(x,y) =0

2) P(x,y) =0
& min.{1,d(x,y)} =0
S dx,y)=0
Sx=y

3) P(x,y) = min{1,d(x,y)}
= min{1,d(y, x)}
=P(y,x),Vx,y € X

4) Let x,y,z € X, If at least one of say d(x,y) = 1

Then P(x,y) = min{1,d(x,y)} =1
~“P(x,y)+P(y,z) =21=P(x,2)
Alsoincased(x,y) <landd(y,z) <1
P(x,y) = min{d(x,y),1} = d(x,y)
P(y,z) = min{d(y, 2),1} = d(y, z)

~PO,y) +P(y,z) =dx,y) +d(y,2)
> d(x,z)by triangle inequality = P(x, z)
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~P(x,z) < P(x,y) + (y,2).

. P is a metric on X and (X, P) is a metric space.
Now to show that P is equivalent to d.

T.P. every open set in (X,P) is open in (x,d)

Let G be any open subset of X in (X,P)

Let x € G = Jan open set
{yeX:P(x,y)<r}caG

~P(x,y) <d(x,y),Vx,y€eX
cfyeXudxy)<ric{yeX:P(x,y)<r}ca
~ G is openin (x,d)

Hence every open set in (X,P) is open set in (x,d)
Next, let H be an open set in (x,d)= V x € H,3 and ball
y€eX:d(x,y) <r}S H

Let r! = min{1,7},s0 r! < r,then

{yeX:P(x,y) <rt}c{yeX:d(vy) <r}cH.
~ H is open set in (X, P)

~ Every open set in (x,d)is open in (X, P)

Hence d and P are equivalent metrics.

Ex. : Let (x,d) be a metric space, and let

x _ _dxy)
d*(x,y) = 1+d(x’y),‘v’x,y € X

Show that d* is a metric on X equivalent to d.

Sol. : First to show d* is a metric on X

13



1D wdlx,y) =20=>d*(x,y) =0
2) d*(x,y) =0
S d(x,y)=0
& x = ysince d is metricon X

% _ dlxy) . dyx) _ .
3) d*(x, y) T 1+d(xy) 1+d(yx) d (y' }7)

4) For all x,y,z € X, we have:

. . _ d(x!y) d(y,Z)
d*(x,y) +d"(y,2) = T itxy) " 1+d0,2)
d(x,y) d(y,Z)

214 deyn) +d0.2 1+dy) +d.2)
- d(x,y) +d(y,z)
“1+d(x,y)+d(y, z)

1

>1-—
1+d(x,y)+d(y,z)
wdisametricon X
~d(x,y) +d(y,z) =d(x, z)
= 1+d(x,y)+d(y,z)=>21+d(x,z)

1 1
= <
1+d(x,y)+d(y,z)  1+d(x,z)
1

=1 -

1+d(x,y)+d(y,z)

1

>1-—

1+d(x,z)
> d*(x,z)

wd*(x,z) <d*(x,y) + d*(y,2)
Exc. : now, to show d and d* are equivalent.
Let Br(x),r > 0,be any d — open ball and Bp(x)

Be d* — open ball where P = —
1+r
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T.P. Bp(x) € B(x,r)
Lety € Bp(x) = d*(x,y) <P
d(x,y) T
1+d(x,y)’ 1+7

= d(x,y) +rd(x,y) <r+rd(x,y)
=d(x,y)<r

=y € B, (x)

“ Bp(x) € By (x)

Next, let Bp(x),P > 0 be d* — open
wd*(x,y) <1,Vx,y €X
Wetake0 < P <1

Let B,.(x)be d — open,r = %

T.P. B.(x) € Bp(x)
Lety € B.(x) = d(x,y) <r

STty ST-p Y T TGy T )
_ d*(x,y)
1 - d*(x!y)
= d*(x,y) — Pd*(x,y) <P — Pd*(x,y)
= d"(x,y) <P
= vy € Bp(x)

“ By (x) € Bp(x)
~ Every d — open is a d* — open and conversely.

Definition: Let (X.d) be a metric space, a point P € X is said to
be a limit point of a set A c C, if every ball (nbd.) of P contains a
point of P.
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i.e. P is alimit point of A if VB,.(P) then [B.(P) —{P}| N A # ¢

Definition: The set of all points of a set A c X is known as the
derived set and is denoted by A’.

Example: let (R, d) be a metric space and A = (0,1)

Solution:

VP € (0,1) = VB.(P);€ > 0 CCO L 5)

[Be(P) —{P}]n(0,1) # ¢

VB,.(P),r >0

[B,(P) —{P}] N (0,1) # ¢

Ve > 0, VB.(0) . .

