2.9 Expectation Values

If a system is in state φ which is not an eigen state of a such operator \hat{A}, then it is not possible to say with certainty what measured value will be found for A. Therefore, one has to use the average value $\langle A\rangle=\bar{A}$ which called in Q.M. expectation value of A. however, it is defined mathematically as;

$$
\begin{equation*}
\bar{A}=\langle A\rangle=\frac{\int \psi^{*} \hat{A} \psi d \tau}{\int \psi^{*} \psi d \tau} \tag{2-17}
\end{equation*}
$$

For a normalized wave function φ;

$$
\bar{A}=\langle A\rangle=\int \psi^{*} \hat{A} \psi d \tau
$$

The probability that a measurement leads to the eigen value for such a case is defined as follows;

$$
\begin{equation*}
p_{n}=\frac{\left|\int \psi_{n}^{*} \phi d \tau\right|^{2}}{\left|\int \phi^{*} \phi d \tau\right|} \tag{2-18}
\end{equation*}
$$

For a normalized wave function φ;

$$
p_{n}=\left|\int \psi_{n}^{*} \phi d \tau\right|^{2}
$$

Remark: The integration in the last mathematical formula is called overlap integral which is a number, that has a value in the range 0 (lowest value) and 1 (maximum value). For the lowest value, the two functions are exactly different while for the maximum value the functions are exactly similar.

We have learned that for each operator \hat{A} there are a set of eigen values a_{n} $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ with corresponding eigen wave functions $\psi_{n}\left(\psi_{1}, \psi_{2} \psi_{3}, \ldots.\right)$. The not eigen function ϕ can be expanded in terms ψ_{n} as follows;

$$
\begin{equation*}
\phi=c_{1} \psi_{1}+c_{2} \psi_{2}+c_{3} \psi_{3}+\ldots \ldots \ldots \ldots+c_{n} \psi_{n}=\sum_{n} c_{n} \psi_{n} \tag{2-19}
\end{equation*}
$$

Equation (2-19) called the completeness or linear superposition principle. Since the total probability is unity we can prove the following important relation $\sum_{n}\left|c_{n}\right|^{2}=1$, as follows;

$$
\begin{align*}
& \int_{\text {allspace }} \phi^{*} \phi d \tau=1 \\
& \int \sum_{n} c_{n}^{*} \psi_{n}^{*} \cdot \sum_{m} c_{m} \psi_{m} d \tau=1 \\
& \sum_{n} \sum_{m} c_{n}^{*} c_{m} \int \psi_{n}^{*} \psi_{m} d \tau=1 \\
& \sum_{n} \sum_{m}^{m} c_{n}^{*} c_{m} \delta_{n m}=1 \\
& \sum_{n} c_{n}^{*} c_{n}=1 \\
& \sum_{n}\left|c_{n}\right|^{2}=1 \tag{2-20}
\end{align*}
$$

Each term in the last equation $\left(\left|c_{n}\right|^{2}\right)$ represent the probability that the system being in state n. Therefore, the physical meaning of this equation is that the total probability (1) is equal to the partial probabilities $\left(\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}+\cdots\right)$ for the system to be in all of the different states.

On the other hand, each term may have regarded to the probability that a measurement for an observable A leads to the eigen value a_{n}, and can be proved as follows;

$$
\begin{align*}
& p_{n}=\left|\int \psi_{n}^{*} \phi d \tau\right|^{2} \\
& =\left|\int \psi_{n}^{*}\left(c_{1} \psi_{1}+c_{2} \psi_{2}+\cdots \cdot\right) d \tau\right|^{2} \\
& =\left|c_{n} \int \psi_{n}^{*} \psi_{n} d \tau\right|^{2} \\
& =\left|c_{n} \delta_{n n}\right|^{2} \\
& p_{n}=\left|c_{n}\right|^{2} \tag{2-21}
\end{align*}
$$

Actually, we can prove that the probable results on measure the observable A for a system describe by the non-eigen function φ, is given by; $\langle A\rangle=\sum_{n}\left|c_{n}\right|^{2} a_{n}$ as follows;

$$
\begin{align*}
& \langle A\rangle=\int \phi^{*} \hat{A} \phi d \tau \\
& =\int\left\{\sum_{n} c_{n} \psi_{n}\right\}^{*} A\left\{\sum_{m} c_{m} \psi_{m}\right\} d \tau \\
& =\int \sum_{n} c_{n}^{*} \psi_{n}^{*} \cdot \sum_{m} c_{m} A \psi_{m} d \tau \\
& =\sum_{n} c_{n}^{*} \sum_{m} c_{m} a_{m} \int \psi_{n}^{*} \psi_{m} d \tau \\
& =\sum_{n} \sum_{m} c_{n}^{*} c_{m} a_{m} \delta_{n m} \\
& =\sum_{n} c_{n}^{*} c_{n} a_{n} \\
& \langle A\rangle=\sum_{n}\left|c_{n}\right|^{2} \cdot a_{n}
\end{align*}
$$

This means that the expectation value of A is the sum of each eigen value a_{n} times the corresponding partial probability $\left|c_{n}\right|^{2}$ of the system to be in that state n.

