## **Chapter Two**

## **The Metric Spaces**

#### **Definition:**

Let X be a non-empty set and  $d: X \times X \longrightarrow R$  is called the distance function satisfy the following conditions:

- a)  $d(x,y) \ge 0$ , for all  $x,y \in x$
- b) d(x,y) = 0 iff x=y
- c) d(x,y) = d(y,x) for all  $x,y \in x$
- d)  $d(x,y) \le d(x,z) + d(z,y)$  (Triangle inequality) then (x,d) is called metric space.

## **Example:**

let d:RxR  $\longrightarrow$ R defined by d(x,y) = |x-y|, for all  $x,y \in R$  show that (R,d) is a metric space

Sol:

1) 
$$d(x,y) = |x-y| > 0$$
, for all  $x,y \in R$  (By def. of absolutely value)

2) 
$$d(x,y) = 0$$

$$\Leftrightarrow |x-y| = 0$$

$$\Leftrightarrow$$
 x-y = 0

$$\iff$$
 x = y

3) 
$$d(x,y) = |x-y|$$
  
=  $|-(y-x)|$   
=  $|-1| \cdot |y-x|$   
=  $|y-x|$   
=  $d(y,x)$ 

4) 
$$d(x,y) = |x-y|$$
  
=  $|x-z+z-y|$   
 $\leq |x-z|+|z-y|$   
 $\leq d(x,y) + d(z,y)$ 

## $\therefore$ (R,d) is a metric space

# **Lemma 2.1**: (Cauchy- Schwarz inequality)

For any real numbers  $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n$  we have

$$(a_1 b_1 + ... + a_n b_n) \le \sqrt{a_1^2 + ... + a_n^2} . \sqrt{b_1^2 + ... + b_n^2}$$

## **Lemma 2.2**: Minkowski inequality

For any real numbers  $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n$  we have

$$\sqrt{(a_1 + b_1)^2 + (a_2 + b_2)^2 + \dots + (a_n + b_n)^2} 
\leq \sqrt{a_1^2 + \dots + a_n^2} + \sqrt{b_1^2 + \dots + b_n^2}$$

### **Example:**

Let  $d:R^n x R^n \longrightarrow R$  defined by

$$d((x_1,x_2,...,x_n),(y_1,y_2,...y_n)) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$
where  $y = (y_1,y_2,...y_n)$  and  $y = (y_1,y_2,...y_n)$ 

where  $x = (x_1, x_2,..., x_n)$  and  $y = (y_1, y_2,..., y_n)$ 

sol:

1) 
$$(x_i - y_i)^2 \ge 0, \forall i = 1, 2, ..., n$$
  

$$\Rightarrow \sum_{i=1}^n (x_i - y_i)^2 \ge 0$$

$$\Rightarrow \sqrt{\sum_{i=1}^n (x_i - y_i)^2} \ge 0$$

$$\Rightarrow d(x, y) \ge 0, \forall x, y \in \mathbb{R}^n$$
2)  $d(x, y) = 0, \forall x, y \in \mathbb{R}^n$ 

$$\iff \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = 0$$

$$\iff \sum_{i=1}^{n} (x_i - y_i)^2 = 0$$

$$\Leftrightarrow (\mathbf{x}_i, \mathbf{y}_i)^2 = 0$$
,  $\forall i = 1, 2, ..., n$ 

$$\Leftrightarrow x_i = y_i$$
,  $\forall i = 1, 2, ..., n$ 

$$\Leftrightarrow$$
  $(x_1,x_2,...,x_n) = (y_1,y_2,...,y_n)$ 

$$\iff$$
 x = y

3) 
$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
  
=  $\sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$   
=  $d(y,x)$ 

4) let 
$$x = (x_1, ..., x_n), y = (y_1, ..., y_n), z = (z_1, ..., z_n) \in R$$
  

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$= \sqrt{\sum_{i=1}^{n} (x_i - z_i + z_i - y_i)^2}$$

$$\leq \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2} + \sqrt{\sum_{i=1}^{n} (z_i - y_i)^2}$$

[By minkowski inequality]

$$\leq d(x,z) + d(z,y)$$

 $\therefore$  d is metric on  $\mathbb{R}^n$ 

 $\therefore$  ( $R^n$ , d) is a metric space which is called n-dimensional Euclidean space

