2-5 Operators

The operator defines to be "a mathematical entity when acts on a wave function turn it to another function". i.e.

$$
\hat{A} \Psi=\varphi
$$

Example 1: $\psi=x^{3}, \quad \hat{A}=\mathrm{x}$

$$
\hat{A} \psi=x \cdot x^{3}=x^{4}=\phi
$$

Example 2: $\hat{A}=\frac{\partial}{\partial x} \quad, \quad \psi=x^{3}$

$$
\hat{A} \psi=\frac{\partial}{\partial x} \cdot x^{3}=3 x^{2}=\phi
$$

2-6 Operator equation

Let's consider the following operator; $\hat{A}\left(x, \frac{\partial}{\partial x}\right)=\frac{\partial}{\partial x} x$, so for any function $\psi(x)$ one get;

$$
\begin{aligned}
\left(\frac{\partial}{\partial x} x\right) & \psi(x)=\frac{\partial}{\partial x}(x \psi(x)) \\
& =\psi(x)+x \frac{\partial \psi(x)}{\partial x} \\
& =\left(1+x \frac{\partial}{\partial x}\right) \psi(x)
\end{aligned}
$$

Since the last equation is valid for any function for x, thus one can omit ψ from both sides and get;

$$
\begin{equation*}
\frac{\partial}{\partial x} x=\left(1+x \frac{\partial}{\partial x}\right) \tag{2-12}
\end{equation*}
$$

Equation (2-12) called the operator equation.

2-7 Eigen value equation

For each operator \hat{A} there being a set of numbers $\left(a_{n}\right)$ and a set of functions $\psi_{n}(x)$ defined by the following formula;

$$
\begin{equation*}
\hat{A} \psi_{n}(x)=a_{n} \psi_{n}(x) \tag{2-13}
\end{equation*}
$$

Where a_{n} are called the eigenvalues and $\psi_{n}(x)$ are the corresponding eigenfunctions. Thus, the eigenfunctions of an operator are those special functions that remain unaltered under the operation of an operator apart from multiplication by the eigenvalue.

Example: By using the eigen value equation show that the function $\psi_{n}(x)=e^{i 4 x}$ is an eigen function of the operator $\hat{A}=\frac{\partial}{\partial x}$

Solution:

Let $\quad \hat{A}=\frac{\partial}{\partial x} \quad$ and $\psi_{n}(x)=e^{i 4 x}$. So,

$$
\begin{aligned}
& \hat{A} \psi_{n}(x)=a_{n} \psi_{n}(x) \\
& \begin{aligned}
\hat{A} \psi_{n}(x) & =\frac{\partial}{\partial x}\left(e^{i 4 x}\right) \\
& =i 4 e^{i 4 x} \\
& =a_{n} \psi_{n}(x)
\end{aligned}
\end{aligned}
$$

Hence, $a_{n}=i 4$ is the eigen value and $\psi_{n}(x)=e^{i 4 x}$ is an eigen function.

Example: By using the eigen value equation show that the function $\hat{A}=-\frac{\partial^{2}}{\partial x^{2}}$ function of the operator eigen is an $\psi_{n}(x)=\cos (4 x)$

Solution:

$$
\begin{aligned}
& \hat{A} \psi_{n}(x)=a_{n} \psi_{n}(x) \\
& \hat{A} \psi_{n}(x)=-\frac{\partial^{2}}{\partial x^{2}} \cos (4 x) \\
& 4 \frac{\partial}{\partial x} \sin (4 x)=16 \cos (4 x) \\
& -\frac{\partial^{2}}{\partial x^{2}}(\cos (4 x))=16 \cos (4 x)
\end{aligned}
$$

$$
\hat{A} \psi_{n}(x)=16 \cos (4 x)
$$

Hence, $a_{n}=16, \quad \psi_{n}(x)=\cos (4 x)$ and so $\psi_{n}(x)$ remain unchanged, thus $\psi_{n}(x)=\cos (4 x)$ is an eigen function for $\hat{A}=-\frac{\partial^{2}}{\partial x^{2}}$.

Example: By using the eigen value equation show that the function $\psi_{n}(x)=\sin (6 x)$ is an eigen function of the operator $. \hat{A}=-\frac{\partial^{2}}{\partial x^{2}}$

Solution:

$$
\begin{aligned}
& \hat{A} \psi_{n}(x)=a_{n} \psi_{n}(x) \\
& \hat{A} \psi_{n}=-\frac{\partial^{2}}{\partial x^{2}} \sin (6 x) \\
& -6 \frac{\partial}{\partial x} \cos (6 x)=36 \sin (6 x) \\
& -\frac{\partial^{2}}{\partial x^{2}} \sin (6 x)=36 \sin (6 x) \\
& \hat{A} \psi_{n}(x)=36 \sin (6 x)
\end{aligned}
$$

Hence, $a_{n}=36$ and $\psi_{n}(x)=\sin (6 x)$. The $\psi_{n}(x)$ remain unchanged, thus $\psi_{n}(x)=\sin (6 x)$ is an eigen function for $\hat{A}=-\frac{\partial^{2}}{\partial x^{2}}$.

