
Lexical Analyzer-2019

 -الجامعة المستنصريه

7

Lexical Analyzer

The Role of the Lexical Analyzer

Lexical Analyzer is the interface between the source program and

the compiler. The main task of lexical Analyzer is to read the input

characters and produce a sequence of tokens that the parser uses for

syntax analysis.

Upon receiving a "get next token" command from the parser, the

Lexical Analyzer reads input characters until it can identify the next

token.

The Secondary Tasks of Lexical Analyzer:

1) Removal of white space and the comments. White space

(blanks, tabs, and newline characters).

2) Correlating error messages from the compiler with the source

program. For example, the lexical analyzer may keep track of

the number of newline characters seen, so that a line number

can be associated with an error message.

Note: Regular Expressions are used to define the tokens recognized

by lexical analyzer. The lexical analyzer is implemented as Finite

Automata (DFA).

Lexical

Analyzer

Parser

Symbol

Table

Token

Get next

Token

Interaction of lexical analyzer with parser

Lexical Analyzer-2019

 -الجامعة المستنصريه

8

Example: Let the following segment of source program is input to

lexical analysis:

Note: These tables in above are saving in storage structure which

called Symbol Table.

Tokens Table

Token Type Index
If Keyword

A Identifier 1

>= Relation operator

100 Constant 1

Then Keyword

Begin Keyword

X Identifier 2

:= Assignment operator

y1 Identifier 3

+ Operation operator

5.6 Constant 2

; Punctuation

Count Identifier 4

:= Assignment operator

A Identifier 1

* Operation operator

4 Constant 3

; Punctuation

End Keyword

; Punctuation

Constant

Index Value

1 100

2 5.6

3 4

Identifier

Index Name

1 A

2 X

3 y1

4 Count

If A>=100 Then

 Begin

 X := y1+5.6;

 Count := A*4;

End;

Lexical Analyzer-2019

 -الجامعة المستنصريه

9

Tokens, Patterns, Lexemes

When talking about lexical analysis, we use the terms "Tokens","

Patterns", and "Lexemes" with specific meanings. Examples of their

use are shown in figure below:

A lexeme is a sequence of characters in the source program that is

matched by the pattern for a token.

For example, the pattern for the Relation Operator (RELOP) token

contains six lexemes (=, < >, <, < =, >, >=) so the lexical analyzer

should return a RELOP token to parser whenever it sees any one of

the six.

Pattern is a rule describing the set of lexemes that can represent a

particular token in source programs.

By using Regular Expressions, we can specify patterns to lexical

that allow it to scan and match strings in the input. For example, the

pattern for the Pascal Identifier token "Id" is:

letter (letter | digit)*
byy

Example: In Pascal statement

Const Pi=3.1416;

The substring Pi is a lexeme for the token "Identifier".

Token Sample lexemes Informal Description of Pattern

const const const

if if if

relation <,<=,=,<>,>,>= <or <=or =or <>or >or >=

id pi, count, d2 letter followed by letters and digit

num 3.14, 0, 45, -7.5 any numeric constant

literal "computer" any characters between "and" except"

Lexical Analyzer-2019

 -الجامعة المستنصريه

10

Input Buffering:

The lexical analyzer scans the characters of the source program one

at a time to discover tokens; it is desirable for the lexical analyzer to

read its input from an input buffer.

We have two pointers one marks to the beginning of the token begin

discovered. A lookahead pointer scans a head of the beginning point,

until the token is discovered.

Example: if we have the statement For i:=1 To 10 Do then the

buffer will be

Symbol Tables

Gather information about names and constants which are in a

program. Symbol table management refers to the symbol table’s

storage structure, its construction in the analysis phase and its use

during the whole compilation.

1) A symbol table is a data structure, where information about

program objects is gathered.

2) Is used in all phases of compiler.

3) The symbol table is built up during the lexical and syntactic

analysis.

4) Help for other phases during compilation:

 Semantic analysis: type conflict?

 Code generation: how much and what type of run-time

space is to be allocated?

 Error handling: Has the error message

 "Variable A undefined"

F O R i : = 1 T O 10 D O

Beginning

Pointer

Lookahead

Pointer

Lexical Analyzer-2019

 -الجامعة المستنصريه

11

Specification of Tokens

Regular expressions are an important notation for specifying

patterns. Each pattern matches a set of strings, so regular expressions

will serve as names for set of strings.

