2-5 Operators

The operator defines to be "a mathematical entity when acts on a wave function turn it to another function". i.e.

$$\hat{A}\psi = \frac{\partial}{\partial x} \cdot x^3 = 3x^2 = \phi$$

2-6 Operator equation

Let's consider the following operator; $\hat{A}(x, \frac{\partial}{\partial x}) = \frac{\partial}{\partial x}x$, so for any function $\psi(x)$

one get;

$$(\frac{\partial}{\partial x}x)\psi(x) = \frac{\partial}{\partial x}(x\psi(x))$$
$$= \psi(x) + x\frac{\partial\psi(x)}{\partial x}$$
$$= (1 + x\frac{\partial}{\partial x})\psi(x)$$

Since the last equation is valid for any function for x, thus one can omit ψ from both sides and get;

Equation (2-12) called the operator equation.

2-7 Eigen value equation

For each operator \hat{A} there being a set of numbers (a_n) and a set of functions $\psi_n(x)$ defined by the following formula;

Where a_n are called the **eigenvalues** and $\psi_n(x)$ are the corresponding **eigenfunctions**. Thus, the eigenfunctions of an operator are those special functions that remain unaltered under the operation of an operator apart from multiplication by the eigenvalue.

Example: By using the eigen value equation show that the function $\psi_n(x) = e^{i4x}$ is

an eigen function of the operator $\hat{A} = \frac{\partial}{\partial x}$

Solution:

Let
$$\hat{A} = \frac{\partial}{\partial x}$$
 and $\psi_n(x) = e^{i4x}$. So,
 $\hat{A}\psi_n(x) = a_n\psi_n(x)$
 $\hat{A}\psi_n(x) = \frac{\partial}{\partial x}(e^{i4x})$

Hence, $a_n = i4$ is the eigen value and $\psi_n(x) = e^{i4x}$ is an eigen function.

Example: By using the eigen value equation show that the function $\hat{A} = -\frac{\partial^2}{\partial x^2}$ function of the operator eigen is an $\psi_n(x) = \cos(4x)$

Solution:

$$\hat{A}\psi_n(x) = a_n\psi_n(x)$$
$$\hat{A}\psi_n(x) = -\frac{\partial^2}{\partial x^2}\cos(4x)$$
$$4\frac{\partial}{\partial x}\sin(4x) = 16\cos(4x)$$
$$-\frac{\partial^2}{\partial x^2}(\cos(4x)) = 16\cos(4x)$$

 $\hat{A}\psi_n(x) = 16\cos(4x)$ Hence, $a_n = 16$, $\psi_n(x) = \cos(4x)$ and so $\psi_n(x)$ remain unchanged, thus $\psi_n(x) = \cos(4x)$ is an eigen function for $\hat{A} = -\frac{\partial^2}{\partial x^2}$.

Example: By using the eigen value equation show that the function $\psi_n(x) = \sin(6x)$ is an eigen function of the operator $\hat{A} = -\frac{\partial^2}{\partial x^2}$

Solution:

$$A\psi_n(x) = a_n \psi_n(x)$$
$$\hat{A}\psi_n = -\frac{\partial^2}{\partial x^2} \sin(6x)$$
$$-6\frac{\partial}{\partial x} \cos(6x) = 36\sin(6x)$$
$$-\frac{\partial^2}{\partial x^2} \sin(6x) = 36\sin(6x)$$
$$\hat{A}\psi_n(x) = 36\sin(6x)$$

Hence, $a_n = 36$ and $\psi_n(x) = \sin(6x)$. The $\psi_n(x)$ remain unchanged, thus

 $\psi_n(x) = \sin(6x)$ is an eigen function for $\hat{A} = -\frac{\partial^2}{\partial x^2}$.

Example: prove that the function $\psi = Ae^{-\alpha x}$ is the eigen function of the operator

$$\hat{F} = \frac{d^2}{dx^2} + \frac{2}{x}\frac{d}{dx} + \frac{2\alpha}{x}$$
 where the A, α are constants.