### **Example:**

Let d:R<sup>2</sup>xR<sup>2</sup>  $\rightarrow$ R defined by d(x,y)= |x<sub>1</sub>-y<sub>1</sub>| + |x<sub>2</sub>-y<sub>2</sub>| where x= (x<sub>1</sub>, x<sub>2</sub>) and y=(y<sub>1</sub>,y<sub>2</sub>)

#### Sol:

1) : 
$$|x_1 - y_1| + |x_2 - y_2| \ge 0$$
  
  $d(x, y) \ge 0$ 

2) 
$$d(x,y) = 0$$
  
 $\Leftrightarrow |x_1 - y_1| + |x_2 - y_2| = 0$   
 $\Leftrightarrow |x_1 - y_1| = 0 \text{ and } |x_2 - y_2| = 0$   
 $\Leftrightarrow x_1 = y_1 \text{ and } x_2 = y_2$   
 $\Leftrightarrow x = y$   
3)  $d(x,y) = |x_1 - y_1| + |x_2 - y_2|$   
 $= |-(y_1 - x_1)| + |-(y_2 - x_2)|$ 

3) 
$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|$$
  
 $= |-(y_1 - x_1)| + |-(y_2 - x_2)|$   
 $= |-1||y_1 - x_1| + |-1||y_2 - x_2|$   
 $= |y_1 - x_1| + |y_2 - x_2|$   
 $= d(y,x)$ 

4) let 
$$z = (z_1, z_2) \in \mathbb{R}^2$$

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|$$

$$= |x_1 - z_1 + z_1 - y_1| + |x_2 - z_2 + z_2 - y_2|$$

$$\leq |x_1 - z_1| + |z_1 - y_1| + |x_2 - z_2| + |z_2 - y_2|$$

$$\leq (|x_1 - z_1| + |x_2 - z_2|) + (|z_1 - y_1| + |z_2 - y_2|)$$

$$\leq d(x,z) + d(z,y)$$

 $\therefore$  d is a metric on  $R^2$ 

 $\therefore (R^2, d)$  is a metric space

### **Example:**

Let X be a non-empty set defined d:  $X*X \rightarrow R$  by d(x, y) =

$$\begin{cases} 0 & if \ x = y \end{cases}$$

$$\begin{cases} 1 & if \ x \neq y \end{cases}$$

## Sol:

1) 
$$d(x, y) \ge 0$$

$$2) d(x,y) = 0 iff x = y$$

3) 
$$d(x,y) = d(y,x)$$
  

$$1 = 1 \quad \text{if } x \neq y$$

$$0 = 0 \quad \text{if } x = y$$

$$4) \ d(x,y) \le d(x,z) + d(z,y)$$

- 1) if  $x \neq y \neq z$  $1 \leq 1 + 1$
- 2) if  $x \neq y, x = z \& y \neq z$  $1 \leq 0 + 1$
- 3) if  $x \neq y, x \neq z \& y = z$  $1 \leq 1 + 0$
- 4)  $x = y \& x \neq z, y \neq z$ 0 < 1 + 1
- $5) \quad x = y = z \\ 0 \le 0 + 0$

### **Exc.** :

Let c[a, b] =

 $\{f: [a,b] \to \mathbb{R} \text{ be a cont. function}\}, define \ d: c[a,b] * c[a,b] \to \mathbb{R} \text{ as } d(f,g) =$ 

 $\int_a^b |f(x) - g(x)| dx \text{ show that } (c[a, b], d) \text{ is } M.s.$ 

### **Exc.**:

Let  $x = R^2$  we define  $d: R^2 * R^2 \to R$  by  $d(x, y) = max.\{|x_1 - y_1|, |x_2 - y_2|\}$   $(R^2, d)a$  metric space?

## **Definition:**

Let (x,d) be a metric space and let  $x_0 \in X, r \in R, r > 0$ 

$$B_r(x_0) = \{ x \in X : d(x, x_0) < r \}$$

Is called a ball of radius r and center  $x_0$ .

(Neighborhood of  $x_0$  with radius r)

 $D_r(x_0) = \{x \in X : d(x, x_0) \le r\}$  is called disk with radius r and center  $x_0$ .