2.11 Variance

The variance defined as the deviation in the measurement result from its expectation value. It is defining by the root-mean-square deviation as follows;

$$
\begin{equation*}
\Delta A=\left\{\left\langle(A-\langle A\rangle)^{2}\right\rangle\right\}^{1 / 2} \tag{2-23a}
\end{equation*}
$$

The last definition can be formulating to another for as follows;

$$
\begin{align*}
(\Delta A)^{2} & =\left\langle(A-\langle A\rangle)^{2}\right\rangle \\
& =\int \psi^{*}(A-\langle A\rangle)^{2} \psi d \tau \\
& =\int \psi^{*}\left(A^{2}-2 A\langle A\rangle+\langle A\rangle^{2}\right) \psi d \tau \\
& =\int \psi^{*} A^{2} \psi d \tau-\int \psi^{*}(2 A\langle A\rangle) \psi d \tau+\int \psi^{*}\langle A\rangle^{2} \psi d \tau \\
& (\Delta A)^{2}=\left\langle A^{2}\right\rangle-2\langle A\rangle\langle A\rangle+\langle A\rangle^{2} \\
& (\Delta A)^{2}=\left\langle A^{2}\right\rangle-\langle A\rangle^{2} \tag{2-23b}
\end{align*}
$$

H.W: Show that, when a system is describe by an eigen function ψ_{n}, the probability that a measurement for observable A yields the value a_{n} is (1). Find the expectation value of A in this case. Calculate the variance in A.

2.12 Equation of motion and constant of motion

When a wave function ψ is an eigen function for the operator \hat{A} with eigen value a. Then all measurements process for the observable A leads to the eigen value a. i.e. $\langle A\rangle=a$. In this case the observable A is called constant of motion (or conserved), which means that A is time independent quantity. i.e. $\dot{A}=\frac{\partial A}{\partial t}=0$. Let us try to prove this fact.

$$
\left.\begin{array}{l}
\langle A\rangle=\int \psi^{*} \hat{A} \psi d \tau \\
\frac{\partial}{\partial t}\langle A\rangle=\dot{\bar{A}}=\int\left(\frac{\partial \psi^{*}}{\partial t} \hat{A} \psi+\psi^{*} A \frac{\partial \psi}{\partial t}\right) d \tau \\
i \hbar \frac{\partial \psi}{\partial t}=\hat{H} \psi \\
-i \hbar \frac{\partial \psi^{*}}{\partial t}=(\hat{H} \psi)^{*}
\end{array}\right\}\left\{\begin{array}{l} \tag{b}
\end{array}\right\}
$$

Substitute of equation (b) in equation (a) yields;

$$
\dot{\bar{A}}=\int\left\{\frac{i}{\hbar}(\hat{H} \psi)^{*} \hat{A} \psi-\frac{i}{\hbar} \psi^{*} A \hat{H} \psi\right\} d \tau
$$

According to the definition of Hermitian operator we obtain;

$$
\begin{aligned}
& \int \hat{A} \psi(\hat{H} \psi)^{*} d \tau=\int \psi^{*} \hat{H} \hat{A} \psi d \tau \\
& \frac{d}{d t}\langle A\rangle=\dot{\bar{A}}=\frac{i}{\hbar} \int \psi^{*}(\hat{H} \hat{A}-\hat{A} \hat{H}) \psi d \tau
\end{aligned}
$$

In Q.M we define that;

$$
\begin{align*}
& \dot{\bar{A}}= \\
& =\overline{\dot{A}} \tag{2-24}\\
& \overline{\dot{A}}=\frac{i}{\hbar} \int \psi^{*}(\hat{H} \hat{A}-\hat{A} \hat{H}) \psi d \tau \tag{2-25}\\
& \hat{\dot{\mathrm{~A}}}= \\
& \frac{\mathrm{i}}{\hbar}[\hat{\mathrm{H}}, \hat{\mathrm{~A}}]
\end{align*}
$$

Equation (25) is called the equation of motion, which imply that an observable A is a constant of motion (conserved) when its operator being commute with the Hamiltonian operator.

Example: Show that, the linear momentum p_{x} of a free particle is a constant of motion.