Solution:

$$\hat{F}\psi = \frac{d^2}{dx^2}(Ae^{-\alpha x}) + \frac{2}{x}\frac{d}{dx}(Ae^{-\alpha x}) + \frac{2\alpha}{x}(Ae^{-\alpha x})$$
$$\hat{F}\psi = \alpha^2 Ae^{-\alpha x} + \frac{2}{x}\frac{d}{dx}(-\alpha Ae^{-\alpha x}) + \frac{2\alpha}{x}(Ae^{-\alpha x})$$
$$\hat{F}\psi = \left(\alpha^2 - \frac{2\alpha}{x} + \frac{2\alpha}{x}\right)Ae^{-\alpha x}$$
$$\hat{F}\psi = \alpha^2 Ae^{-\alpha x}$$
$$\hat{F}\psi = \alpha^2 \psi$$

It is seen that the function ψ is an eigen function with an eigen value α^2 .

2-8 Operators properties

Operator has important properties namely the linearity, commutation and Hermitian.

- 1) Linearity: the operator \hat{A} is said to be a linear operator if it satisfy the following conditions;
 - i. $\hat{A}(\psi_1 + \psi_2) = \hat{A}\psi_1 + \hat{A}\psi_2$
 - ii. $\hat{A}(a\psi) = a\hat{A}\psi$ where *a* is a constant
- 2) Commutation: the commutation relation between two operators \hat{A} and \hat{B} is define as;

$$\hat{C} = [\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

Where \hat{C} is called the commutator operator.

i. If
$$\hat{C} = 0 \implies [\hat{A}, \hat{B}] = 0 \implies \hat{A}\hat{B} = \hat{B}\hat{A}$$

The operators in this case called **commute operators**.

ii. If $\hat{C} = 1$

The operators $\hat{C} =$ in this case called **unit operator**.

iii. If
$$\hat{C} \neq 0 \implies [\hat{A}, \hat{B}] \neq 0 \implies \hat{A}\hat{B} - \hat{B}\hat{A} \neq 0$$

The operators in this case called **not commute operators**.

Example: Prove that the operator $\left[\frac{\partial}{\partial x}, x\right]$ is a unit operator.

Solution:

$$\hat{C} = [\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$
$$\hat{C} = [\frac{\partial}{\partial x}, x] = \frac{\partial}{\partial x}x - x\frac{\partial}{\partial x}$$

Multiply the both sides by $\psi(x)$ one get;

$$\hat{C}\psi(x) = \left\{\frac{\partial}{\partial x}x - x\frac{\partial}{\partial x}\right\}\psi(x)$$

$$= \frac{\partial}{\partial x}x(\psi(x)) - x\frac{\partial}{\partial x}(\psi(x))$$

$$= \frac{\partial}{\partial x}(x\psi(x)) - x\frac{\partial\psi(x)}{\partial x}$$

$$= \psi(x) + x\frac{\partial\psi(x)}{\partial x} - x\frac{\partial\psi(x)}{\partial x}$$

$$\hat{C}\psi(x) = \psi(x)$$

$$\hat{C} = 1$$
Prove that; $\hat{C} = [x, \frac{\partial}{\partial x}] = -1.$
mple: Show that; $[\hat{x}, \hat{p}_x] = i\hbar.$

H.W Prove that; $\hat{C} = [x, \frac{\partial}{\partial x}] = -1$. **Example:** Show that; $[\hat{x}, \hat{p}_x] = i\hbar$.

Solution:

$$\hat{c} = [\hat{x}, \hat{p}_{x}]$$

$$\hat{c} = \hat{x} \hat{p}_{x} - \hat{p}_{x} \hat{x}$$

$$\hat{c} = \hat{x}(-i\hbar\frac{\partial}{\partial x}) + i\hbar\frac{\partial}{\partial x}(\hat{x})$$

$$\hat{c} \psi(x) = \left\{ \hat{x}(-i\hbar\frac{\partial}{\partial x}) + i\hbar\frac{\partial}{\partial x}(\hat{x}) \right\} \psi(x)$$

$$\hat{c} \psi(x) = \hat{x}(-i\hbar\frac{\partial\psi(x)}{\partial x}) + i\hbar\frac{\partial}{\partial x} \hat{x} \psi(x)$$

$$\hat{c} \psi(x) = -i\hbar \hat{x}\frac{\partial\psi(x)}{\partial x}) + i\hbar\psi(x) + i\hbar \hat{x}\frac{\partial\psi(x)}{\partial x}$$

$$\hat{c} \psi(x) = i\hbar \psi(x)$$

$$\hat{c} = i\hbar$$

<u>H.W.</u> Prove that $[\hat{p}_x, \hat{x}] = -i\hbar$