[B(0) —{0}] n (0,1) # ¢ ———>

[Be(1) —{1}]1 n (0,1) # ¢, B.(0)

If P < 0= 3e>0s.t.B.(P) Ny !
To—<C va

[Be(P) —{P}]n(0,1) = ¢ P

IfP>1= 3¢ > 0s.t.B.(P) . )

[Be(P) —{PH N (0,1)=¢ €2

# A =10,1] g

Example: let (R, d) be a metric space and A = [2,5]

Solution:

VP € [2,5] = VB.(P) 2 {P} s

C o

q
¢
U

[B.(P) —{P}] N [2,5] # ¢
r>0, VB.(P)

[B(P) = {P}] N [2,5] # ¢
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VP <2 = 3e > 0s.t.B.(P)

[Be(P) = {P}] N [25] = ¢
VP > 5= 3e > 0s.t.B.(P) P} 2

hdu-l

N
[B.(P) - {P}] N (0,1) = ¢ 4

~ A" =1[2,5]

Example: let (R, d) be a metric space and A = Z
Solution:

VP € Z = 3Je > 0 s.t. e LD LD
[B.(P) — (P NZ=¢ R
VPER—-Z = 3e > 0s.t. EB EB
[B.(P) —{P}INZ=1¢ -1 0 1
“E'=¢

Example: let (R, d) be a metric space and A = Q
Solution:

VP € Q,3e > 0 s.t.

[Bs(P) —{P}]NQ # ¢
VP € Q,VB,(P) s.t.
[B-(P) —{P}INnQ # ¢
VPER—-Q,Ve>0
[Bs(P) —{P}]NQ # ¢
VP eER—-Q,VB,.(P)
[B-(P) —{P}INnQ # ¢
~A'=R



Exercise: let (R,d) be a metric space find the derived set of
A=1{12,..10,B=N,C = {%:n € N},D = [-4,2)

Definition: A subset A of a metric space (X, d) is said to be closed
if A contains all of its limit points.

l.e. A € Xisclosed iff A’ € A.

Example: let (R, d) be a metric space and A = (0,,1)

+ A'=[0,1]and A" € A

~ A = (0,1) is not closed.

Example: let (R, d) be a metric space and A = [2,7]

v A'=1[2,7]and A" € A

~ A =[2,7] is closed.

Example: let (R?,d) be a metric space and
H={(x,y) e R*y =0}

Z?Iiti;(:, y) € R?:y = 0} (check) %

~H C€H

_

~ H is closed

Example: let (R?,d) be a metric space and
K ={(x,y) € R®:y > 0}

~ K is not closed

Theorem 2.5: In a metric space a set E is closed if and only if its
complement is open.
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Proof: Suppose that E is closed set
T.P. E€is open

letx e EC = x ¢ E

~ E is closed

~ x i1s not a limit point of E

= 3Ar > 0,s.t.B.(x) NE = ¢
= x € B, (x) €S E°

= E° is open

Suppose that E€ is open

T.P. E is closed

Let x be a limit point of E
~VB.(x)St.B.(x) NE # ¢

=~ B.(x) € E€

+ E€ is open

nx &E°

X EFE

=~ E is closed

Theorem 2.6: for any collection {E;};c; of closed sets, then N;¢; E;
is closed.

Proof: let {E;};¢; is closed
T.P. N E; 1s closed

() -

LE] LE]
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~+ E{ is open set, Vi € I [Theorem 2.5]
By theorem 2.2 we get

U;er Ef 1S open

Hence N;¢; E; is closed [Theorem 2.5]

Theorem 2.7: for any finite collection E, E,, ..., E,, of closed sets
then UL, E; is closed.

Proof: suppose that Eq, E,, ..., E, are closed sets T.P. UL, E; is
closed.

Since (Ujg, E))° = Nig, Ef
Ef isopenseti =1,...,n[Theorem 2.5]
By theorem 2.3 we get
., Ef isopen
Hence U, E; is closed.

Definition: In a metric space (X,d) the closure of a set E is
denoted by E or cI(E) which is defined by

E=EUE'
Example: let (R, d) be a metric space, let E = (0,1),4 = Z.
ThenE=EUE' =(0,1)ul0,1] =[0,1]
A=AUA =ZU¢p =1
Theorem 2.8: if (X, d) is a metric space and E c X then:
a) E is closed,

b) E = E iff E is closed,
c) E € F for every closed set F € X suchthat E c F.

Proof:
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a)ifPeXandP ¢ E
= P¢EandP ¢ E’
~ (E)¢ is open
=~ E is closed [Theorem 2.5]
b) Suppose that E = E
By (a) we get E is closed
Suppose that E is closed

= FE' CcE
= E=EUE'
—=E=E

c) Suppose that E € F and F is closed
TP.ECF
+ F is closed
~F CFandE CSF
= E'CF
= FUE'CF
= ECF
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