### **Example:**

Let (R,d) be a metric space where  $d(x, y) = |x - y|, \forall x, y \in R$ 

$$B_{r}(x_{0}) = \{x \in R : d(x_{0}, x) < r\}$$

$$= \{x \in R : |x - x_{0}| < r\}$$

$$= \{x \in R : x_{0} - r < x < x_{0} + r\}$$

$$= (x_{0} - r, x_{0} + r)$$

$$\xrightarrow{x_{0} - r} \xrightarrow{x_{0}} \xrightarrow{x_{0} + r}$$

$$D_{r}(x_{0}) = \{x \in R : d(x, x_{0}) \le r\}$$

$$= \{x \in R : |x - x_{0}| \le r\}$$

$$= \{x \in R : x_{0} - r \le x \le x_{0} + r\}$$

$$= [x_{0} - r, x_{0} + r]$$

$$= [x_{0} - r, x_{0} + r]$$

## **Example:**

Let  $(R^2, d)$  be a metric space where  $d: R^2 * R^2 \to R$  s.t. d is a usual distance

$$B_{r}(x_{0}) = \{x \in R^{2} : d(x, x_{0}) < r\}$$

$$= \{x \in R^{2} : \sqrt{(x - x_{0})^{2} + (y - y_{0})^{2}} < r\}$$

$$= \{x \in R^{2} : (x - x_{0})^{2} + (y - y_{0})^{2} < r^{2}\}$$

$$D_{r}(x_{0}) = \{x \in R^{2} : d(x, x_{0}) \le r\}$$

$$= \{x \in R^{2} : \sqrt{(x - x_{0})^{2} + (y - y_{0})^{2}} \le r$$

$$= \{x \in R^{2} : (x - x_{0})^{2} + (y - y_{0})^{2} \le r$$

### **Example:**

Let  $(R^n, d)$  be a metric space where  $d: R^n * R^n \to R$  s.t. d is a usual distance on  $R^n$ 

$$B_{r}(x_{0}) = \{x \in R^{n}: d(x, x_{0}) < r\}$$

$$= \{x = (x_{1}, x_{2}, ..., x_{n}) \in R^{n}: \sqrt{(x_{1} - x_{02})^{2} + (x_{2} - x_{02})^{2} + ... + (x_{n} - x_{0n})^{2}} < r$$

$$= \{(x_{1}, x_{2}, ..., x_{n}) \in R^{n}: (x_{1} - x_{01})^{2} + ... + (x_{n} - x_{0n})^{2} < r^{2}\}$$
Where  $x_{0} = (x_{01}, x_{02}, ..., x_{0n})$ 

$$D_{r}(x_{0}) = (Exc.)$$

#### **Define:**

Let (x,d) be a metric space and  $A \subseteq X$ , an element  $P \in A$  is called interier point if  $\exists B_r(p)s.t.B_r(p) \subseteq A$ , and all interier points of A denoted by  $A^0$ 

Ex. : let (R, d) be a metric space where A = (0,1), B = [-1,1], c = z

Find 
$$A^0$$
,  $B^0$ ,  $C^0$ 

**Sol:** 
$$A^0 = (0,1), B^0 = (-1,1)$$
 and  $C^0 = \phi$ 

$$A^0 \ \forall x \in A \rightarrow (x-\epsilon, x+\epsilon) \subseteq A$$

$$B^0 \forall x \in B \rightarrow \exists \in > 0 \text{ s. t. } (x - \in, x + \in) \subseteq B$$

$$1 \in B, \nexists \in > 0$$
 s. t.  $(1-\in, 1+\in) \subseteq B$ 

$$-1 \in B, \nexists \in > 0$$
 s. t.  $(-1-\in, -1+\in) \subseteq B$ 

$$C^0$$
,  $\forall x \in C \rightarrow \exists \in > 0$  s. t.  $(x - \in, x + \in) \not\subseteq C$ 

### **Definition:**

Let (x,d) be a metric space and  $A \subseteq X$ , A is called an open set if  $\forall P \in A$  there exists r > 0  $(r \in R)$  such that  $B_r(p) \subseteq A$ .

i.e. A is open set iff  $A^0 = A$ .

**Ex.**: let (R,d) be a metric space, which of the following sets is open: A = (0,1)is open set  $A^0 = (0,1) = A$ .

### **Theorem 2.1:**

Every ball (neighborhood) is an open set proof:  $B_r(x_0) = \{x \in X: d(y, x_0) < r\}$ 

Let 
$$y \in B_r(x_0) \to d(y, x_0) = r_1 < r$$
 take  $\in = r - r_1 > 0$ 

T.P. 
$$B_{\in}(y) \subseteq B_r(x_0)$$

Let 
$$z \in B_{\in}(y)$$
 T.P.  $z \in B_r(x_0)$ 

$$d(z, y) \le T.P.$$
  $d(z, x_0) < r$ 

$$d(z, x_0) \le d(z, y) + d(y, x_0)$$
  
$$< \in +r_1$$

$$< r - r_1 + r_1$$

$$\therefore d(z, x_0) < r \rightarrow z \in B_r(x_0)$$

$$\therefore B_{\in}(y) \subseteq B_r(x_0)$$

Hence every point of  $B_r(x_0)$  is an interior point.