Solution:

$$
\hat{H}=\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)
$$

For a free particle $V(x)=0$, thus;

$$
\begin{aligned}
& \hat{H}=\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \\
& \overline{\dot{p}}=\frac{i}{\hbar}[\hat{H}, \hat{p}] \\
& \bar{p}=\frac{i}{\hbar}(\hat{H} \hat{p}-\hat{p} \hat{H}) \\
& \bar{p} \psi=\frac{i}{\hbar}(\hat{H} \hat{p}-\hat{p} \hat{H}) \psi \\
& \bar{p} \psi=\frac{i}{\hbar}\left\{\left(\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\right) \cdot\left(-i \hbar \frac{\partial \psi}{\partial x}\right)-\left(-i \hbar \frac{\partial}{\partial x}\right) \cdot\left(\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}\right)\right\} \\
& \bar{p} \psi=\frac{i}{\hbar}\left\{\frac{i \hbar^{3}}{2 m} \frac{\partial^{3} \psi}{\partial x^{3}}-\frac{i \hbar^{3}}{2 m} \frac{\partial^{3} \psi}{\partial x^{3}}\right\} \\
& \bar{p}=0
\end{aligned}
$$

Since, $\overline{\dot{p}}=0$ thus, $p=$ constan of motion

Example: Prove the Ehrenfest theorems that given by; a) $\frac{d}{d t}\langle x\rangle=\frac{1}{m}\left\langle p_{x}\right\rangle$ and $\left.\mathbf{b}\right)$ $\frac{d}{d t}\left\langle p_{x}\right\rangle=-\left\langle\frac{\partial V}{\partial x}\right\rangle$.

Proof (a):

$$
\langle x\rangle=\int \psi^{*} \hat{x} \psi d x
$$

$$
\begin{align*}
& \frac{d}{d t}\langle x\rangle=\frac{d}{d t} \int \psi^{*} \hat{x} \psi d x \\
& =\int x\left(\psi \frac{\partial \psi^{*}}{\partial t}+\psi^{*} \frac{\partial \psi}{\partial t}\right) d \tau \tag{a}
\end{align*}
$$

The T.D.S.E. given by; $\quad i \hbar \frac{\partial \psi}{\partial t}=\frac{-\hbar^{2}}{2 m} \nabla^{2} \psi+V(r) \psi$, So, divided by $i \hbar$ yields;

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=\frac{i \hbar}{2 m} \nabla^{2} \psi+\frac{V(r) \psi}{i \hbar} \tag{b}
\end{equation*}
$$

The complex conjugate of (a) leads to;

$$
\begin{equation*}
\frac{\partial \psi^{*}}{\partial t}=\frac{-i \hbar}{2 m} \nabla^{2} \psi^{*}-\frac{V(r) \psi^{*}}{i \hbar} \tag{c}
\end{equation*}
$$

Substitute of equations (b and c) in (a) yields;

$$
\begin{equation*}
\frac{d}{d t}\langle x\rangle=\frac{i \hbar}{2 m} \int\left(\psi^{*} x \nabla^{2} \psi-\psi x \nabla^{2} \psi^{*}\right) d \tau \tag{d}
\end{equation*}
$$

Using Greens Theorem;

$$
\int\left(\psi^{*} \nabla^{2} x \psi-x \psi \nabla^{2} \psi^{*}\right) d \tau=\int\left(\psi^{*} \nabla x \psi-x \psi \nabla \psi^{*}\right) \cdot d s=0
$$

The boundary condition imposed on ψ make the surface integral equal to zero. Where, the probability of finding the particle outside the volume is equal to zero i.e. the wave function ψ is equal to zero on the surface.

$$
\therefore \quad \int\left(\psi^{*} \nabla^{2} x \psi d \tau=\int x \psi \nabla^{2} \psi^{*} d \tau\right.
$$

Therefore, equation (d) becomes;

$$
\begin{equation*}
\frac{d}{d t}\langle x\rangle=\frac{i \hbar}{2 m} \int\left(\psi^{*} x \nabla^{2} \psi-\psi^{*} \nabla^{2} x \psi\right) d \tau \tag{e}
\end{equation*}
$$

Since; $\nabla^{2} x \psi=\nabla \cdot \nabla x \psi=x \nabla^{2} \psi+\nabla \psi+\nabla \psi$

$$
\begin{equation*}
\therefore \nabla^{2} x \psi=x \nabla^{2} \psi+2 \frac{\partial}{\partial x} \psi \tag{f}
\end{equation*}
$$