Strings and Languages

The term of alphabet or character class denotes any finite set of

symbols. Typical examples of symbol are letter and characters. The

set {0, 1} is the binary alphabet ASCII is the examples of computer

alphabets.

String: is a finite sequence of symbols taken from that alphabet. The

terms sentence and word are often used as synonyms for term

"string".

|S|: is the Length of the string S.

Example: |banana| =6

Empty String (): special string of length zero.

Exponentiation of Strings

S2 = SS S3 = SSS S4 = SSSS

Si is the string S repeated i times.

By definition S0 is an empty string.

Languages

A language is any set of string formed some fixed alphabet.

Lexical Analyzer-2019

 -الجامعة المستنصريه

12

Operations on Languages

There are several important operations that can be applied to

languages. For lexical Analysis the operations are:

1- Union.

2- Concatenation.

3- Closure.

Operation Definition
Union L and M

written LM

LM={s | s is in L or s in M}

Concatenation

of L and M

written LM

LM={st | s is in L and t is in M}

Kleene closure

of L written L*
L*= 



0i

iL

L* denotes "zero or more concatenations of" L.

Positive

closure of L

written L+

L+= 


1i

iL

L+ denotes "one or more concatenations of" L.

Example: Let L and M be two languages where L = {a, b, c} and

D= {0, 1} then

 Union: LUD = {a, b, c, 0,1}

 Concatenation: LD = {a0,a1, b0, b1, c0,c1}

 Expontentiation: L2 = LL

 By definition: L0 ={ }

Lexical Analyzer-2019

 -الجامعة المستنصريه

13

Regular Expressions

In Pascal, an identifier is a letter followed by zero or more letters or

digits; in this section presents a notation called Regular Expressions

(RE) that allows us to define precisely sets. With this notation, we

might define Pascal identifiers as:

Letter (Letter | Digit)*

Vertical bar | means "or"

Examples: Let ∑= {a, b}

1. The RE a | b denotes the set {a, b}

2. The RE (a | b) (a | b) denotes {aa, ab, ba, bb}

3. The RE a* denotes { , a, aa, aaa, aaaa, …….}

4. The RE (a | b)* denotes { , a, b,ab,ba, bba, aaba, ababa, bb,...}

5. The RE a | ba* denotes the set of strings consisting of either

signal a or b followed by zero or more a's.

6. The RE a*ba*ba*ba* denotes the set of strings consisting

exactly three b's in total.

7. The RE (a | b)*a(a | b)*a(a | b)*a(a | b)* denotes the set of

strings that have at least three a's in them.

8. The RE (a | b)* (aa | bb) denotes the set of strings that end in a

double letter.

9. The RE | a | b | (a | b)3 (a | b)* denotes to all strings whose

length is not two, could be zero, one, three, …..

Lexical Analyzer-2019

 -الجامعة المستنصريه

14

Regular Definitions

A regular definition gives names to certain regular expressions and

uses those names in other regular expressions.

Example1: The set of Pascal identifiers is the set of strings of letters

and digits beginning with a letter. Here is a regular definition for this

set:

The regular expression id is the pattern for the Pascal identifier

token and defines letter and digit.

Where letter is a regular expression for the set of all upper-case and

lower case letters in the alphabet and digit is the regular for the set

of all decimal digits.

Example2: Unsigned numbers in Pascal are strings such as 5280,

39.37, 6.336E4, or 1.894E-4. The following regular definition

provides a precise specification for this class of strings:

This regular definition says that

 An optional-fraction is either a decimal point followed by one

or more digits or it is missing (i.e., an empty string).

 An optional-exponent is either an empty string or it is the letter

E followed by an optional + or - sign, followed by one or more

digits.

letter → A | B | . . . | Z | a | b | . . . | z

digit → 0 | 1 | 2 | . . . | 9

id → letter (letter | digit)*

 digit → 0 | 1 | 2 | . . . | 9

 digits → digit digit*

 optional-fraction → . digits |

 optional-exponent → (E (+ | - |) digits) |

 num → digits optional-fraction optional-exponent