 $B_r(x_0)$  is an open set.

**Remark:** every open interval in R is an open set

Ex. :  $(a, \infty)$ ,  $(-\infty, a)$ , (a, c) ore open sets.

Sol: 
$$\forall b \neq a, \exists d = |b - a|$$

s.t. 
$$(b-\in, b+\in) \subset (a, \infty)$$

$$\therefore (a, \infty)^0 = (a, \infty)$$

 $\therefore (a, \infty)$  is open set.

**Ex.:** is A = [a, b) open set

**Sol:** for all 
$$x \in (a, b) \to \exists n \ s. \ t. \frac{1}{n} < \in (x - \in, x + \in) \subseteq (a, b)$$

but for all ball  $(a-\in, a+\in) \nsubseteq [a, b)$ 

$$\therefore A^0 = (a, b)$$

$$A^0 \neq A$$

 $\therefore$  A is not open.

#### **Ex.**:

$$H = \{(x, y) \in R^2 : x \in R, y \ge 0\}.$$

Is H open set in  $R^2$ ?

Sol: for all  $(x, y) \in H$  s.  $t. y > 0 \rightarrow \exists B_r(x, y) s. t. B_r((x, y)) \subseteq H$  but if y = 0 and  $x \in R$ 

$$\rightarrow B_r((x,y)) \nsubseteq H$$

**Exc.:** show that  $k = \{(x, y) \in R^2 : x \in R, y > 0\}$  is open subset of  $R^2$ .

Ex.: the set of rational is not open set since any interval in Q with center  $\frac{p}{q} \in Q$  doesn't contain rationales only (by the density of irrational)

**Theorem 2.2:** For any collection  $\{G_i\}_{iGI}$  of open sets then  $U_{i\in I}G_i$  is open.

Proof: let  $x \in U_{i \in I}G_i$ 

 $\rightarrow x \in G_k$ , for some  $k \in I$ 

Since  $G_k$  is open set

 $\therefore$  x is an interior point of  $G_k$ 

$$\therefore i. e. \exists B_r(x) s. t. B_r(x) \subseteq G_k$$

$$B_r(x) \subseteq U_{i \in I}G_i$$
 is open set

## **Theorem 2-3:**

The intersection of a finite number of open set is open.

Proof: let  $u_1, u_2, ..., u_n$  be a set of finite number of open set.

T.P. 
$$\bigcap_{i=1}^{n} u_i$$
 is open

Let 
$$x \in \bigcap_{i=1}^n u_i$$

$$\Rightarrow x \in u_i, \forall i = 1, 2, ..., n$$

$$: u_i \text{ is open }, \forall i = 1,2,...,n$$

$$\therefore \exists r_i > 0 \text{ s.t. } B_{r_i}(x) \subseteq u_i, \quad \forall i = 1, 2, ..., n$$

Take  $r = \min\{r_1, r_2, ..., r_n\}$ 

$$B_r(x) \subseteq \bigcap_{i=1}^n u_i$$

$$\therefore \bigcap_{i=1}^{n} u_i \text{ is open.}$$

**Remark:** the intersection of infinite number of open set needn't be open, as the following example show:

**Ex.**: let (R, d) be a metric space

$$\forall n \in N, let A_n = \left(\frac{-1}{n}, \frac{1}{n}\right)$$

$$\bigcap_{n} A_n = \{0\}$$

By Arch. Property.

If 
$$\exists 0 \neq x, x > 0, \exists k \in N \text{ s. t.} \frac{1}{k} < x$$

$$\therefore x \notin \left(\frac{-1}{k}, \frac{1}{k}\right)$$

$$\therefore x \notin \bigcap_{n} A_n$$

By arch. Property.