Substitute of equation (f) in (e) we get;

$$
\frac{d}{d t}\langle x\rangle=\frac{i \hbar}{2 m} \int\left(\psi^{*} x \nabla^{2} \psi-\psi^{*} x \nabla^{2} \psi-2 \psi^{*} \frac{\partial \psi}{\partial x}\right) d \tau
$$

$$
\begin{aligned}
& =\frac{-i \hbar}{m} \int \psi^{*} \frac{\partial \psi}{\partial x} d \tau \\
& =\frac{1}{m} \int \psi^{*}\left(-i \hbar \frac{\partial}{\partial x}\right) \psi d \tau \\
& =\frac{1}{m} \int \psi^{*} \hat{p}_{x} \psi d \tau \\
& \therefore \quad \frac{d}{d t}\langle x\rangle=\frac{\left\langle p_{x}\right\rangle}{m}
\end{aligned}
$$

Proof (b):

$$
\begin{align*}
& \left\langle p_{x}\right\rangle=\int \psi^{*}\left(-i \hbar \frac{\partial}{\partial x}\right) \psi d \tau \\
& \frac{d}{d t}\left\langle p_{x}\right\rangle=-i \hbar \frac{d}{d t} \int \psi^{*} \frac{\partial \psi}{\partial x} d \tau \\
& \frac{d}{d t}\left\langle p_{x}\right\rangle=i \hbar \int\left(\psi^{*} \frac{\partial}{\partial x} \frac{\partial \psi}{\partial t}+\frac{\partial \psi^{*}}{\partial t} \frac{\partial \psi}{\partial x}\right) d \tau \tag{a}
\end{align*}
$$

Regarding the T.D.S.E.: $i \hbar \frac{\partial \psi}{\partial t}=\frac{-\hbar^{2}}{2 m} \nabla^{2} \psi+V(r) \psi$, and dividing by: $i \hbar$ yield;

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=\frac{-\hbar}{2 m i} \nabla^{2} \psi+\frac{V(r) \psi}{i \hbar} \tag{b}
\end{equation*}
$$

The complex conjugate leads to;

$$
\begin{equation*}
\frac{\partial \psi^{*}}{\partial t}=\frac{\hbar}{2 m i} \nabla^{2} \psi^{*}-\frac{V(r) \psi^{*}}{i \hbar} \tag{c}
\end{equation*}
$$

The substitution of (b) and (c) in (a) leads to;

$$
\begin{array}{r}
\frac{d}{d t}\left\langle p_{x}\right\rangle=-i \hbar \int\left[\psi^{*} \frac{\partial}{\partial x}\left(\frac{-\hbar}{2 m i} \nabla^{2} \psi+\frac{V}{i \hbar} \psi\right)+\left(\frac{\hbar}{2 m i} \nabla^{2} \psi^{*}-\frac{V}{i \hbar} \psi^{*}\right) \frac{\partial \psi}{\partial x}\right] d \tau \\
\frac{d}{d t}\left\langle p_{x}\right\rangle=\int\left[\frac{\hbar^{2}}{2 m} \psi^{*} \nabla^{2} \frac{\partial \psi}{\partial x}-\psi^{*} \frac{\partial}{\partial x} V \psi-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{*} \frac{\partial \psi}{\partial x}+V \psi^{*} \frac{\partial \psi}{\partial x}\right] d \tau \\
\frac{d}{d t}\left\langle p_{x}\right\rangle=-\int\left(\psi^{*} \frac{\partial}{\partial x} V \psi-V \psi^{*} \frac{\partial \psi}{\partial x}\right) d \tau-\frac{\hbar^{2}}{2 m} \int\left[\frac{\partial \psi}{\partial x} \nabla^{2} \psi^{*}-\psi^{*} \nabla^{2}\left(\frac{\partial \psi}{\partial x}\right)\right] d \tau
\end{array}
$$

Apply Greens theorem on the second term we get;

$$
\int\left[\frac{\partial \psi}{\partial x} \nabla^{2} \psi^{*}-\psi^{*} \nabla^{2} \frac{\partial \psi}{\partial x}\right] d \tau=\int\left[\frac{\partial \psi}{\partial x} \nabla \psi^{*}-\psi^{*} \nabla \frac{\partial \psi}{\partial x}\right] \cdot d s=0
$$

However, the integration of the first term is;

$$
\begin{aligned}
& =-\int\left(\psi^{*}\left(V \frac{\partial \psi}{\partial x}+\psi \frac{\partial V}{\partial x}\right)-V \psi^{*} \frac{\partial \psi}{\partial x} d \tau\right. \\
& \frac{d}{d t}\left\langle p_{x}\right\rangle=-\int \psi^{*} \frac{\partial V}{\partial x} \psi d \tau \\
& \frac{d}{d t}\left\langle p_{x}\right\rangle=-\left\langle\frac{\partial V}{\partial x}\right\rangle
\end{aligned}
$$