Example: prove that the function $\psi=A e^{-\alpha x}$ is the eigen function of the operator $\hat{F}=\frac{d^{2}}{d x^{2}}+\frac{2}{x} \frac{d}{d x}+\frac{2 \alpha}{x}$ where the A, α are constants.

Solution:

$$
\begin{aligned}
& \hat{F} \psi=\frac{d^{2}}{d x^{2}}\left(A e^{-\alpha x}\right)+\frac{2}{x} \frac{d}{d x}\left(A e^{-\alpha x}\right)+\frac{2 \alpha}{x}\left(A e^{-\alpha x}\right) \\
& \hat{F} \psi=\alpha^{2} A e^{-\alpha x}+\frac{2}{x} \frac{d}{d x}\left(-\alpha A e^{-\alpha x}\right)+\frac{2 \alpha}{x}\left(A e^{-\alpha x}\right) \\
& \hat{F} \psi=\left(\alpha^{2}-\frac{2 \alpha}{x}+\frac{2 \alpha}{x}\right) A e^{-\alpha x} \\
& \hat{F} \psi=\alpha^{2} A e^{-\alpha x} \\
& \hat{F} \psi=\alpha^{2} \psi
\end{aligned}
$$

It is seen that the function ψ is an eigen function with an eigen value α^{2}.

2-8 Operators properties

Operator has important properties namely the linearity, commutation and Hermitian.

1) Linearity: the operator \hat{A} is said to be a linear operator if it satisfy the following conditions;
i. $\hat{A}\left(\psi_{1}+\psi_{2}\right)=\hat{A} \psi_{1}+\hat{A} \psi_{2}$
ii. $\hat{A}(a \psi)=a \hat{A} \psi$ where a is a constant
2) Commutation: the commutation relation between two operators \hat{A} and \hat{B} is define as;

$$
\hat{C}=[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}
$$

Where \hat{C} is called the commutator operator.

$$
\text { i. If } \hat{C}=0 \Rightarrow[\hat{A}, \hat{B}]=0 \Rightarrow \hat{A} \hat{B}=\hat{B} \hat{A}
$$

The operators in this case called commute operators.
ii. If $\hat{C}=1$

The operators $\hat{C}=$ in this case called unit operator.
iii. If $\hat{C} \neq 0 \Rightarrow[\hat{A}, \hat{B}] \neq 0 \Rightarrow \hat{A} \hat{B}-\hat{B} \hat{A} \neq 0$

The operators in this case called not commute operators.

Example: Prove that the operator $\left[\frac{\partial}{\partial x}, x\right]$ is a unit operator.

Solution:

$$
\begin{aligned}
& \hat{C}=[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A} \\
& \hat{C}=\left[\frac{\partial}{\partial x}, x\right]=\frac{\partial}{\partial x} x-x \frac{\partial}{\partial x}
\end{aligned}
$$

Multiply the both sides by $\psi(x)$ one get;

$$
\begin{aligned}
& \hat{C} \psi(x)=\left\{\frac{\partial}{\partial x} x-x \frac{\partial}{\partial x}\right\} \psi(x) \\
&=\frac{\partial}{\partial x} x(\psi(x))-x \frac{\partial}{\partial x}(\psi(x)) \\
&=\frac{\partial}{\partial x}(x \psi(x))-x \frac{\partial \psi(x)}{\partial x} \\
&=\psi(x)+x \frac{\partial \psi(x)}{\partial x}-x \frac{\partial \psi(x)}{\partial x} \\
& \hat{C} \psi(x)=\psi(x) \\
& \hat{C}=1
\end{aligned}
$$

H.W Prove that; $\hat{C}=\left[x, \frac{\partial}{\partial x}\right]=-1$.

Example: Show that; $\left[\hat{x}, \hat{p}_{x}\right]=i \hbar$.

Solution:

$$
\begin{aligned}
& \hat{c}=\left[\hat{x}, \hat{p}_{x}\right] \\
& \hat{c}=\hat{x} \hat{p}_{x}-\hat{p}_{x} \hat{x} \\
& \hat{c}=\hat{x}\left(-i \hbar \frac{\partial}{\partial x}\right)+i \hbar \frac{\partial}{\partial x}(\hat{x}) \\
& \hat{c} \psi(x)=\left\{\hat{x}\left(-i \hbar \frac{\partial}{\partial x}\right)+i \hbar \frac{\partial}{\partial x}(\hat{x})\right\} \psi(x) \\
& \hat{c} \psi(x)=\hat{x}\left(-i \hbar \frac{\partial \psi(x)}{\partial x}\right)+i \hbar \frac{\partial}{\partial x} \hat{x} \psi(x) \\
& \left.\hat{c} \psi(x)=-i \hbar \hat{x} \frac{\partial \psi(x)}{\partial x}\right)+i \hbar \psi(x)+i \hbar \hat{x} \frac{\partial \psi(x)}{\partial x} \\
& \hat{c} \psi(x)=i \hbar \psi(x) \\
& \hat{c}=i \hbar
\end{aligned}
$$

H.W. Prove that $\left[\hat{p}_{x}, \hat{x}\right]=-i \hbar$