If 
$$0 \neq x, x < 0 \Longrightarrow -x > 0 \Longrightarrow \exists t \in \mathbb{N}$$
 s.t.  $\frac{1}{t} < -x$ 

$$\Rightarrow \frac{-1}{t} > x$$

$$\therefore x \notin \left(\frac{-1}{t}, \frac{1}{t}\right)$$

$$\Rightarrow x \notin \bigcap_{n} A_n$$

 $\{0\}$  is not open since  $\forall \in > 0$ 

$$B_{\in}(0) = (-\epsilon, \epsilon) \not\subset \{0\}$$

Proposition 2.4: let (x,d) be a metric space and  $A \subseteq X$  then A is open iff A is a union of balls.

Proof:  $(\Rightarrow)$  suppose that A is an open set.

$$\Rightarrow \forall x \in A, \exists r_x > 0 \quad s.t.B_{r_x}(x) \subseteq A$$

$$\therefore \bigcup_{x \in A} B_{r_x}(x) \subseteq A$$

$$(\Leftarrow)$$
 let  $A = \bigcup_{i \in A} B_i$ ,  $B_i$  are balls

∵ every ball is an open set

$$\Rightarrow \bigcup_{i \in A} B_i$$
 is open set. [theorom 2.2]

**<u>Def.</u>**: Two metrics d and  $d_1$  on the some set X are said to be equivalent, if every open set in (x, d) is open in  $(x, d_1)$ .

Ex. : let (x, d) be a metric space and P be a function on X \* X, defined by  $p(x, y) = min. \{1, d(x, y)\}, \forall x, y \in X$ 

Sol:

1) : 
$$d(x,y) \ge 0$$
  
:  $min. \{1, d(x,y)\} \ge 0$   
 $\Rightarrow P(x,y) \ge 0$ 

2) 
$$P(x, y) = 0$$
  
 $\Leftrightarrow min. \{1, d(x, y)\} = 0$   
 $\Leftrightarrow d(x, y) = 0$   
 $\Leftrightarrow x = y$ 

3) 
$$P(x, y) = \min\{1, d(x, y)\}$$
  
=  $\min\{1, d(y, x)\}$   
=  $P(y, x), \forall x, y \in X$ 

4) Let  $x, y, z \in X$ , If at least one of say  $d(x, y) \ge 1$ 

Then 
$$P(x, y) = \min\{1, d(x, y)\} = 1$$

$$\therefore P(x,y) + P(y,z) \ge 1 \ge P(x,z)$$

Also in case d(x, y) < 1 and d(y, z) < 1

$$P(x,y) = \min\{d(x,y), 1\} = d(x,y)$$

$$P(y,z) = \min\{d(y,z), 1\} = d(y,z)$$

$$P(x,y) + P(y,z) = d(x,y) + d(y,z)$$

$$\geq d(x,z)by \ triangle \ inequality \geq P(x,z)$$

$$\therefore P(x,z) \le P(x,y) + (y,z).$$

 $\therefore$  P is a metric on X and (X, P) is a metric space.

Now to show that P is equivalent to d.

T.P. every open set in (X,P) is open in (x,d)

Let G be any open subset of X in (X,P)

Let  $x \in G \Longrightarrow \exists an \ open \ set$ 

$$\{y \in X : P(x, y) < r\} \subseteq G$$

$$\therefore P(x,y) \le d(x,y), \forall x,y \in X$$

$$\therefore \{y \in X :: d(x,y) < r\} \subseteq \{y \in X : P(x,y) < r\} \subseteq G$$

: G is open in (x, d)

Hence every open set in (X,P) is open set in (x,d)

Next, let H be an open set in  $(x,d) \Longrightarrow \forall x \in H, \exists and ball$ 

$$y \in X$$
:  $d(x, y) < r$ }  $\subseteq H$ 

Let  $r^1 = \min\{1, r\}$ , so  $r^1 \le r$ , then

$$\{y \in X \colon P(x,y) < r^1\} \subseteq \{y \in X \colon d(x,y) < r\} \subseteq H.$$

 $\therefore$  H is open set in (X, P)

 $\therefore$  Every open set in (x,d) is open in (X,P)

Hence d and P are equivalent metrics.

**Ex.**: Let (x,d) be a metric space, and let

$$d^{x}(x,y) = \frac{d(x,y)}{1+d(x,y)}, \forall x, y \in X$$

Show that  $d^*$  is a metric on X equivalent to d.

