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3) Hermitian: the operator Â called Hermitian when it satisfies the following 

relation; 

 dAdA nmmn
** )ˆ(ˆ 









                              …………(2-14) 

Hermitian operator has two important properties that are; 

i- Eigen values correspond to any Hermitian operator are real quantities. i.e. 
*
nn aa   

Proof: 

From the eigen value equation we have; 

 

nnn aA  ˆ                                                                                    ……………..(a)   

Multiply both sides by 
*
n  we get;    

nnnnn aA  ** ˆ   

Integrating over all space one find; 

 dadA nnnnn 








 ** ˆ                                     …….……… (b) 

Take the complex conjugate of equation (a) we have; 

****ˆ
nnn aA                                                                          ………………(c)  

Multiply both sides of equation (c) by n  we get;    

****ˆ
nnnnn aA    

Integrating the last equation over all space one get; 

 daA nnnnn 








 ****ˆ                                             ……………. (d) 

Subtract equation (d) from (b) we find;  

 dadadAdA nnnnnnnnnn 
















 ****** ˆˆ  

According to the definition of Hermitian operator, the left hand side of last equation 

vanishes. i.e.  
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0ˆˆ ***  








 dAdA nnnn                               

So; 

   daa nnnn 




 **0   

From the normalization condition, we conclude that; 

*
nn aa   

ii- Eigen functions correspond to different eigen values are orthogonal. i.e. 

0* 




 dmn . 0* 




 dnm  

Proof: 

Assume that the two functions n and m are eign functions for the operator Â  , so 

the following relations can be setup; 

nnn aA  ˆ
   

mmm aA  ˆ
   

Multiply the first equation by 
*
m , taking the complex conjugate of the second 

equation and multiplying it by n , then integrating the results over all space we get;  

 dadA nmnnm 








 ** ˆ                                     ……………… (a) 

 daA mnmmn 








 ****ˆ                                         ..……………. (b) 

Subtract equation (b) from (a) we find;  

 dadadAdA mnmnmnmnnm 
















 ****** ˆˆ  

According to the definition of Hermitian operator, the left hand side of last equation 

vanishes. Thus;  
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 daa nmmn 




 ** )(0  

Which leads to; 

          0* 




 dnm    

However, normalization and orthogonal conditions can be collected together by the 

following formula;  

 

Where  is the kroneker delta that have the following two values; 

  at   

  at   

 

Example: Prove that  is a Hermitian operator. 

Solution: 

From the definition of Hermitian operator;  

 

=   

Using the by part integration; , assuming that;   

   and     . So,   and . However,   
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H.W: Verify wither the operator 
𝜕

𝜕𝑥
 is a Hermitian or not. 

 

Example: Establish the following operator equation; and 

then show that; . 

Solution:  

For any function for ( ), say  one can write; 

  

               

Since this equation must be valid for any function of (x) thus the operator equation 

is;  

  

Consequently; 

  

  

  

 

Example:  Evaluate the commutation relation; . 

Solution:  
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The tow operators   and are not commute 

 

Example: Verify the operator equation 

1.  

2.    (H.W.)      

 

Solution:  

1.  

 

  

  

  

  

  

  

Since  is an arbitrary function of y, so we can write the operator equation as: 
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Example:  Show that is an eigen function of the operator  

and find the corresponding eigen value. 

 

Solution:  

  

  

  

  

  

  

  

Since the function remained unaltered under the operator, thus, it is an 

eigen function of    and its corresponding eigen value is . 

2.8 Observables and Operators 

Observable define as that physical quantity (dynamical variable) which in 

principle can be measured, such as the energy, momentum, position, angular 

momentum, …. etc.  In quantum mechanics observables represented, generally, by 

a correspondence Hermitian operator, see the table below.  

Q.M.R C.M.R Observable 

x̂ x Position 

x
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
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
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For each observable A represented by the quantum mechanical operator 𝐴 ̂ it is 

possible to setup an eign value equation as follows; 

 

The physical interpretation of the eigen value equation is that; the operator 𝐴 ̂make 

a correspondence measurement for the observable A for the system in state n which 

describe by the wave function ψn. The possible result of the measurement process is 

the eigen value .  

                             

make a measurement                measurement result  

                   on a system in state   

Accordingly, when the momentum operator  operate on a system in state n and 

this system described by the wave function  it will measure the momentum of the 

system in that state n . i.e.  

𝑝 ̂𝜓𝑛 = 𝑝𝑛𝜓𝑛                                   

And so, 

𝑝2  ̂𝜓𝑛 = 𝑝𝑛
2𝜓𝑛                                  ………… (2-15) 

𝐻 ̂𝜓𝑛 = 𝐸𝑛𝜓𝑛                                   

𝑟 ̂𝜓𝑛 = 𝑟𝑛𝜓𝑛                                  

Recall equations (2-4), (2-5), (2-6) and (2-10) one can directly realize the following; 
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                 …………(2-10) 

𝑝̂𝑥 = −𝑖ℏ
𝜕

𝜕𝑥
                                   

)()(ˆ xaxA nnn  

na

)()(ˆ xaxA nnn  

n
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𝑝̂𝑥
2 = −ℏ2 𝜕2

𝜕𝑥2
                                  ………… (2-16a) 

𝐻̂𝜓𝑛 = 𝑖ℏ
𝜕

𝜕𝑡
=

−ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)                                   

 

Similarly; 

𝑥𝜓𝑛 = 𝑥𝑛𝜓𝑛                                  

 

In three dimensions the last four equations become; 

𝑝̂ = −𝑖ℏ∇                                   

𝑝̂2 = −ℏ2∇2                                  ………… (2-16b) 

𝐻̂𝜓𝑛 = 𝑖ℏ
𝜕

𝜕𝑡
=

−ℏ2

2𝑚
∇2 + 𝑉(𝑟̂)                                   

𝑟̂𝜓𝑛 = 𝑟𝑛𝜓𝑛                                  

 

By this procedure, however, we can build up the quantum mechanical representation 

corresponds to any classical mechanic’s observable or relation.   For example; 

𝐸 = 𝐻 = 𝑇 + 𝑉  

𝐻 =
𝑝2

2𝑚
+ 𝑉(𝑟)  

𝑖ℏ
𝜕

𝜕𝑡
=

−ℏ2

2𝑚
∇2 + 𝑉(𝑟̂)  

𝑖ℏ
𝜕

𝜕𝑡
ψ =

−ℏ2

2𝑚
∇2𝜓 + 𝑉(𝑟̂)𝜓  

Which is the T.D.S.E. When 𝜓 is time independent function the L.H.S. of last 

equation can be replaced by; 𝐸𝜓 and then one can get the T.I.D.S.E. as follows; 

𝐸𝜓 =
−ℏ2

2𝑚
∇2𝜓 + 𝑉(𝑟̂)𝜓  

 

H.W:  

1.  By using the classical relation 𝑝𝑥 = 𝑚𝑥̇ find the mathematical formula of the 

velocity operator.  

2. By using the classical relation  show that;  

,  and  
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