Q1/ Choose the correct answer justifying your choice:

1- Quantum mechanics defined as the theoretical tool that is uses to investigate the

a-macroscopic systems b- large systems c- microscopic systems d- classical systems

2- The photoelectrons have a kinetic energy equal to

a- E_r - W_o b- E_r c- W_o d- E_r/W_o

where E_r is the energy of the incident radiation and W_o the energy needed to separate electron from the metal called work function.

3- Correspondence Principle which assumed by Bohr, states that the results of quantum physics are consistent with the results of classical physics at the limit where the can be neglected.

a-light speedb- Planck constantc- De Broglie wave lengthd- Heisenberg Uncertainty Principle.

4- The number of photons that will make up 6.625 J of energy for a radiation having frequency 10^{17} Hz are:

a-
$$1 \times 10^{-17}$$
 b- 1×10^{-34} c- 1×10^{34} d- 1×10^{17}

5- The De Broglie wave length of a projectile having a mass 1.0 ×10⁻³ kg and its velocity is 3×10⁷ m/s.
a- 2.21×10⁻²⁹ nm b-2.21×10⁻²¹ m c- 2.21×10⁻⁴⁴ m d- 2.21×10⁻³⁰ nm

Q2/ Show that, Planck radiation law reduced to Wien's radiation law for high frequencies and to Rayleigh – Jeans radiation law for very low frequencies.

Q3/ Use the uncertainty principle to prove the impossibility of finding electron inside a nucleus.

Q4/Use the equation $\Delta E \cdot \Delta t \geq \hbar$ to obtain the equation $\Delta x \cdot \Delta p_x \geq \hbar$