**Sol.**: First to show  $d^*$  is a metric on X

1) : 
$$d(x, y) \ge 0 \Longrightarrow d^*(x, y) \ge 0$$

2) 
$$d^*(x, y) = 0$$
  
 $\Leftrightarrow d(x, y) = 0$ 

$$\Leftrightarrow$$
  $x = y$  since  $d$  is metric on  $X$ 

3) 
$$d^*(x,y) = \frac{d(x,y)}{1+d(x,y)} = \frac{d(y,x)}{1+d(y,x)} = d^*(y,y)$$

4) For all  $x, y, z \in X$ , we have:

$$d^{*}(x,y) + d^{*}(y,z) = \frac{d(x,y)}{1 + d(x,y)} + \frac{d(y,z)}{1 + d(y,z)}$$

$$\geq \frac{d(x,y)}{1 + d(x,y) + d(y,z)} + \frac{d(y,z)}{1 + d(x,y) + d(y,z)}$$

$$\geq \frac{d(x,y) + d(y,z)}{1 + d(x,y) + d(y,z)}$$

$$\geq 1 - \frac{1}{1 + d(x,y) + d(y,z)}$$

$$\therefore d \text{ is a metric on } X$$

$$\therefore d(x,y) + d(y,z) \geq d(x,z)$$

$$\Rightarrow 1 + d(x,y) + d(y,z) \geq 1 + d(x,z)$$

$$\Rightarrow \frac{1}{1 + d(x,y) + d(y,z)} \leq \frac{1}{1 + d(x,z)}$$

$$\Rightarrow 1 - \frac{1}{1 + d(x,y) + d(y,z)}$$

$$\geq 1 - \frac{1}{1 + d(x,y) + d(y,z)}$$

$$\geq d^{*}(x,z)$$

$$\therefore d^{*}(x,z) \leq d^{*}(x,y) + d^{*}(y,z)$$

**Exc.**: now, to show d and  $d^*$  are equivalent.

Let  $B_R(x)$ , r > 0, be any d – open ball and  $B_P(x)$ 

Be 
$$d^* - open$$
 ball where  $P = \frac{r}{1+r}$ 

T.P. 
$$B_P(x) \subseteq B(x,r)$$

Let 
$$y \in B_P(x) \Longrightarrow d^*(x, y) < P$$
  
 $\Longrightarrow \frac{d(x,y)}{1+d(x,y)}, \frac{r}{1+r}$ 

$$\Rightarrow d(x,y) + rd(x,y) < r + rd(x,y)$$

$$\Rightarrow d(x, y) < r$$

$$\Rightarrow y \in B_r(x)$$

$$\therefore B_P(x) \subseteq B_r(x)$$

Next, let  $B_P(x)$ , P > 0 be  $d^* - open$ 

$$d^*(x,y) \leq 1, \forall x,y \in X$$

We take 0 < P < 1

Let 
$$B_r(x)$$
 be  $d-open, r=\frac{P}{1-P}$ 

T.P. 
$$B_r(x) \subseteq B_P(x)$$

Let 
$$y \in B_r(x) \Longrightarrow d(x,y) < r$$

$$\Rightarrow \frac{d^*(x,y)}{1 - d^*(x,y)} < \frac{P}{1 - P} [d^*(x,y)] = \frac{d(x,y)}{1 + d(x,y)} \Rightarrow d(x,y)$$
$$= \frac{d^*(x,y)}{1 - d^*(x,y)}$$

$$\Rightarrow d^*(x,y) - Pd^*(x,y) < P - Pd^*(x,y)$$

$$\Rightarrow d^*(x, y) < P$$

$$\Rightarrow y \in B_P(x)$$

$$B_r(x) \subseteq B_p(x)$$

∴ Every d – open is a  $d^*$  – open and conversely.

**Definition**: Let (X.d) be a metric space, a point  $P \in X$  is said to be a limit point of a set  $A \subset C$ , if every ball (nbd.) of P contains a point of P.

i.e. P is a limit point of A if  $\forall B_r(P)$  then  $[B_r(P) - \{P\}] \cap A \neq \phi$ 

**Definition**: The set of all points of a set  $A \subset X$  is known as the derived set and is denoted by A'.

**Example**: let  $(\mathbb{R}, d)$  be a metric space and A = (0,1)

**Solution**:

$$\forall P \in (0,1) \Longrightarrow \forall B_{\epsilon}(P); \epsilon > 0$$

$$[B_{\epsilon}(P) - \{P\}] \cap (0,1) \neq \phi$$

$$\forall B_r(P), r > 0$$

$$[B_r(P) - \{P\}] \cap (0,1) \neq \phi$$

$$\forall \epsilon > 0, \quad \forall B_{\epsilon}(0)$$

$$[B_{\epsilon}(0) - \{0\}] \cap (0,1) \neq \phi$$

$$[B_\epsilon(1)-\{1\}]\cap(0,1)\neq\phi,B_\epsilon(0)$$

If 
$$P < 0 \Longrightarrow \exists \epsilon > 0$$
 s. t.  $B_{\epsilon}(P)$ 

$$[B_{\epsilon}(P) - \{P\}] \cap (0,1) = \phi$$

If 
$$P > 1 \Longrightarrow \exists \epsilon > 0 \text{ s. t. } B_{\epsilon}(P)$$

$$[B_\epsilon(P)-\{P\}]\cap (0,1)=\phi$$

$$\therefore A' = [0,1]$$



**Example**: let  $(\mathbb{R}, d)$  be a metric space and A = [2,5]

**Solution**:

$$\forall P \in [2,5] \Longrightarrow \forall B_{\epsilon}(P)$$

$$[B_{\epsilon}(P) - \{P\}] \cap [2,5] \neq \phi$$

$$r > 0$$
,  $\forall B_r(P)$ 

$$[B_r(P) - \{P\}] \cap [2,5] \neq \phi$$



$$\forall P < 2 \Longrightarrow \exists \epsilon > 0 \text{ s. t. } B_{\epsilon}(P)$$

$$[B_{\epsilon}(P) - \{P\}] \cap [2,5] = \phi$$

$$\forall P > 5 \Longrightarrow \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(P)$$

$$[B_{\epsilon}(P) - \{P\}] \cap (0,1) = \phi$$

$$\therefore A' = [2,5]$$



**Example**: let  $(\mathbb{R}, d)$  be a metric space and  $A = \mathbb{Z}$ 

#### **Solution**:

$$\forall P \in \mathbb{Z} \Longrightarrow \exists \epsilon > 0 \ s. \ t.$$

$$[B_{\epsilon}(P) - \{P\}] \cap \mathbb{Z} = \phi$$

$$\forall P \in \mathbb{R} - \mathbb{Z} \Longrightarrow \exists \epsilon > 0 \text{ s. t.}$$

$$[B_{\epsilon}(P) - \{P\}] \cap \mathbb{Z} = \phi$$

$$\therefore E' = \phi$$





**Example**: let  $(\mathbb{R}, d)$  be a metric space and  $A = \mathbb{Q}$ 

## **Solution**:

$$\forall P \in \mathbb{Q}, \exists \epsilon > 0 \ s. \ t.$$

$$[B_{\epsilon}(P) - \{P\}] \cap \mathbb{Q} \neq \phi$$

 $\forall P \in \mathbb{Q}$ ,  $\forall B_r(P)$  s. t.

$$[B_r(P)-\{P\}]\cap \mathbb{Q}\neq \phi$$

$$\forall P \in \mathbb{R} - \mathbb{Q}$$
 ,  $\forall \epsilon > 0$ 

$$[B_{\epsilon}(P) - \{P\}] \cap \mathbb{Q} \neq \phi$$

$$\forall P \in \mathbb{R} - \mathbb{Q}$$
,  $\forall B_r(P)$ 

$$[B_r(P)-\{P\}]\cap \mathbb{Q}\neq \phi$$

$$A' = \mathbb{R}$$



**Exercise**: let  $(\mathbb{R}, d)$  be a metric space find the derived set of  $A = \{1, 2, ..., 10\}, B = \mathbb{N}, C = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}, D = [-4, 2)$ 

**Definition**: A subset A of a metric space (X, d) is said to be closed if A contains all of its limit points.

i.e.  $A \subseteq X$  is closed iff  $A' \subseteq A$ .

**Example**: let  $(\mathbb{R}, d)$  be a metric space and A = (0, 1)

$$A' = [0,1]$$
 and  $A' \nsubseteq A$ 

A = (0,1) is not closed.

**Example**: let  $(\mathbb{R}, d)$  be a metric space and A = [2,7]

$$A' = [2,7]$$
 and  $A' \subseteq A$ 

$$A = [2,7]$$
 is closed.

**Example**: let  $(\mathbb{R}^2, d)$  be a metric space and

$$H = \{(x,y) \in \mathbb{R}^2 \colon y \ge 0\}$$

**Solution:** 

$$H' = \{(x, y) \in \mathbb{R}^2 : y \ge 0\} \text{ (check)}$$

$$: H' \subseteq H$$

 $\therefore$  H is closed



**Example**: let  $(\mathbb{R}^2, d)$  be a metric space and

$$K = \{(x, y) \in \mathbb{R}^2 \colon y > 0\}$$

$$K' = \{(x, y) \in \mathbb{R}^2 \colon y \ge 0\}$$

$$: K' \nsubseteq K$$

 $\therefore$  K is not closed



**Theorem 2.5**: In a metric space a set *E* is closed if and only if its complement is open.

**Proof**: Suppose that *E* is closed set

T.P.  $E^c$  is open

Let  $x \in E^c \implies x \notin E$ 

: E is closed

 $\therefore x$  is not a limit point of E

$$\Rightarrow \exists r > 0, s. t. B_r(x) \cap E = \phi$$

$$\Rightarrow x \in B_r(x) \subseteq E^c$$

 $\implies E^c$  is open

Suppose that  $E^c$  is open

T.P. E is closed

Let x be a limit point of E

$$\therefore \forall B_r(x) \text{ s.t. } B_r(x) \cap E \neq \phi$$

$$B_r(x) \nsubseteq E^c$$

 $: E^c$  is open

$$\therefore x \notin E^c$$

$$\therefore x \in E$$

 $\therefore E$  is closed

**Theorem 2.6:** for any collection  $\{E_i\}_{i\in I}$  of closed sets, then  $\bigcap_{i\in I} E_i$  is closed.

**Proof**: let  $\{E_i\}_{i\in I}$  is closed

T.P.  $\bigcap_{i \in I} E_i$  is closed

$$\left(\bigcap_{i\in I} E_i\right)^c = \bigcup_{i\in I} E_i^c$$

 $E_i^c$  is open set,  $\forall i \in I$  [Theorem 2.5]

By theorem 2.2 we get

 $\bigcup_{i \in I} E_i^c$  is open

Hence  $\bigcap_{i \in I} E_i$  is closed [Theorem 2.5]

**Theorem 2.7**: for any finite collection  $E_1, E_2, ..., E_n$  of closed sets then  $\bigcup_{i=1}^n E_i$  is closed.

**Proof**: suppose that  $E_1, E_2, ..., E_n$  are closed sets T.P.  $\bigcup_{i=1}^n E_i$  is closed.

Since  $(\bigcup_{i\in I}^n E_i)^c = \bigcap_{i\in I}^n E_i^c$ 

 $E_i^c$  is open set i = 1, ..., n [Theorem 2.5]

By theorem 2.3 we get

$$\bigcap_{i\in I}^n E_i^c$$
 is open

Hence  $\bigcup_{i\in I}^n E_i$  is closed.

**Definition**: In a metric space (X, d) the closure of a set E is denoted by  $\overline{E}$  or cl(E) which is defined by

$$\bar{E} = E \cup E'$$

**Example**: let  $(\mathbb{R}, d)$  be a metric space, let E = (0,1),  $A = \mathbb{Z}$ .

Then  $\bar{E} = E \cup E' = (0,1) \cup [0,1] = [0,1]$ 

$$\bar{A} = A \cup A' = \mathbb{Z} \cup \phi = \mathbb{Z}$$

**Theorem 2.8**: if (X, d) is a metric space and  $E \subset X$  then:

- a)  $\overline{E}$  is closed,
- **b**)  $E = \overline{E}$  iff E is closed,
- c)  $\overline{E} \subseteq F$  for every closed set  $F \subseteq X$  such that  $E \subseteq F$ .

**Proof**:

- **a)** If  $P \in X$  and  $P \notin \overline{E}$ 
  - $\Rightarrow P \notin E \text{ and } P \notin E'$
  - $\therefore (\bar{E})^c$  is open
  - $\therefore \bar{E}$  is closed [Theorem 2.5]
- **b**) Suppose that  $E = \bar{E}$ 
  - By (a) we get E is closed
  - Suppose that *E* is closed
  - $\Longrightarrow E' \subset E$
  - $\Rightarrow E = E \cup E'$
  - $\implies E = \bar{E}$
- c) Suppose that  $E \subseteq F$  and F is closed
  - T.P.  $\bar{E} \subseteq F$
  - : F is closed
  - $: F' \subseteq F \text{ and } E \subseteq F$
  - $\Longrightarrow E' \subseteq F$
  - $\Rightarrow E \cup E' \subseteq F$
  - $\Longrightarrow \bar{E} \subseteq F$